1
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
2
|
Ding J, Qin S, Hou X, Zhang J, Yang M, Ma S, Zhu H, Feng Y, Yu F. Recent advances in emerging radiopharmaceuticals and the challenges in radiochemistry and analytical chemistry. Trends Analyt Chem 2025; 182:118053. [DOI: 10.1016/j.trac.2024.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Huang W, Wang T, Qiu Y, Li C, Chen B, Song L, Yang Q, Sun X, Jia B, Kang L. CD38-specific immunoPET imaging for multiple myeloma diagnosis and therapeutic monitoring: preclinical and first-in-human studies. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-07036-7. [PMID: 39725695 DOI: 10.1007/s00259-024-07036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges. To address these issues, we developed a novel nanobody-based PET tracer, [68Ga]Ga-TOHP-CD3813, which exhibits rapid clearance from the blood and rapid accumulation in targeted tumor lesions, facilitating the detection of CD38 expression in murine models of MM and lymphoma. Furthermore, we conducted the world's first-in-human trials using CD38-targeted nanobodies to validate and assess the clinical imaging effectiveness of [68Ga]Ga-TOHP-CD3813 in guiding cancer immunotherapy. MATERIALS AND METHODS We prepared a new PET imaging probe based on a CD38-targeted nanobody CD3813, [68Ga]Ga-TOHP-CD3813, via the site-specific radiolabeling for noninvasive PET imaging of CD38 expression. [68Ga]Ga-TOHP-CD3813 was assessed for its affinity and specificity to CD38 and its ability to image CD38 expression in MM and lymphoma xenograft models. Biodistribution and the relationship between tumor uptake and CD38 expression were evaluated. Subsequently, we conducted a translational PET imaging of 2 MM patients using [68Ga]Ga-TOHP-CD3813, while compared with [18F]FDG PET/CT head-to-head. Dosimetry was also calculated based on the animal data. RESULTS TOHP-CD3813 retained a high affinity for CD38 with a KD of 0.0826 nmol/L. [68Ga]Ga-TOHP-CD3813 was successfully synthesized at room temperature within 10 min, exhibiting optimal radiochemical properties. Preclinical assessments revealed rapid blood clearance, high CD38 affinity, and significant uptake in CD38-positive xenograft mouse models (6.50 ± 2.69%ID/g). [68Ga]Ga-TOHP-CD3813 showed pronounced accumulation in the kidneys and bladder, with moderate liver uptake, indicating its potential as a viable clinical PET radiotracer for diagnosing MM. Additionally, in first-in-human trials, [68Ga]Ga-TOHP-CD3813 PET/CT provides a substantial improvement over [18F]FDG PET/CT for the visualization of MM. CONCLUSIONS [68Ga]Ga-TOHP-CD3813, with its high affinity, specificity, and robust imaging capabilities, rapidly and specifically accumulates in tumors with high CD38 expression, offering a significant advantage over [18F]FDG PET/CT for visualizing MM and enabling same-day PET imaging. Initial human trial results are promising, suggesting its potential as a companion diagnostic tool for optimizing CD38-targeted treatments in tumors. Ongoing larger trials aim to further confirm these findings.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Chenzhen Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bo Chen
- Chengdu AlpVHHs Co. Ltd, Chengdou, 611137, China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Bing Jia
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
4
|
Bocuzzi V, Bridoux J, Pirotte M, Withofs N, Hustinx R, D'Huyvetter M, Caers J, Marcion G. CD38 as theranostic target in oncology. J Transl Med 2024; 22:998. [PMID: 39501292 PMCID: PMC11539646 DOI: 10.1186/s12967-024-05768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Collapse
Affiliation(s)
- Valentina Bocuzzi
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Nadia Withofs
- Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jo Caers
- Department of Hematology, CHU de Liège, Liège, Belgium.
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
6
|
Yang N, Guo XY, Ding J, Wang F, Liu TL, Zhu H, Yang Z. Copper-64 Based PET-Radiopharmaceuticals: Ways to Clinical Translational. Semin Nucl Med 2024; 54:792-800. [PMID: 39521713 DOI: 10.1053/j.semnuclmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography (PET) as an advanced noninvasive imaging technique, provides unprecedented insights into the study of physiological and biochemical processes in vivo. Copper-64 (64Cu) has a ideal half-life of 12.7 hours, with β+ and β-dual decay modes and abundant coordination chemistry, enabling the development of a wide variety of radiopharmaceuticals for PET imaging and radionuclide therapy.This review provides a comprehensive overview of the latest advances in Copper-64 (64Cu)-based PET radionuclides, covering their production, radiolabeling strategies, and clinical applications. It highlights the role of 64Cu-PET in enhancing diagnostic accuracy and therapeutic outcomes across various tumor types. Additionally, future research directions and the evolving clinical applications of 64Cu-based radiopharmaceuticals are discussed, offering insights into their potential impact on clinical practice.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Yi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
7
|
Badier L, Quelven I. Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging. Pharmaceutics 2024; 16:882. [PMID: 39065579 PMCID: PMC11279968 DOI: 10.3390/pharmaceutics16070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging.
Collapse
Affiliation(s)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| |
Collapse
|
8
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595377. [PMID: 38826403 PMCID: PMC11142146 DOI: 10.1101/2024.05.22.595377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, United States
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Sharma AK, Gupta K, Mishra A, Lofland G, Marsh I, Kumar D, Ghiaur G, Imus P, Rowe SP, Hobbs RF, Gocke CB, Nimmagadda S. CD38-Specific Gallium-68 Labeled Peptide Radiotracer Enables Pharmacodynamic Monitoring in Multiple Myeloma with PET. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308617. [PMID: 38421139 PMCID: PMC11040352 DOI: 10.1002/advs.202308617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Indexed: 03/02/2024]
Abstract
The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, a first-in-class peptide-based radiotracer, [68Ga]Ga-AJ206, is developed that can be seamlessly integrated into the standard clinical workflow and is specifically designed to noninvasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). A bicyclic peptide, AJ206, is synthesized and exhibits high affinity to CD38 (KD: 19.1 ± 0.99 × 10-9 m) by surface plasmon resonance. Further, [68Ga]Ga-AJ206-PET shows high contrast within 60 min and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detects CD38 expression in cell line-derived xenografts, patient-derived xenografts (PDXs), and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantifies CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following all-trans retinoic acid (ATRA) therapy. In conclusion, [68Ga]Ga-AJ206 exhibits the salient features required for clinical translation, providing CD38-specific high-contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kuldeep Gupta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akhilesh Mishra
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Gabriela Lofland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ian Marsh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Dhiraj Kumar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philip Imus
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christian B Gocke
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
10
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
12
|
Sharma AK, Gupta K, Mishra A, Lofland G, Marsh I, Kumar D, Ghiaur G, Imus P, Hobbs RF, Gocke CB, Nimmagadda S. A Gallium-68-Labeled Peptide Radiotracer For CD38-Targeted Imaging In Multiple Myeloma With PET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540036. [PMID: 37214794 PMCID: PMC10197667 DOI: 10.1101/2023.05.09.540036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, we developed [68Ga]Ga-AJ206, a peptide-based radiotracer that can be seamlessly integrated into the standard clinical workflow and is specifically designed to non-invasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). EXPERIMENTAL DESIGN We synthesized a high-affinity binder for quantification of CD38 levels. Affinity was tested using surface plasmon resonance, and In vitro specificity was evaluated using a gallium-68-labeled analog. Distribution, pharmacokinetics, and CD38 specificity of the radiotracer were assessed in MM cell lines and in primary patient-derived myeloma cells and xenografts (PDX) with cross-validation by flow cytometry and immunohistochemistry. Furthermore, we investigated the radiotracer's potential to quantify CD38 pharmacodynamics induced by all-trans retinoic acid therapy (ATRA). RESULTS [68Ga]Ga-AJ206 exhibited high CD38 binding specificity (KD: 19.1±0.99 nM) and CD38-dependent In vitro binding. [68Ga]Ga-AJ206-PET showed high contrast within 60 minutes and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detected CD38 expression in xenografts, PDXs and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantified CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following ATRA therapy. CONCLUSIONS [68Ga]Ga-AJ206 exhibited the salient features required for clinical translation, providing CD38-specific high contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.
Collapse
|
13
|
Ishibashi M, Takahashi M, Yamaya T, Imai Y. Current and Future PET Imaging for Multiple Myeloma. Life (Basel) 2023; 13:1701. [PMID: 37629558 PMCID: PMC10455506 DOI: 10.3390/life13081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Positron emission tomography (PET) is an imaging modality used for the noninvasive assessment of tumor staging and response to therapy. PET with 18F labeled fluorodeoxyglucose (18F-FDG PET) is widely used to assess the active and inactive lesions in patients with multiple myeloma (MM). Despite the availability of 18F-FDG PET for the management of MM, PET imaging is less sensitive than next-generation flow cytometry and sequencing. Therefore, the novel PET radiotracers 64Cu-LLP2A, 68Ga-pentixafor, and 89Zr-daratumumab have been developed to target the cell surface antigens of MM cells. Furthermore, recent studies attempted to visualize the tumor-infiltrating lymphocytes using PET imaging in patients with cancer to investigate their prognostic effect; however, these studies have not yet been performed in MM patients. This review summarizes the recent studies on PET with 18F-FDG and novel radiotracers for the detection of MM and the resulting preclinical research using MM mouse models and clinical studies. Novel PET technologies may be useful for developing therapeutic strategies for MM in the future.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
14
|
Wong JYC, Yamauchi DM, Adhikarla V, Simpson J, Frankel PH, Fong Y, Melstrom KA, Chen YJ, Salehian BD, Woo Y, Dandapani SV, Colcher DM, Poku EK, Yazaki PJ, Wu AM, Shively JE. First-In-Human Pilot PET Immunoimaging Study of 64Cu-Anti-Carcinoembryonic Antigen Monoclonal Antibody (hT84.66-M5A) in Patients with Carcinoembryonic Antigen-Producing Cancers. Cancer Biother Radiopharm 2023; 38:26-37. [PMID: 36154291 DOI: 10.1089/cbr.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: PET imaging using radiolabeled immunoconstructs shows promise in cancer detection and in assessing tumor response to therapies. The authors report the first-in-human pilot study evaluating M5A, a humanized anti-carcinoembryonic antigen (CEA) monoclonal antibody (mAb), radiolabeled with 64Cu in patients with CEA-expressing malignancies. The purpose of this pilot study was to identify the preferred patient population for further evaluation of this agent in an expanded trial. Methods: Patients with CEA-expressing primary or metastatic cancer received 64Cu-DOTA-hT84.66-M5A with imaging performed at 1 and 2 days postinfusion. 64Cu-DOTA-hT84.66-M5A PET scan findings were correlated with CT, MRI, and/or FDG PET scans and with histopathologic findings from planned surgery or biopsy performed postscan. Results: Twenty patients received 64Cu-DOTA-hT84.66-M5A. Twelve patients demonstrated positive images, which were confirmed in 10 patients as tumor by standard-of-care (SOC) imaging, biopsy, or surgical findings. Four of the 8 patients with negative imaging were confirmed as true negative, with the remaining 4 patients having disease demonstrated by SOC imaging or surgery. All 5 patients with locally advanced rectal cancer underwent planned biopsy or surgery after 64Cu-DOTA-hT84.66-M5A imaging (4 patients imaged 6-8 weeks after completing neoadjuvant chemotherapy and radiation therapy) and demonstrated a high concordance between biopsy findings and 64Cu-DOTA-hT84.66-M5A PET scan results. Three patients demonstrated positive uptake at the primary site later confirmed by biopsy and at surgery as residual disease. Two patients with negative scans each demonstrated complete pathologic response. In 5 patients with medullary thyroid cancer, 64Cu-DOTA-hT84.66-M5A identified disease not seen on initial CT scans in 3 patients, later confirmed to be disease by subsequent surgery or MRI. Conclusions: 64Cu-DOTA-hT84.66-M5A demonstrates promise in tumor detection, particularly in patients with locally advanced rectal cancer and medullary thyroid cancer. A successor trial in locally advanced rectal cancer has been initiated to further evaluate this agent's ability to define tumor extent before and assess disease response after neoadjuvant chemotherapy and radiotherapy. clinical trial.gov (NCT02293954).
Collapse
Affiliation(s)
- Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA.,Department of Immunology and Theranostics, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - David M Yamauchi
- Department of Diagnostic Radiology, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Jennifer Simpson
- Department of Clinical Trials Office, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Paul H Frankel
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Kurt A Melstrom
- Department of Surgery, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Yi-Jen Chen
- Department of Radiation Oncology, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Behrooz D Salehian
- Department of Diabetes and Endocrinology, and City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Savita V Dandapani
- Department of Radiation Oncology, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - David M Colcher
- Department of Immunology and Theranostics, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Erasmus K Poku
- Department of Radiopharmacy, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Paul J Yazaki
- Department of Immunology and Theranostics, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, City of Hope National Medical Center and the Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
15
|
Te Beek ET, Burggraaf J, Teunissen JJM, Vriens D. Clinical Pharmacology of Radiotheranostics in Oncology. Clin Pharmacol Ther 2023; 113:260-274. [PMID: 35373336 DOI: 10.1002/cpt.2598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
Abstract
The combined use of diagnostic and therapeutic radioligands with the same molecular target, also known as theranostics, enables accurate patient selection, targeted therapy, and prediction of treatment response. Radioiodine, bone-seeking radioligands and norepinephrine analogs have been used for many years for diagnostic imaging and radioligand therapy of thyroid carcinoma, bone metastases, pheochromocytoma, paraganglioma, and neuroblastoma, respectively. In recent years, radiolabeled somatostatin analogs and prostate-specific membrane antigen ligands have shown clinical efficacy in the treatment of neuroendocrine tumors and prostate cancer, respectively. Several candidate compounds are targeting novel theranostic targets such as fibroblast activation protein, C-X-C chemokine receptor 4, and gastrin-releasing peptide receptor. In addition, several strategies to improve efficacy of radioligand therapy are being evaluated, including dosimetry-based dose optimization, multireceptor targeting, upregulation of target receptors, radiosensitization, pharmacogenomics, and radiation genomics. Design and evaluation of novel radioligands and optimization of dose and dose schedules, within the complex context of individualized multimodal cancer treatment, requires a multidisciplinary approach that includes clinical pharmacology. Significant increases in the use of these radiopharmaceuticals in routine oncological practice can be expected, which will have major impact on patient care as well as (radio)pharmacy utilization.
Collapse
Affiliation(s)
- Erik T Te Beek
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | | | - Jaap J M Teunissen
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Maisonial-Besset A, Witkowski T, Quintana M, Besse S, Gaumet V, Cordonnier A, Alliot C, Vidal A, Denevault-Sabourin C, Tarrit S, Levesque S, Miot-Noirault E, Chezal JM. Synthesis and In Vitro Comparison of DOTA, NODAGA and 15-5 Macrocycles as Chelators for the 64Cu-Labelling of Immunoconjugates. Molecules 2022; 28:molecules28010075. [PMID: 36615280 PMCID: PMC9822305 DOI: 10.3390/molecules28010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Vincent Gaumet
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Axel Cordonnier
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | | | | | - Caroline Denevault-Sabourin
- GICC EA7501, Team IMT, Université de Tours, UFR de Médecine, Bâtiment Vialle, 10 Boulevard Tonnellé, BP 3223, CEDEX 01, 37032 Tours, France
| | - Sébastien Tarrit
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Levesque
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
17
|
Bergantim R, Peixoto da Silva S, Polónia B, Barbosa MAG, Albergaria A, Lima J, Caires HR, Guimarães JE, Vasconcelos MH. Detection of Measurable Residual Disease Biomarkers in Extracellular Vesicles from Liquid Biopsies of Multiple Myeloma Patients-A Proof of Concept. Int J Mol Sci 2022; 23:13686. [PMID: 36430163 PMCID: PMC9690807 DOI: 10.3390/ijms232213686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Monitoring measurable residual disease (MRD) is crucial to assess treatment response in Multiple Myeloma (MM). Detection of MRD in peripheral blood (PB) by exploring Extracellular Vesicles (EVs), and their cargo, would allow frequent and minimally invasive monitoring of MM. This work aims to detect biomarkers of MRD in EVs isolated from MM patient samples at diagnosis and remission and compare the MRD-associated content between BM and PB EVs. EVs were isolated by size-exclusion chromatography, concentrated by ultrafiltration, and characterized according to their size and concentration, morphology, protein concentration, and the presence of EV-associated protein markers. EVs from healthy blood donors were used as controls. It was possible to isolate EVs from PB and BM carrying MM markers. Diagnostic samples had different levels of MM markers between PB and BM paired samples, but no differences between PB and BM were found at remission. EVs concentration was lower in the PB of healthy controls than of patients, and MM markers were mostly not detected in EVs from controls. This study pinpoints the potential of PB EVs from MM remission patients as a source of MM biomarkers and as a non-invasive approach for monitoring MRD.
Collapse
Affiliation(s)
- Rui Bergantim
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital Center of São João, 4200-319 Porto, Portugal
- Clinical Hematology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Sara Peixoto da Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Mélanie A. G. Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - André Albergaria
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Research Innovation Unit, Translational Research & Industry Partnerships Office, i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Research Innovation Unit, Translational Research & Industry Partnerships Office, i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - José E. Guimarães
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital Center of São João, 4200-319 Porto, Portugal
- Clinical Hematology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário IUCSESPU, 4585-116 Gandra-Paredes, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Pape LJ, Hambach J, Gebhardt AJ, Rissiek B, Stähler T, Tode N, Khan C, Weisel K, Adam G, Koch-Nolte F, Bannas P. CD38-specific nanobodies allow in vivo imaging of multiple myeloma under daratumumab therapy. Front Immunol 2022; 13:1010270. [PMID: 36389758 PMCID: PMC9647632 DOI: 10.3389/fimmu.2022.1010270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 08/30/2023] Open
Abstract
RATIONALE Recent studies have demonstrated the feasibility of CD38-specific antibody constructs for in vivo imaging of multiple myeloma. However, detecting multiple myeloma in daratumumab-pretreated patients remains difficult due to overlapping binding epitopes of the CD38-specific imaging antibody constructs and daratumumab. Therefore, the development of an alternative antibody construct targeting an epitope of CD38 distinct from that of daratumumab is needed. We report the generation of a fluorochrome-conjugated nanobody recognizing such an epitope of CD38 to detect myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo. METHODS We conjugated the CD38-specific nanobody JK36 to the near-infrared fluorescent dye Alexa Fluor 680. The capacity of JK36AF680 to bind and detect CD38-expressing cells pretreated with daratumumab was evaluated on CD38-expressing tumor cell lines in vitro, on primary myeloma cells from human bone marrow biopsies ex vivo, and in a mouse tumor model in vivo. RESULTS Fluorochrome-labeled nanobody JK36AF680 showed specific binding to CD38-expressing myeloma cells pretreated with daratumumab in vitro and ex vivo and allowed for specific imaging of CD38-expressing xenografts in daratumumab-pretreated mice in vivo. CONCLUSIONS Our study demonstrates that a nanobody recognizing a distinct, non-overlapping epitope of CD38 allows the specific detection of myeloma cells under daratumumab therapy in vitro, ex vivo, and in vivo.
Collapse
Affiliation(s)
- Luca Julius Pape
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cerusch Khan
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Lugat A, Bailly C, Chérel M, Rousseau C, Kraeber-Bodéré F, Bodet-Milin C, Bourgeois M. Immuno-PET: Design options and clinical proof-of-concept. Front Med (Lausanne) 2022; 9:1026083. [PMID: 36314010 PMCID: PMC9613928 DOI: 10.3389/fmed.2022.1026083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Radioimmunoconjugates have been used for over 30 years in nuclear medicine applications. In the last few years, advances in cancer biology knowledge have led to the identification of new molecular targets specific to certain patient subgroups. The use of these targets in targeted therapies approaches has allowed the developments of specifically tailored therapeutics for patients. As consequence of the PET-imaging progresses, nuclear medicine has developed powerful imaging tools, based on monoclonal antibodies, to in vivo characterization of these tumor biomarkers. This imaging modality known as immuno-positron emission tomography (immuno-PET) is currently in fastest-growing and its medical value lies in its ability to give a non-invasive method to assess the in vivo target expression and distribution and provide key-information on the tumor targeting. Currently, immuno-PET presents promising probes for different nuclear medicine topics as staging/stratification tool, theranostic approaches or predictive/prognostic biomarkers. To develop a radiopharmaceutical drug that can be used in immuno-PET approach, it is necessary to find the best compromise between the isotope choice and the immunologic structure (full monoclonal antibody or derivatives). Through some clinical applications, this paper review aims to discuss the most important aspects of the isotope choice and the usable proteic structure that can be used to meet the clinical needs.
Collapse
Affiliation(s)
- Alexandre Lugat
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France
| | - Clément Bailly
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Caroline Rousseau
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France,ARRONAX Cyclotron, Saint-Herblain, France,*Correspondence: Mickaël Bourgeois
| |
Collapse
|
20
|
Stokke C, Nørgaard JN, Feiring Phillips H, Sherwani A, Nuruddin S, Connelly J, Schjesvold F, Revheim ME. Comparison of [ 18F]fluciclovine and [ 18F]FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients. Mol Imaging Biol 2022; 24:842-851. [PMID: 35501622 PMCID: PMC9581841 DOI: 10.1007/s11307-022-01734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 10/27/2022]
Abstract
PURPOSE [18F]FDG PET/CT in multiple myeloma (MM) is currently the best technology to demonstrate patchy and extramedullary disease. However, [18F]FDG PET has some limitations, and imaging with alternative tracers should be explored. In this study, we aimed to evaluate the performance of [18F]fluciclovine PET compared to [18F]FDG PET in newly diagnosed MM patients. PROCEDURES Thirteen newly diagnosed transplant eligible MM patients were imaged both with [18F]FDG PET/CT and [18F]fluciclovine PET/CT within 1 week in a prospective study. The subjects were visually assessed positive or negative for disease. The number of lesions and the SUVmax of selected lesions were measured for both tracers. Furthermore, tracer uptake ratios were obtained by dividing lesion SUVmax by blood or bone marrow SUVmax. Between-group differences and correlations were assessed with paired t-tests and Pearson tests. Bone marrow SUVs were compared to bone marrow plasma cell percentage in biopsy samples. RESULTS Nine subjects were assessed positively by [18F]FDG PET (69%) and 12 positives by [18F]fluciclovine PET (92%). All positive subjects had [18F]fluciclovine scans that were qualitatively scored as easier to interpret visually than the [18F]FDG scans. The number of lesions was also higher; seven of nine subjects with distinct hot spots on [18F]fluciclovine PET had fewer or no visible lesions on [18F]FDG PET. The mean lesion SUVmax values were 8.2 and 3.8 for [18F]fluciclovine and [18F]FDG, respectively. The mean tumour to blood values were 6.4 and 2.0 for [18F]fluciclovine and [18F]FDG, and the mean ratios between tumour and bone marrow were 2.1 and 1.5 for [18F]fluciclovine and [18F]FDG. The lesion SUVmax and ratios were significantly higher for [18F]fluciclovine (all p < 0.01). Local [18F]fluciclovine SUVmax or SUVmean values in os ilium and the percentage of plasma cells in bone marrow biopsies were linearly correlated (p = 0.048). There were no significant correlations between [18F]FDG SUVs and plasma cells (p = 0.82). CONCLUSIONS Based on this pilot study, [18F]fluciclovine is a promising tracer for MM. The visual and semi-quantitative evaluations indicate that [18F]fluciclovine PET/CT can out-perform [18F]FDG PET/CT at diagnosis.
Collapse
Affiliation(s)
- Caroline Stokke
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
- Dep. of Physics, University of Oslo, Oslo, Norway.
| | - Jakob Nordberg Nørgaard
- Oslo Myeloma Center, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Alexander Sherwani
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - James Connelly
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Murillo O, Collantes M, Gazquez C, Moreno D, Hernandez-Alcoceba R, Barberia M, Ecay M, Tamarit B, Douar A, Ferrer V, Combal JP, Peñuelas I, Bénichou B, Gonzalez-Aseguinolaza G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson's disease. Mol Ther Methods Clin Dev 2022; 26:98-106. [PMID: 35795774 PMCID: PMC9234538 DOI: 10.1016/j.omtm.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Wilson’s disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Maria Collantes
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | - Ivan Peñuelas
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain.,Vivet Therapeutics S.L., Pamplona, Spain
| |
Collapse
|
22
|
Holstein SA, Asimakopoulos F, Azab AK, Bianchi G, Bhutani M, Crews LA, Cupedo T, Giles H, Gooding S, Hillengass J, John L, Kaiser S, Lee L, Maclachlan K, Pasquini MC, Pichiorri F, Shah N, Shokeen M, Shy BR, Smith EL, Verona R, Usmani SZ, McCarthy PL. Proceedings from the Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Immune and Cellular Therapy in Multiple Myeloma. Transplant Cell Ther 2022; 28:446-454. [PMID: 35605882 PMCID: PMC9357156 DOI: 10.1016/j.jtct.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup conducted a workshop on Immune and Cellular Therapy in Multiple Myeloma on January 7, 2022. This workshop included presentations by basic, translational, and clinical researchers with expertise in plasma cell dyscrasias. Four main topics were discussed: platforms for myeloma disease evaluation, insights into pathophysiology, therapeutic target and resistance mechanisms, and cellular therapy for multiple myeloma. Here we provide a comprehensive summary of these workshop presentations.
Collapse
Affiliation(s)
| | - Fotis Asimakopoulos
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - Giada Bianchi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Leslie A Crews
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Tom Cupedo
- ErasmusMC Cancer Institute Rotterdam, Rotterdam, The Netherlands
| | - Hannah Giles
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sarah Gooding
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lukas John
- University Hospital Heidelberg, Heidelberg, Germany
| | | | - Lydia Lee
- University College London, London, United Kingdom
| | | | | | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California; Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, California
| | - Nina Shah
- University of California San Francisco, San Francisco, California
| | - Monica Shokeen
- Washington University School of Medicine, St. Louis, Missouri
| | - Brian R Shy
- University of California San Francisco, San Francisco, California
| | - Eric L Smith
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raluca Verona
- Janssen Research & Development, Spring House, Pennsylvania
| | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
23
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Wu AM, Pandit-Taskar N. ImmunoPET: harnessing antibodies for imaging immune cells. Mol Imaging Biol 2022; 24:181-197. [PMID: 34550529 DOI: 10.1007/s11307-021-01652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023]
Abstract
Dramatic, but uneven, progress in the development of immunotherapies for cancer has created a need for better diagnostic technologies including innovative non-invasive imaging approaches. This review discusses challenges and opportunities for molecular imaging in immuno-oncology and focuses on the unique role that antibodies can fill. ImmunoPET has been implemented for detection of immune cell subsets, activation and inhibitory biomarkers, tracking adoptively transferred cellular therapeutics, and many additional applications in preclinical models. Parallel progress in radionuclide availability and infrastructure supporting biopharmaceutical manufacturing has accelerated clinical translation. ImmunoPET is poised to provide key information on prognosis, patient selection, and monitoring immune responses to therapy in cancer and beyond.
Collapse
Affiliation(s)
- Anna M Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Theranostics Studies, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Radiation Oncology, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Neeta Pandit-Taskar
- Molecular Imaging &Therapy Svc, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
- Center for Targeted Radioimmunotherapy and Theranostics, Ludwig Center for Cancer Immunotherapy, MSK, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
25
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Mena E, Turkbey EB, Lindenberg L. Modern radiographic imaging in multiple myeloma, what is the minimum requirement? Semin Oncol 2022; 49:86-93. [PMID: 35190200 PMCID: PMC9149049 DOI: 10.1053/j.seminoncol.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/09/2022] [Indexed: 02/03/2023]
Abstract
Imaging innovations offer useful techniques applicable to many oncology specialties. Treatment advances in the field of multiple myeloma (MM) have increased the need for accurate diagnosis, particularly in the bone marrow, which is an essential component in myeloma-defining criteria. Modern imaging identifies osteolytic lesions, distinguishes solitary plasmacytoma from MM, and evaluates the presence of extramedullary disease. Furthermore, imaging is increasingly valuable in post-treatment response assessment. Detection of minimal residual disease after therapy carries prognostic implications and influences subsequent treatment planning. Whole-body low-dose Computed Tomography is now recommended over the conventional skeletal survey, and more sophisticated functional imaging methods, such as 18F-Fluorodeoxyglucose Positron Emission Tomography , and diffusion-weighted Magnetic Resonance Imaging are proving effective in the assessment and monitoring of MM disease. This review focuses on understanding indications and advantages of these imaging modalities for diagnosing and managing myeloma.
Collapse
Affiliation(s)
- Esther Mena
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| | - Evrim B. Turkbey
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
27
|
Takahashi MES, Lorand-Metze I, de Souza CA, Mesquita CT, Fernandes FA, Carvalheira JBC, Ramos CD. Metabolic Volume Measurements in Multiple Myeloma. Metabolites 2021; 11:875. [PMID: 34940633 PMCID: PMC8703741 DOI: 10.3390/metabo11120875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) accounts for 10-15% of all hematologic malignancies, as well as 20% of deaths related to hematologic malignant tumors, predominantly affecting bone and bone marrow. Positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (FDG-PET/CT) is an important method to assess the tumor burden of these patients. It is often challenging to classify the extent of disease involvement in the PET scans for many of these patients because both focal and diffuse bone lesions may coexist, with varying degrees of FDG uptake. Different metrics involving volumetric parameters and texture features have been proposed to objectively assess these images. Here, we review some metabolic parameters that can be extracted from FDG-PET/CT images of MM patients, including technical aspects and predicting MM outcome impact. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) are volumetric parameters known to be independent predictors of MM outcome. However, they have not been adopted in clinical practice due to the lack of measuring standards. CT-based segmentation allows automated, and therefore reproducible, calculation of bone metabolic metrics in patients with MM, such as maximum, mean and standard deviation of the standardized uptake values (SUV) for the entire skeleton. Intensity of bone involvement (IBI) is a new parameter that also takes advantage of this approach with promising results. Other indirect parameters obtained from FDG-PET/CT images, such as visceral adipose tissue glucose uptake and subcutaneous adipose tissue radiodensity, may also be useful to evaluate the prognosis of MM patients. Furthermore, the use and quantification of new radiotracers can address different metabolic aspects of MM and may have important prognostic implications.
Collapse
Affiliation(s)
| | - Irene Lorand-Metze
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil;
| | - Carmino Antonio de Souza
- Center of Hematology and Hemotherapy, University of Campinas (UNICAMP), Campinas 13083-878, Brazil;
| | - Claudio Tinoco Mesquita
- Departamento de Radiologia, Faculdade Medicina, Universidade Federal Fluminense (UFF), Niterói 24033-900, Brazil;
- Hospital Universitário Antônio Pedro/EBSERH, Universidade Federal Fluminense (UFF), Niterói 24033-900, Brazil;
| | - Fernando Amorim Fernandes
- Hospital Universitário Antônio Pedro/EBSERH, Universidade Federal Fluminense (UFF), Niterói 24033-900, Brazil;
| | | | - Celso Dario Ramos
- Division of Nuclear Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil
| |
Collapse
|
28
|
Wei W, Zhang D, Wang C, Zhang Y, An S, Chen Y, Huang G, Liu J. Annotating CD38 Expression in Multiple Myeloma with [ 18F]F-Nb1053. Mol Pharm 2021; 19:3502-3510. [PMID: 34846151 DOI: 10.1021/acs.molpharmaceut.1c00733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noninvasive diagnosis of multiple myeloma (MM) is a clinical challenge. CD38 is an established biomarker for MM, and the development of CD38-targeted radiotracers may improve the management of MM. By taking the advantages of bioorthogonal click chemistry, a nanobody (i.e., Nb1053-LLQS) specific for CD38 was successfully labeled with 18F. The diagnostic efficacy and specificity of the developed tracer (i.e., [18F]F-Nb1053) were evaluated by immuno-positron emission tomography (immunoPET) imaging in disseminated MM.1S-bearing models. [18F]F-Nb1053 was developed with high radiochemical purity (>98%) and excellent immunoreactivity. [18F]F-Nb1053 immunoPET successfully delineated disseminated MM lesions in preclinical MM models. The uptake in the humerus, femur, and tibia was 1.42 ± 0.50%ID/g, 1.35 ± 0.53%ID/g, and 1.48 ± 0.67%ID/g (n = 6), respectively. Tumor uptake of [18F]F-Nb1053 decreased after daratumumab premedication, indicating the superior specificity of the reported probe. This work successfully developed a novel CD38-specific probe [18F]F-Nb1053 that may potentially optimize the management of MM upon clinical translation.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
29
|
Dun Y, Huang G, Liu J, Wei W. ImmunoPET imaging of hematological malignancies: From preclinical promise to clinical reality. Drug Discov Today 2021; 27:1196-1203. [PMID: 34838729 DOI: 10.1016/j.drudis.2021.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
Immuno-positron emission tomography (immunoPET) imaging is a paradigm-shifting imaging technique for whole-body and all-lesion tumor detection, based on the combined specificity of tumor-targeting vectors [e.g., monoclonal antibodies (mAbs), nanobodies, and bispecific antibodies] and the sensitivity of PET imaging. By noninvasively, comprehensively, and serially revealing heterogeneous tumor antigen expression, immunoPET imaging is gradually improving the theranostic prospects for hematological malignancies. In this review, we summarize the available literature regarding immunoPET in imaging hematological malignancies. We also highlight the pros and cons of current conjugation strategies, and modular chemistry that can be leveraged to develop novel immunoPET probes for hematological malignancies. Lastly, we discuss the use of immunoPET imaging in guiding antibody drug development.
Collapse
Affiliation(s)
- Yiting Dun
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
30
|
Duray E, Lejeune M, Baron F, Beguin Y, Devoogdt N, Krasniqi A, Lauwers Y, Zhao YJ, D'Huyvetter M, Dumoulin M, Caers J. A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. J Hematol Oncol 2021; 14:183. [PMID: 34727950 PMCID: PMC8561907 DOI: 10.1186/s13045-021-01171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Antibody-based therapies targeting CD38 are currently used as single agents as well as in combination regimens for multiple myeloma, a malignant plasma cell disorder. In this study, we aimed to develop anti-CD38 single-domain antibodies (sdAbs) that can be used to trace CD38+ tumour cells and subsequently used for targeted radionuclide therapy. SdAbs are derived from Camelidae heavy-chain antibodies and have emerged as promising theranostic agents due to their favourable pharmacological properties. Methods Four different anti-CD38 sdAbs were produced, and their binding affinities and potential competition with the monoclonal antibody daratumumab were tested using biolayer interferometry. Their binding kinetics and potential cell internalisation were further studied after radiolabelling with the diagnostic radioisotope Indium-111. The resulting radiotracers were evaluated in vivo for their tumour-targeting potential and biodistribution through single-photon emission computed tomography (SPECT/CT) imaging and serial dissections. Finally, therapeutic efficacy of a lead anti-CD38 sdAb, radiolabelled with the therapeutic radioisotope Lutetium-177, was evaluated in a CD38+ MM xenograft model. Results We retained anti-CD38 sdAb #2F8 as lead based on its excellent affinity and superior stability, the absence of competition with daratumumab and the lack of receptor-mediated internalisation. When intravenously administered to tumour-xenografted mice, radiolabelled sdAb #2F8 revealed specific and sustained tumour retention with low accumulation in other tissues, except kidneys, resulting in high tumour-to-normal tissue ratios. In a therapeutic setting, myeloma-bearing mice received three consecutive intravenous administrations of a high (18.5 MBq) or a low radioactive dose (9.3 MBq) of 177Lu-DTPA-2F8 or an equal volume of vehicle solution. A dose-dependent tumour regression was observed, which translated into a prolonged median survival from 43 days for vehicle-treated mice, to 62 days (p = 0.027) in mice receiving the low and 65 days in mice receiving the high (p = 0.0007) radioactive dose regimen, respectively. Conclusions These results highlight the theranostic potential of radiolabelled anti-CD38 sdAbs for the monitoring and treatment of multiple myeloma. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01171-6.
Collapse
Affiliation(s)
- Elodie Duray
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,NEPTUNS, Nanobodies To Explore Protein Structure and Functions, Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Margaux Lejeune
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium
| | - Frederic Baron
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium.,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yoline Lauwers
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, University Shenzhen Graduate School, Peking, China
| | - Matthias D'Huyvetter
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- NEPTUNS, Nanobodies To Explore Protein Structure and Functions, Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Haematology, GIGA-I3, University of Liège, Liège, Belgium. .,Division of Haematology, Department of Medicine, University and CHU of Liège, Liège, Belgium.
| |
Collapse
|
31
|
Kang L, Li C, Yang Q, Sutherlin L, Wang L, Chen Z, Becker KV, Huo N, Qiu Y, Engle JW, Wang R, He C, Jiang D, Xu X, Cai W. 64Cu-labeled daratumumab F(ab') 2 fragment enables early visualization of CD38-positive lymphoma. Eur J Nucl Med Mol Imaging 2021; 49:1470-1481. [PMID: 34677626 DOI: 10.1007/s00259-021-05593-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Abnormal CD38 expression in some hematologic malignancies, including lymphoma, has made it a biomarker for targeted therapies. Daratumumab (Dara) is the first FDA-approved CD38-specific monoclonal antibody, enabling successfully immunoPET imaging over the past years. Radiolabeled Dara however has a long blood circulation and delayed tumor uptake which can limit its applications. The focus of this study is to develop 64Cu-labeled Dara-F(ab')2 for the visualization of CD38 in lymphoma models. METHODS F(ab')2 fragment was prepared from Dara using an IdeS enzyme and purified with Protein A beads. Western blotting, flow cytometry, and surface plasmon resonance (SPR) were performed for in vitro assay. Probes were labeled with 64Cu after the chelation of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Small animal PET imaging and quantitative analysis were performed after injection of 64Cu-labeled Dara-F(ab')2, IgG-F(ab')2, and Dara for evaluation in lymphoma models. RESULTS Flow cytometry and SPR assay proved the specific binding ability of Dara-F(ab')2 and NOTA-Dara-F(ab')2 in vitro. Radiolabeling yield of [64Cu]Cu-NOTA-Dara-F(ab')2 was over 90% and with a specific activity of 4.0 ± 0.6 × 103 MBq/μmol (n = 5). PET imaging showed [64Cu]Cu-NOTA-Dara-F(ab')2 had a rapid and high tumor uptake as early as 2 h (6.9 ± 1.2%ID/g) and peaked (9.5 ± 0.7%ID/g) at 12 h, whereas [64Cu]Cu-NOTA-Dara reached its tumor uptake peaked at 48 h (8.3 ± 1.4%ID/g, n = 4). In comparison, IgG-F(ab')2 and HBL-1 control groups found no noticeable tumor uptake. [64Cu]Cu-NOTA-Dara-F(ab')2 had significantly lower uptake in blood pool, bone, and muscle than [64Cu]Cu-NOTA-Dara and its tumor-to-blood and tumor-to-muscle ratios were significantly higher than controls. CONCLUSIONS [64Cu]Cu-NOTA-Dara-F(ab')2 showed a rapid and high tumor uptake in CD38-positive lymphoma models with favorable imaging contrast, showing its promise as a potential PET imaging agent for future clinical applications.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China. .,Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China.,Department of Nuclear Medicine, Beijing Friendship Hospital, Beijing, 100050, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Logan Sutherlin
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Lin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Nan Huo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA. .,Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China.
| | - Xiaojie Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
32
|
Adhikarla V, Awuah D, Brummer AB, Caserta E, Krishnan A, Pichiorri F, Minnix M, Shively JE, Wong JYC, Wang X, Rockne RC. A Mathematical Modeling Approach for Targeted Radionuclide and Chimeric Antigen Receptor T Cell Combination Therapy. Cancers (Basel) 2021; 13:cancers13205171. [PMID: 34680320 PMCID: PMC8533817 DOI: 10.3390/cancers13205171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Targeted radionuclide therapy (TRT) and immunotherapy, an example being chimeric antigen receptor T cells (CAR-Ts), represent two potent means of eradicating systemic cancers. Although each one as a monotherapy might have a limited effect, the potency can be increased with a combination of the two therapies. The complications involved in the dosing and scheduling of these therapies make the mathematical modeling of these therapies a suitable solution for designing combination treatment approaches. Here, we investigate a mathematical model for TRT and CAR-T cell combination therapies. Through an analysis of the mathematical model, we find that the tumor proliferation rate is the most important factor affecting the scheduling of TRT and CAR-T cell treatments with faster proliferating tumors requiring a shorter interval between the two therapies. Abstract Targeted radionuclide therapy (TRT) has recently seen a surge in popularity with the use of radionuclides conjugated to small molecules and antibodies. Similarly, immunotherapy also has shown promising results, an example being chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies. Moreover, TRT and CAR-T therapies possess unique features that require special consideration when determining how to dose as well as the timing and sequence of combination treatments including the distribution of the TRT dose in the body, the decay rate of the radionuclide, and the proliferation and persistence of the CAR-T cells. These characteristics complicate the additive or synergistic effects of combination therapies and warrant a mathematical treatment that includes these dynamics in relation to the proliferation and clearance rates of the target tumor cells. Here, we combine two previously published mathematical models to explore the effects of dose, timing, and sequencing of TRT and CAR-T cell-based therapies in a multiple myeloma setting. We find that, for a fixed TRT and CAR-T cell dose, the tumor proliferation rate is the most important parameter in determining the best timing of TRT and CAR-T therapies.
Collapse
Affiliation(s)
- Vikram Adhikarla
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
- Correspondence: (V.A.); (R.C.R.)
| | - Dennis Awuah
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.A.); (A.K.); (X.W.)
| | - Alexander B. Brummer
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (E.C.); (F.P.)
| | - Amrita Krishnan
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.A.); (A.K.); (X.W.)
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (E.C.); (F.P.)
| | - Megan Minnix
- Department of Molecular Imaging and Therapy, City of Hope National Medical Center, Duarte, CA 91010, USA; (M.M.); (J.E.S.)
| | - John E. Shively
- Department of Molecular Imaging and Therapy, City of Hope National Medical Center, Duarte, CA 91010, USA; (M.M.); (J.E.S.)
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.A.); (A.K.); (X.W.)
| | - Russell C. Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
- Correspondence: (V.A.); (R.C.R.)
| |
Collapse
|
33
|
Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 2021; 35:2771-2783. [PMID: 34262132 DOI: 10.1038/s41375-021-01339-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Liquid biopsies-a source of circulating cell-free nucleic acids, proteins and extracellular vesicles-are currently being explored for the quantitative and qualitative characterisation of the tumour genome and as a mode of non-invasive therapeutic monitoring in cancer. Emerging data suggest that liquid biopsies might offer a potentially simple, non-invasive, repeatable strategy for diagnosis, prognostication and therapeutic decision making in a genetically heterogeneous disease like multiple myeloma (MM), with particular applicability in subsets of patients where conventional markers of disease burden may be less informative. In this review, we describe the emerging utility of the evaluation of circulating tumour DNA, extracellular RNA, cell-free proteins and metabolites and extracellular vesicles in MM.
Collapse
|
34
|
ImmunoPET imaging of multiple myeloma with [ 68Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging 2021; 48:2749-2760. [PMID: 33543326 DOI: 10.1007/s00259-021-05218-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/24/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Multiple myeloma (MM) remains incurable and its diagnosis relies heavily on bone marrow aspiration and biopsy. CD38 is a glycoprotein highly specific for MM. Antibody therapeutics (e.g., daratumumab) targeting CD38 have shown encouraging efficacy in treating MM, either as a monotherapy agent or in combination with other regimens. However, efficient stratification of patients who might benefit from daratumumab therapy and timely monitoring of the therapeutic responses are still clinical challenges. This work aims to devise a CD38-targeted imaging strategy and assess its value in diagnosing MMs. METHODS By labeling a CD38-specific single domain antibody (Nb1053) with 68Ga (t1/2 = 1.1 h), we developed a CD38-targeted immuno-positron emission tomography (immunoPET) imaging probe [68Ga]Ga-NOTA-Nb1053. The probe was developed with good radiochemical yield (> 50%), excellent radiochemical purity (> 99%), and immunoreactivity (> 95%). The diagnostic accuracy of the probe was thoroughly investigated in preclinical MM models. RESULTS ImmunoPET imaging with [68Ga]Ga-NOTA-Nb1053 specifically depicted all the subcutaneous and orthotopic MM lesions, outperforming the traditional 18F-fluorodeoxyglucose PET and the nonspecific [68Ga]Ga-NOTA-NbGFP immunoPET. More importantly, daratumumab preloading significantly reduced [68Ga]Ga-NOTA-Nb1053 uptake in the disseminated bone lesions, indicating the overlapping targeting epitopes of [68Ga]Ga-NOTA-Nb1053 with that of daratumumab. Furthermore, premedication with sodium maleate or fructose significantly decreased kidney retention of [68Ga]Ga-NOTA-Nb1053 and improved the diagnostic value of the probe in lymphoma models. CONCLUSION This work successfully developed a novel CD38-targeted immunoPET imaging approach that enabled precise visualization of CD38 and diagnosis of MMs. Upon clinical translation, [68Ga]Ga-NOTA-Nb1053 immunoPET may serve as a valuable CD38-targeted molecular imaging toolbox, facilitating early diagnosis of MM and precise assessment of the therapeutic responses.
Collapse
|