1
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li N. Platelets as an inter-player between hyperlipidaemia and atherosclerosis. J Intern Med 2024; 296:39-52. [PMID: 38704820 DOI: 10.1111/joim.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Platelet hyperreactivity and hyperlipidaemia contribute significantly to atherosclerosis. Thus, it is desirable to review the platelet-hyperlipidaemia interplay and its impact on atherogenesis. Native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) are the key proatherosclerotic components of hyperlipidaemia. nLDL binds to the platelet-specific LDL receptor (LDLR) ApoE-R2', whereas oxLDL binds to the platelet-expressed scavenger receptor CD36, lectin-type oxidized LDLR 1 and scavenger receptor class A 1. Ligation of nLDL/oxLDL induces mild platelet activation and may prime platelets for other platelet agonists. Platelets, in turn, can modulate lipoprotein metabolisms. Platelets contribute to LDL oxidation by enhancing the production of reactive oxygen species and LDLR degradation via proprotein convertase subtilisin/kexin type 9 release. Platelet-released platelet factor 4 and transforming growth factor β modulate LDL uptake and foam cell formation. Thus, platelet dysfunction and hyperlipidaemia work in concert to aggravate atherogenesis. Hypolipidemic drugs modulate platelet function, whereas antiplatelet drugs influence lipid metabolism. The research prospects of the platelet-hyperlipidaemia interplay in atherosclerosis are also discussed.
Collapse
Affiliation(s)
- Nailin Li
- Karolinska Institutet, Department of Medicine-Solna, Division of Cardiovascular Medicine, Stockholm, Sweden
| |
Collapse
|
3
|
Chahla C, Kovacic H, Ferhat L, Leloup L. Pathological Impact of Redox Post-Translational Modifications. Antioxid Redox Signal 2024; 41:152-180. [PMID: 38504589 DOI: 10.1089/ars.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.
Collapse
Affiliation(s)
- Charbel Chahla
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Hervé Kovacic
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Lotfi Ferhat
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Ludovic Leloup
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
4
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 PMCID: PMC10581564 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
7
|
Yang M, Silverstein RL. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants (Basel) 2024; 13:83. [PMID: 38247507 PMCID: PMC10812781 DOI: 10.3390/antiox13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress increases the risk for clinically significant thrombotic events, yet the mechanisms by which oxidants become prothrombotic are unclear. In this review, we provide an overview of cysteine reactivity and oxidation. We then highlight recent findings on cysteine oxidation events in oxidative stress-related thrombosis. Special emphasis is on the signaling pathway induced by a platelet membrane protein, CD36, in dyslipidemia, and by protein disulfide isomerase (PDI), a member of the thiol oxidoreductase family of proteins. Antioxidative and chemical biology approaches to target cysteine are discussed. Lastly, the knowledge gaps in the field are highlighted as they relate to understanding how oxidative cysteine modification might be targeted to limit thrombosis.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-924, Boston, MA 02115, USA
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Hub 8745, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Yang M, Smith BC. Cysteine and methionine oxidation in thrombotic disorders. Curr Opin Chem Biol 2023; 76:102350. [PMID: 37331217 PMCID: PMC10527720 DOI: 10.1016/j.cbpa.2023.102350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Thrombosis is the leading cause of death in many diseased conditions. Oxidative stress is characteristic of these conditions. Yet, the mechanisms through which oxidants become prothrombotic are unclear. Recent evidence suggests protein cysteine and methionine oxidation as prothrombotic regulators. These oxidative post-translational modifications occur on proteins that participate in the thrombotic process, including Src family kinases, protein disulfide isomerase, β2 glycoprotein I, von Willebrand factor, and fibrinogen. New chemical tools to identify oxidized cysteine and methionine proteins in thrombosis and hemostasis, including carbon nucleophiles for cysteine sulfenylation and oxaziridines for methionine, are critical to understanding why clots occur during oxidative stress. These mechanisms will identify alternative or novel therapeutic approaches to treat thrombotic disorders in diseased conditions.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Xie W, Li J, Du H, Xia J. Causal relationship between PCSK9 inhibitor and autoimmune diseases: a drug target Mendelian randomization study. Arthritis Res Ther 2023; 25:148. [PMID: 37580807 PMCID: PMC10424393 DOI: 10.1186/s13075-023-03122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND In addition to decreasing the level of cholesterol, proprotein convertase subtilis kexin 9 (PCSK9) inhibitor has pleiotropic effects, including immune regulation. However, the impact of PCSK9 on autoimmune diseases is controversial. Therefore, we used drug target Mendelian randomization (MR) analysis to investigate the effect of PCSK9 inhibitor on different autoimmune diseases. METHODS We collected single nucleotide polymorphisms (SNPs) of PCSK9 from published genome-wide association studies statistics and conducted drug target MR analysis to detect the causal relationship between PCSK9 inhibitor and the risk of autoimmune diseases. 3-Hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitor, the drug target of statin, was used to compare the effect with that of PCSK9 inhibitor. With the risk of coronary heart disease as a positive control, primary outcomes included the risk of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), myasthenia gravis (MG), multiple sclerosis (MS), asthma, Crohn's disease (CD), ulcerative colitis (UC), and type 1 diabetes (T1D). RESULTS PCSK9 inhibitor significantly reduced the risk of SLE (OR [95%CI] = 0.47 [0.30 to 0.76], p = 1.74 × 10-3) but increased the risk of asthma (OR [95%CI] = 1.15 [1.03 to 1.29], p = 1.68 × 10-2) and CD (OR [95%CI] = 1.38 [1.05 to 1.83], p = 2.28 × 10-2). In contrast, HMGCR inhibitor increased the risk of RA (OR [95%CI] = 1.58 [1.19 to 2.11], p = 1.67 × 10-3), asthma (OR [95%CI] = 1.21 [1.04 to 1.40], p = 1.17 × 10-2), and CD (OR [95%CI] = 1.60 [1.08 to 2.39], p = 2.04 × 10-2). CONCLUSIONS PCSK9 inhibitor significantly reduced the risk of SLE but increased the risk of asthma and CD. In contrast, HMGCR inhibitor may be a risk factor for RA, asthma, and CD.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Yang M, Chiu J, Scartelli C, Ponzar N, Patel S, Patel A, Ferreira RB, Keyes RF, Carroll KS, Pozzi N, Hogg PJ, Smith BC, Flaumenhaft R. Sulfenylation links oxidative stress to protein disulfide isomerase oxidase activity and thrombus formation. J Thromb Haemost 2023; 21:2137-2150. [PMID: 37037379 PMCID: PMC10657653 DOI: 10.1016/j.jtha.2023.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Joyce Chiu
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sachin Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Robert F Keyes
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Philip J Hogg
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Brian C Smith
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Bartoszewicz M, Rać M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines 2023; 11:biomedicines11051332. [PMID: 37239003 DOI: 10.3390/biomedicines11051332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The polymorphism of the CD36 gene may have a decisive impact on the formation and progression of atherosclerotic changes. The aim of the study was to confirm the prognostic values of the previously studied polymorphisms in the CD36 gene within a 10-year follow-up period. This is the first published report confirming the long-term observation of patients with CAD. The study group covered 100 early-onset CAD patients. It included 26 women not older than 55 years and 74 men not older than 50 years, tested in a ten-year study as a long-term follow-up after the first cardiovascular episode. There are no notable differences between the CD36 variants and the number of fatalities during observation, fatalities due to cardiological reasons, cases of myocardial infarction within a ten-year observation period, hospitalizations for cardiovascular issues, all cardiovascular occurrences, and the number of months lived. We have shown that the CD36 variants analyzed in this study do not appear to be related to the risk of early CAD occurrence in the Caucasian population in long-term observation.
Collapse
Affiliation(s)
- Michał Bartoszewicz
- Psychosocial and Medical Rehabilitation Centre, West Pomeranian Centre Oncology, 71-730 Szczecin, Poland
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| |
Collapse
|
13
|
Sotler T, Šebeštjen M. PCSK9 as an Atherothrombotic Risk Factor. Int J Mol Sci 2023; 24:ijms24031966. [PMID: 36768292 PMCID: PMC9916735 DOI: 10.3390/ijms24031966] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Disturbances in lipid metabolism are among the most important risk factors for atherosclerotic cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein in lipid metabolism that is also involved in the production of inflammatory cytokines, endothelial dysfunction and aherosclerotic plaque development. Studies have shown a connection between PCSK9 and various indicators of inflammation. Signalling pathways that include PCSK9 play important role in the initiation and development of atherosclerotic lesions by inducing vascular inflammation. Studies so far have suggested that PCSK9 is associated with procoagulation, enhancing the development of atherosclerosis. Experimentally, it was also found that an increased concentration of PCSK9 significantly accelerated the apoptosis of endothelial cells and reduced endothelial function, which created conditions for the development of atherosclerosis. PCSK9 inhibitors can therefore improve clinical outcomes not only in a lipid-dependent manner, but also through lipid-independent pathways. The aim of our review was to shed light on the impact of PCSK9 on these factors, which are not directly related to low-density lipoprotein (LDL) cholesterol metabolism.
Collapse
Affiliation(s)
- Tadeja Sotler
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
14
|
Yang M. Redox stress in COVID-19: Implications for hematologic disorders. Best Pract Res Clin Haematol 2022; 35:101373. [PMID: 36494143 PMCID: PMC9374492 DOI: 10.1016/j.beha.2022.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is the respiratory illness caused by the beta coronavirus SARS-CoV-2. COVID-19 is complicated by an increased risk for adverse thrombotic events that promote organ failure and death. While the mechanism of action for SARS-CoV-2 is still being understood, how SARS-CoV-2 infection impacts the redox environment in hematologic conditions is unclear. In this review, the redox mechanisms contributing to SARS-CoV-2 infection, coagulopathy and inflammation are briefly discussed. Specifically, sources of oxidant generation by hematopoietic and non-hematopoietic cells are identified with special emphasis on leukocytes, platelets, red cells, and endothelial cells. Furthermore, reactive cysteines in SARS-CoV-2 are also discussed with respect to oxidative cysteine modification and current therapeutic implications. Lastly, sickle cell disease will be discussed as a hematologic disorder with a pre-existing prothrombotic redox condition that complicates treatment strategies for COVID-19. An understanding of the redox mechanism may identify potential targets for COVID-19-mediated thrombosis in hematologic disorders.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
15
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
18
|
Shi Y, Carroll KS. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility. Redox Biol 2021; 46:102072. [PMID: 34298464 PMCID: PMC8321940 DOI: 10.1016/j.redox.2021.102072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cysteine sulfenic acids (Cys-SOH) are pivotal modifications in thiol-based redox signaling and central intermediates en route to disulfide and sulfinic acid states. A core mission in our lab is to develop bioorthogonal chemical tools with the potential to answer mechanistic questions involving cysteine oxidation. Our group, among others, has contributed to the development of nucleophilic chemical probes for detecting sulfenic acids in living cells. Recently, another class of Cys-SOH probes based on strained alkene and alkyne electrophiles has emerged. However, the use of different models of sulfenic acid and methodologies, has confounded clear comparison of these probes with respect to chemical reactivity, kinetics, and selectivity. Here, we perform a parallel evaluation of nucleophilic and electrophilic chemical probes for Cys-SOH. Among the key findings, we demonstrate that a probe for Cys-SOH based on the norbornene scaffold does not react with any of the validated sulfenic acid models in this study. Furthermore, we show that purported cross-reactivity of dimedone-like probes with electrophiles, like aldehydes and cyclic sulfenamides, is a not meaningful in a biological setting. In summary, nucleophilic probes remain the most viable tools for bioorthogonal detection of Cys-SOH.
Collapse
Affiliation(s)
- Yunlong Shi
- Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA
| | - Kate S Carroll
- Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
19
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Belcher A, Zulfiker AHM, Li OQ, Yue H, Gupta AS, Li W. Targeting Thymidine Phosphorylase With Tipiracil Hydrochloride Attenuates Thrombosis Without Increasing Risk of Bleeding in Mice. Arterioscler Thromb Vasc Biol 2021; 41:668-682. [PMID: 33297751 PMCID: PMC8105268 DOI: 10.1161/atvbaha.120.315109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Current antiplatelet medications increase the risk of bleeding, which leads to a clear clinical need in developing novel mechanism-based antiplatelet drugs. TYMP (Thymidine phosphorylase), a cytoplasm protein that is highly expressed in platelets, facilitates multiple agonist-induced platelet activation, and enhances thrombosis. Tipiracil hydrochloride (TPI), a selective TYMP inhibitor, has been approved by the Food and Drug Administration for clinical use. We tested the hypothesis that TPI is a safe antithrombotic medication. Approach and Results: By coexpression of TYMP and Lyn, GST (glutathione S-transferase) tagged Lyn-SH3 domain or Lyn-SH2 domain, we showed the direct evidence that TYMP binds to Lyn through both SH3 and SH2 domains, and TPI diminished the binding. TYMP deficiency significantly inhibits thrombosis in vivo in both sexes. Pretreatment of platelets with TPI rapidly inhibited collagen- and ADP-induced platelet aggregation. Under either normal or hyperlipidemic conditions, treating wild-type mice with TPI via intraperitoneal injection, intravenous injection, or gavage feeding dramatically inhibited thrombosis without inducing significant bleeding. Even at high doses, TPI has a lower bleeding side effect compared with aspirin and clopidogrel. Intravenous delivery of TPI alone or combined with tissue plasminogen activator dramatically inhibited thrombosis. Dual administration of a very low dose of aspirin and TPI, which had no antithrombotic effects when used alone, significantly inhibited thrombosis without disturbing hemostasis. CONCLUSIONS This study demonstrated that inhibition of TYMP, a cytoplasmic protein, attenuated multiple signaling pathways that mediate platelet activation, aggregation, and thrombosis. TPI can be used as a novel antithrombotic medication without the increase in risk of bleeding.
Collapse
Affiliation(s)
- Adam Belcher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Abu Hasanat Md Zulfiker
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Oliver Qiyue Li
- Marshall Institute for Interdisciplinary Research; Huntington, WV, 25701, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH 44106, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine of Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|