1
|
Davis LN, Walker ZJ, Reiman LT, Parzych SE, Stevens BM, Jordan CT, Forsberg PA, Sherbenou DW. MYC Inhibition Potentiates CD8+ T Cells Against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin Cancer Res 2024; 30:3023-3035. [PMID: 38723281 PMCID: PMC11250500 DOI: 10.1158/1078-0432.ccr-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.
Collapse
Affiliation(s)
- Lorraine N. Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Keller AL, Reiman LT, Perez de Acha O, Parzych SE, Forsberg PA, Kim PS, Bisht K, Wang H, van de Velde H, Sherbenou DW. Ex Vivo Efficacy of SAR442257 Anti-CD38 Trispecific T-cell Engager in Multiple Myeloma Relapsed After Daratumumab and BCMA-targeted Therapies. CANCER RESEARCH COMMUNICATIONS 2024; 4:757-764. [PMID: 38421887 PMCID: PMC10929583 DOI: 10.1158/2767-9764.crc-23-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
T cell-engaging antibodies (TCEs) are showing promising efficacy in relapsed/refractory multiple myeloma, even in patients that relapsed after B-cell maturation antigen (BCMA)-targeted therapy. Patients with multiple myeloma may have compromised T-cell health unaccounted for by preclinical models. Here, we use Myeloma Drug Sensitivity Testing (My-DST) for ex vivo measurement of anti-multiple myeloma cytotoxicity for the trispecific CD38/CD28xCD3 TCE SAR442257 through activation of the patients' own endogenous T cells to inform clinical development of the compound in multiple myeloma. My-DST incubates primary mononuclear cells in humanized media for 48 hours followed by flow cytometry for multiple myeloma cell viability with or without drug treatment. SAR442257 was tested on 34 samples from patients with multiple myeloma across disease settings. Potential biomarkers, T-cell dependence, and degranulation were assessed. SAR442257 was effective at low dose in My-DST cultures. High ex vivo response rates were observed in primary aspirates taken from patients with multiple myeloma at diagnosis, with modestly reduced response in multiple myeloma recently treated with anti-CD38 mAbs. SAR442257 was highly effective in patients relapsing after BCMA therapy. The CD38/CD28xCD3 trispecific format was substantially more effective than a conventional bispecific CD38/CD3 antibody format and CD38 mAbs. Anti-multiple myeloma cell cytotoxicity was dependent on the presence of endogenous T cells. Surface CD38 expression was the strongest biomarker of TCE response. My-DST is capable of measuring T cell-dependent killing using the multiple myeloma patient's own bone marrow-derived T cells. SAR442257 shows promise for multiple myeloma and may be best suited for patients declared resistant to both CD38 mAbs and BCMA-targeted therapy. SIGNIFICANCE This study introduces the use of My-DST to measure and characterize sensitivity to anti-CD38 T-cell engager SAR442257 in primary samples using matched endogenous T cells. Preclinical testing in samples from patients with diverse treatment history supports further testing in post-chimeric antigen receptor T-cell multiple myeloma.
Collapse
Affiliation(s)
- Alana L. Keller
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter S. Kim
- Sanofi R&D, North America, Cambridge, Massachusetts
| | | | | | | | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
van Nieuwenhuijzen N, Cuenca M, Abbink L, Jak M, Peperzak V, Minnema MC. Identifying clinical response to daratumumab therapy in relapsed/refractory multiple myeloma using a patient-derived in vitro model. EJHAEM 2024; 5:141-146. [PMID: 38406516 PMCID: PMC10887349 DOI: 10.1002/jha2.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 02/27/2024]
Abstract
Response to daratumumab in patients with relapsed/refractory multiple myeloma is heterogeneous, and a reliable biomarker of response is lacking. We aimed to develop a method that identifies response to daratumumab therapy. Patient-derived MM cells were collected before start of daratumumab treatment and were cultured in a hydrogel-based culture system. The extent of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro was associated with both clinical response and progression-free survival in corresponding patients. Together, our results demonstrate that in vitro sensitivity to daratumumab therapy in a hydrogel culture with primary MM cells might be used to identify patients most likely to benefit from treatment.
Collapse
Affiliation(s)
- Niels van Nieuwenhuijzen
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Marta Cuenca
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Leonie Abbink
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Margot Jak
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Victor Peperzak
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Monique C. Minnema
- Department of HematologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Ayuda-Durán P, Hermansen JU, Giliberto M, Yin Y, Hanes R, Gordon S, Kuusanmäki H, Brodersen AM, Andersen AN, Taskén K, Wennerberg K, Enserink JM, Skånland SS. Standardized assays to monitor drug sensitivity in hematologic cancers. Cell Death Discov 2023; 9:435. [PMID: 38040674 PMCID: PMC10692209 DOI: 10.1038/s41420-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
The principle of drug sensitivity testing is to expose cancer cells to a library of different drugs and measure its effects on cell viability. Recent technological advances, continuous approval of targeted therapies, and improved cell culture protocols have enhanced the precision and clinical relevance of such screens. Indeed, drug sensitivity testing has proven diagnostically valuable for patients with advanced hematologic cancers. However, different cell types behave differently in culture and therefore require optimized drug screening protocols to ensure that their ex vivo drug sensitivity accurately reflects in vivo drug responses. For example, primary chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) cells require unique microenvironmental stimuli to survive in culture, while this is less the case for acute myeloid leukemia (AML) cells. Here, we present our optimized and validated protocols for culturing and drug screening of primary cells from AML, CLL, and MM patients, and a generic protocol for cell line models. We also discuss drug library designs, reproducibility, and quality controls. We envision that these protocols may serve as community guidelines for the use and interpretation of assays to monitor drug sensitivity in hematologic cancers and thus contribute to standardization. The read-outs may provide insight into tumor biology, identify or confirm treatment resistance and sensitivity in real time, and ultimately guide clinical decision-making.
Collapse
Affiliation(s)
- Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johanne U Hermansen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yanping Yin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Robert Hanes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sandra Gordon
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Heikki Kuusanmäki
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrea M Brodersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Aram N Andersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Perez de Acha O, Reiman L, Jayabalan DS, Walker ZJ, Bosma G, Keller AL, Parzych SE, Abbott D, Idler BM, Ribadeneyra D, Niesvizky R, Forsberg PA, Mark TM, Sherbenou DW. CD38 antibody re-treatment in daratumumab-refractory multiple myeloma after time on other therapies. Blood Adv 2023; 7:6430-6440. [PMID: 37648670 PMCID: PMC10598487 DOI: 10.1182/bloodadvances.2023010162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Monoclonal antibodies targeting CD38 are important for treatment of both newly diagnosed and relapsed multiple myeloma (MM). Daratumumab and isatuximab are anti-CD38 antibodies with the US Food and Drugs Administration approval in multiple different combinations. Despite good initial efficacy, patients inevitably develop drug resistance. Whether patients can be effectively re-treated with these antibodies in subsequent lines of therapy is unclear. Thus far, studies have mostly been limited to clinical retrospectives with short washout periods. To answer whether patients regain sensitivity after longer washouts, we used ex vivo sensitivity testing to isolate the anti-CD38 antibody-specific cytotoxicity in samples obtained from patients who had been exposed to and then off daratumumab for up to 53 months. MM cells from patients who had been off daratumumab for >1 year showed greater sensitivity than those with <1 year, although they still were less sensitive than those who were daratumumab naïve. CD38 expression on MM cells gradually recovered, although, again, not to the level of anti-CD38 antibody-naïve patients. Interestingly, low MM CD38 explained only 45% of cases identified to have daratumumab resistance. With clinical follow-up, we found ex vivo sensitivity predicted subsequent clinical response but CD38 overexpression did not. Patients clinically re-treated with anti-CD38 antibodies had <6 months of clinical benefit, but 1 patient who was daratumumab exposed but not refractory achieved complete response lasting 13 months. We conclude that transient efficacy can be achieved by waiting 1 year before CD38 antibody rechallenge, but this approach may be best used as a bridge to, or after, chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lauren Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David S. Jayabalan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Grace Bosma
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alana L. Keller
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Diana Abbott
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Beau M. Idler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Drew Ribadeneyra
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Ruben Niesvizky
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York-Presbyterian, New York City, NY
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tomer M. Mark
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
VanWyngarden MJ, Walker ZJ, Su Y, Perez de Acha O, Stevens BM, Forsberg PA, Mark TM, Matsui W, Liu B, Sherbenou DW. CD46-ADC Reduces the Engraftment of Multiple Myeloma Patient-Derived Xenografts. Cancers (Basel) 2023; 15:5335. [PMID: 38001595 PMCID: PMC10670432 DOI: 10.3390/cancers15225335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
An antibody-drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46-ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46-ADC or the nonbinding control-ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46-ADC treatment showed significantly decreased engraftment compared to control-ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity.
Collapse
Affiliation(s)
- Michael J. VanWyngarden
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Zachary J. Walker
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Olivia Perez de Acha
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Brett M. Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Peter A. Forsberg
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - Tomer M. Mark
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| | - William Matsui
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78705, USA;
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Daniel W. Sherbenou
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.V.); (Z.J.W.); (O.P.d.A.); (B.M.S.); (P.A.F.); (T.M.M.)
| |
Collapse
|
7
|
Goh J, De Mel S, Hoppe MM, Mohd Abdul Rashid MB, Zhang XY, Jaynes P, Ka Yan Ng E, Rahmat NDB, Jayalakshmi, Liu CX, Poon L, Chan E, Lee J, Chee YL, Koh LP, Tan LK, Soh TG, Yuen YC, Loi HY, Ng SB, Goh X, Eu D, Loh S, Ng S, Tan D, Cheah DMZ, Pang WL, Huang D, Ong SY, Nagarajan C, Chan JY, Ha JCH, Khoo LP, Somasundaram N, Tang T, Ong CK, Chng WJ, Lim ST, Chow EK, Jeyasekharan AD. An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci Transl Med 2022; 14:eabn7824. [PMID: 36260690 DOI: 10.1126/scitranslmed.abn7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RR-NHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.
Collapse
Affiliation(s)
- Jasmine Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sanjay De Mel
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Xi Yun Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Esther Ka Yan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Jayalakshmi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Limei Poon
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Esther Chan
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Joanne Lee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Yen Lin Chee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Liang Piu Koh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Lip Kun Tan
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Teck Guan Soh
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Yi Ching Yuen
- Department of Pharmacy, National University Health System, Singapore 119074, Singapore
| | - Hoi-Yin Loi
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xueying Goh
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Donovan Eu
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Stanley Loh
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Sheldon Ng
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore 329563, Singapore.,Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Daryl Ming Zhe Cheah
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Wan Lu Pang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | | | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore
| | - Jeslin Chian Hung Ha
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Lay Poh Khoo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore.,Office of Education, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Edward K Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
8
|
Mark C, Callander NS, Chng K, Miyamoto S, Warrick J. Timelapse viability assay to detect division and death of primary multiple myeloma cells in response to drug treatments with single cell resolution. Integr Biol (Camb) 2022; 14:49-61. [PMID: 35653717 PMCID: PMC9175638 DOI: 10.1093/intbio/zyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Heterogeneity among cancer cells and in the tumor microenvironment (TME) is thought to be a significant contributor to the heterogeneity of clinical therapy response observed between patients and can evolve over time. A primary example of this is multiple myeloma (MM), a generally incurable cancer where such heterogeneity contributes to the persistent evolution of drug resistance. However, there is a paucity of functional assays for studying this heterogeneity in patient samples or for assessing the influence of the patient TME on therapy response. Indeed, the population-averaged data provided by traditional drug response assays and the large number of cells required for screening remain significant hurdles to advancement. To address these hurdles, we developed a suite of accessible technologies for quantifying functional drug response to a panel of therapies in ex vivo three-dimensional culture using small quantities of a patient's own cancer and TME components. This suite includes tools for label-free single-cell identification and quantification of both cell division and death events with a standard brightfield microscope, an open-source software package for objective image analysis and feasible data management of multi-day timelapse experiments, and a new approach to fluorescent detection of cell death that is compatible with long-term imaging of primary cells. These new tools and capabilities are used to enable sensitive, objective, functional characterization of primary MM cell therapy response in the presence of TME components, laying the foundation for future studies and efforts to enable predictive assessment drug efficacy for individual patients.
Collapse
Affiliation(s)
- Christina Mark
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
| | - Natalie S Callander
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Kenny Chng
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Shigeki Miyamoto
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Jay Warrick
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
- Salus Discovery, LLC, 110 E. Main St. Suite 815, Madison, WI 53703, USA
| |
Collapse
|
9
|
Alhallak K, Jeske A, de la Puente P, Sun J, Fiala M, Azab F, Muz B, Sahin I, Vij R, DiPersio JF, Azab AK. A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Sci Rep 2021; 11:19343. [PMID: 34588522 PMCID: PMC8481555 DOI: 10.1038/s41598-021-98760-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Cellatrix LLC, St. Louis, MO, USA
| | - Pilar de la Puente
- Cellatrix LLC, St. Louis, MO, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Barbara Muz
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ravi Vij
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Cellatrix LLC, St. Louis, MO, USA.
| |
Collapse
|
10
|
Coffey DG, Cowan AJ, DeGraaff B, Martins TJ, Curley N, Green DJ, Libby EN, Silbermann R, Chien S, Dai J, Morales A, Gooley TA, Warren EH, Becker PS. High-Throughput Drug Screening and Multi-Omic Analysis to Guide Individualized Treatment for Multiple Myeloma. JCO Precis Oncol 2021; 5:PO.20.00442. [PMID: 34250400 PMCID: PMC8232547 DOI: 10.1200/po.20.00442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous malignancy characterized by variable treatment responses. Although numerous drugs have been approved in recent years, the ability to predict treatment response and tailor individual therapy is limited by the absence of robust predictive biomarkers. The goal of this clinical trial was to use ex vivo, high-throughput screening (HTS) of 170 compounds to predict response among patients with relapsed or refractory MM and inform the next treatment decisions. Additionally, we integrated HTS with multi-omic analysis to uncover novel associations between in vitro drug sensitivity and gene expression and mutation profiles. MATERIALS AND METHODS Twenty-five patients with relapsed or refractory MM underwent a screening bone marrow or soft tissue biopsy. Sixteen patients were found to have sufficient plasma cells for HTS. Targeted next-generation sequencing was performed on plasma cell-free DNA from all patients who underwent HTS. RNA and whole-exome sequencing of bone marrow plasma cells were performed on eight and seven patients, respectively. RESULTS Results of HTS testing were made available to treating physicians within a median of 5 days from the biopsy. An actionable treatment result was identified in all 16 patients examined. Among the 13 patients who received assay-guided therapy, 92% achieved stable disease or better. The expression of 105 genes and mutations in 12 genes correlated with in vitro cytotoxicity. CONCLUSION In patients with relapsed or refractory MM, we demonstrate the feasibility of ex vivo drug sensitivity testing on isolated plasma cells from patient bone marrow biopsies or extramedullary plasmacytomas to inform the next line of therapy.
Collapse
Affiliation(s)
- David G. Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Andrew J. Cowan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Bret DeGraaff
- Department of Medicine, University of Washington, Seattle, WA
| | - Timothy J. Martins
- Quellos High Throughput Screening Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Niall Curley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Damian J. Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Edward N. Libby
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Rebecca Silbermann
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Sylvia Chien
- Department of Medicine, University of Washington, Seattle, WA
| | - Jin Dai
- Department of Medicine, University of Washington, Seattle, WA
| | - Alicia Morales
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Edus H. Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Pamela S. Becker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
- Quellos High Throughput Screening Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA
| |
Collapse
|
11
|
Emerging Therapeutic Strategies to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071686. [PMID: 33918370 PMCID: PMC8038312 DOI: 10.3390/cancers13071686] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma is a deadly blood cancer, but fortunately drug development has substantially prolonged the lifespan of patients to average more than a decade after diagnosis with optimal therapy. As a result, the population of patients living with multiple myeloma has grown considerably. Through its course, patients suffer repeated relapses for which they require new lines of treatment. Currently, the key drug classes for treatment are immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. The goal of this review is to summarize the understanding of the problem of resistance to these drugs, which is ultimately responsible for patient fatality. In addition, we will focus on how new agents that are promising in clinical trials overcome resistance. Abstract Multiple myeloma is a malignant plasma cell neoplasm that remains incurable and is ultimately fatal when patients acquire multi-drug resistance. Thus, advancing our understanding of the mechanisms behind drug resistance in multi-relapsed patients is critical for developing better strategies to extend their lifespan. Here, we review the understanding of resistance to the three key drug classes approved for multiple myeloma treatment: immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. We consider how the complex, heterogenous biology of multiple myeloma may influence the acquisition of drug resistance and reflect on the gaps in knowledge where additional research is needed to improve our treatment approaches. Fortunately, many agents are currently being evaluated preclinically and in clinical trials that have the potential to overcome or delay drug resistance, including next-generation immunomodulatory drugs and proteasome inhibitors, novel small molecule drugs, chimeric antigen receptor T cells, antibody-drug conjugates, and bispecific antibodies. For each class, we discuss the potential of these strategies to overcome resistance through modifying agents within each class or new classes without cross-resistance to currently available drugs.
Collapse
|
12
|
Sherbenou DW, Su Y, Behrens CR, Aftab BT, Perez de Acha O, Murnane M, Bearrows SC, Hann BC, Wolf JL, Martin TG, Liu B. Potent Activity of an Anti-ICAM1 Antibody-Drug Conjugate against Multiple Myeloma. Clin Cancer Res 2020; 26:6028-6038. [PMID: 32917735 PMCID: PMC7669584 DOI: 10.1158/1078-0432.ccr-20-0400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE New therapies have changed the outlook for patients with multiple myeloma, but novel agents are needed for patients who are refractory or relapsed on currently approved drug classes. Novel targets other than CD38 and BCMA are needed for new immunotherapy development, as resistance to daratumumab and emerging anti-BCMA approaches appears inevitable. One potential target of interest in myeloma is ICAM1. Naked anti-ICAM1 antibodies were active in preclinical models of myeloma and safe in patients, but showed limited clinical efficacy. Here, we sought to achieve improved targeting of multiple myeloma with an anti-ICAM1 antibody-drug conjugate (ADC). EXPERIMENTAL DESIGN Our anti-ICAM1 human mAb was conjugated to an auristatin derivative, and tested against multiple myeloma cell lines in vitro, orthotopic xenografts in vivo, and patient samples ex vivo. The expression of ICAM1 was also measured by quantitative flow cytometry in patients spanning from diagnosis to the daratumumab-refractory state. RESULTS The anti-ICAM1 ADC displayed potent anti-myeloma cytotoxicity in vitro and in vivo. In addition, we have verified that ICAM1 is highly expressed on myeloma cells and shown that its expression is further accentuated by the presence of bone marrow microenvironmental factors. In primary samples, ICAM1 is differentially overexpressed on multiple myeloma cells compared with normal cells, including daratumumab-refractory patients with decreased CD38. In addition, ICAM1-ADC showed selective cytotoxicity in multiple myeloma primary samples. CONCLUSIONS We propose that anti-ICAM1 ADC should be further studied for toxicity, and if safe, tested for clinical efficacy in patients with relapsed or refractory multiple myeloma.
Collapse
Affiliation(s)
- Daniel W Sherbenou
- Department of Medicine, University of California at San Francisco, California
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yang Su
- Department of Anesthesia, University of California at San Francisco, California
| | | | - Blake T Aftab
- Department of Medicine, University of California at San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Murnane
- Department of Medicine, University of California at San Francisco, California
| | - Shelby C Bearrows
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Byron C Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jeffery L Wolf
- Department of Medicine, University of California at San Francisco, California
| | - Thomas G Martin
- Department of Medicine, University of California at San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California at San Francisco, California.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
13
|
Walker ZJ, Idler BM, Davis LN, Stevens BM, VanWyngarden MJ, Ohlstrom D, Bearrows SC, Hammes A, Smith CA, Jordan CT, Mark TM, Forsberg PA, Sherbenou DW. Exploiting Protein Translation Dependence in Multiple Myeloma with Omacetaxine-Based Therapy. Clin Cancer Res 2020; 27:819-830. [PMID: 33109736 DOI: 10.1158/1078-0432.ccr-20-2246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The prognosis of patients with multiple myeloma who are resistant to proteasome inhibitors, immunomodulatory drugs (IMiD), and daratumumab is extremely poor. Even B-cell maturation antigen-specific chimeric antigen receptor T-cell therapies provide only a temporary benefit before patients succumb to their disease. In this article, we interrogate the unique sensitivity of multiple myeloma cells to the alternative strategy of blocking protein translation with omacetaxine. EXPERIMENTAL DESIGN We determined protein translation levels (n = 17) and sensitivity to omacetaxine (n = 51) of primary multiple myeloma patient samples. Synergy was evaluated between omacetaxine and IMiDs in vitro, ex vivo, and in vivo. Underlying mechanism was investigated via proteomic analysis. RESULTS Almost universally, primary patient multiple myeloma cells exhibit >2.5-fold increased rates of protein translation compared with normal marrow cells. Ex vivo treatment with omacetaxine resulted in >50% reduction in viable multiple myeloma cells. In this cohort, high levels of translation serve as a biomarker for patient multiple myeloma cell sensitivity to omacetaxine. Unexpectedly, omacetaxine demonstrated synergy with IMiDs in multiple myeloma cell lines in vitro. In addition, in an IMiD-resistant relapsed patient sample, omacetaxine/IMiD combination treatment resensitized the multiple myeloma cells to the IMiD. Proteomic analysis found that the omacetaxine/IMiD combination treatment produced a double-hit on the IRF4/c-MYC pathway, which is critical to multiple myeloma survival. CONCLUSIONS Overall, protein translation inhibitors represent a potential new drug class for myeloma treatment and provide a rationale for conducting clinical trials with omacetaxine alone and in combination with IMiDs for patients with relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Zachary J Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Beau M Idler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lorraine N Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael J VanWyngarden
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Denis Ohlstrom
- Biomedical Sciences and Biotechnology, Graduate School, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shelby C Bearrows
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Hammes
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Clayton A Smith
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tomer M Mark
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter A Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel W Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|