1
|
Liu D, Glubb D, O'Mara T, Ford CE. The Multi-Kinase Inhibitor GZD824 (Olverembatinib) Shows Pre-Clinical Efficacy in Endometrial Cancer. Cancer Med 2025; 14:e70531. [PMID: 39739675 DOI: 10.1002/cam4.70531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE Endometrial cancer is one of the few cancers for which mortality is still increasing. A lack of treatment options remains a major challenge, particularly for some subtypes of the disease. GZD824, also known as olverembatinib, is a multi-kinase inhibitor previously investigated in clinical trials for chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia as a BCR-ABL inhibitor. This study aimed to investigate the pre-clinical efficacy of GZD824 for the treatment of EC. METHODS Here, we undertook pre-clinical evaluation of GZD824 in seven endometrial cancer cell lines (HEC-1-A, HEC-1-B, MFE296, RL95-2, Ishikawa, KLE and ARK-1), one normal immortalised endometrium derived cell line (E6E7hTERT) and primary mesothelial and fibroblast cells isolated from normal omentum samples. RESULTS GZD824 inhibited the proliferation of all endometrial cancer cell lines, which were significantly more sensitive to GZD824 compared to normal cells (p = 0.030). GZD824 significantly inhibited migration in Ishikawa (endometrioid) and ARK1 (serous) endometrial cancer cell lines and significantly inhibited invasion in the ARK1 cells. Whole transcriptome regulation following two doses (0.1 and 1 μM) of GZD824 in Ishikawa and ARK1 cells was investigated via RNA-seq, and key components of enriched pathways were investigated at the translational level. Key pathways altered included ROR1/Wnt, GCN2-ATF4, epithelial to mesenchymal transition (EMT) and PI3K-AKT. CONCLUSION Together, these studies support further investigation of GZD824 as a potential therapeutic agent in endometrial cancer, potentially in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Dongli Liu
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dylan Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Tracy O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Caroline E Ford
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J. Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2603-2616. [PMID: 39145866 DOI: 10.1007/s11427-024-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
While receptor tyrosine kinase-like orphan receptor 1 (ROR1) is typically expressed at low levels or absent in normal tissues, its expression is notably elevated in various malignant tumors and conditions, including chronic lymphocytic leukemia (CLL), breast cancer, ovarian cancer, melanoma, and lung adenocarcinoma. This distinctive feature positions ROR1 as an attractive target for tumor-specific treatments. Currently, several targeted drugs directed at ROR1 are undergoing clinical development, including monoclonal antibodies, antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cell therapy (CAR-T). Additionally, there are four small molecule inhibitors designed to bind to ROR1, presenting promising avenues for the development of PROTAC degraders targeting ROR1. This review offers updated insights into ROR1's structural and functional characteristics, embryonic development implications, cell survival signaling pathways, and evolutionary targeting strategies, all of which have the potential to advance the treatment of malignant tumors.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Linxiang Zhao
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Tabariès S, Robert A, Marcil A, Ling B, Acchione M, Lippens J, Pagé M, Fortin A, Meury L, Coutu M, Annis MG, Girondel C, Navarre J, Jaramillo M, Moraitis AN, Siegel PM. Anti-Claudin-2 Antibody-Drug Conjugates for the Treatment of Colorectal Cancer Liver Metastasis. Mol Cancer Ther 2024; 23:1459-1470. [PMID: 38902871 DOI: 10.1158/1535-7163.mct-23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
We have previously demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. The expression of Claudin-2 in primary CRC is associated with poor survival and highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADC) are promising antitumor therapeutics, which combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Herein, we report the generation of 28 anti-Claudin-2 antibodies for which the binding specificities, cross-reactivity with claudin family members, and cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested, and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or 2. Anti-Claudin-2 ADCs were efficiently internalized and were effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement-type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing patients with CRC liver-metastatic disease who present replacement-type liver metastases.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Alma Robert
- National Research Council Canada, Montréal, Canada
| | - Anne Marcil
- National Research Council Canada, Montréal, Canada
| | - Binbing Ling
- National Research Council Canada, Ottawa, Canada
| | | | | | - Martine Pagé
- National Research Council Canada, Montréal, Canada
| | - Annie Fortin
- National Research Council Canada, Montréal, Canada
| | - Luc Meury
- National Research Council Canada, Montréal, Canada
| | | | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Charlotte Girondel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Julie Navarre
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | | | | | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| |
Collapse
|
5
|
Moore EJ, Rice M, Roy G, Zhang W, Marelli M. Emerging conjugation strategies and protein engineering technologies aim to improve ADCs in the fight against cancer. Xenobiotica 2024; 54:469-491. [PMID: 39329289 DOI: 10.1080/00498254.2024.2339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Collapse
|
6
|
Zhang Y, Fan Y, Liu S, Guan Y, Wan J, Ren Q, Wang J, Zhong L, Hu Z, Shi W, Qian H. Development of Peptide Paratope Mimics Derived from the Anti-ROR1 Antibody and Long-Acting Peptide-Drug Conjugates for Targeted Cancer Therapy. J Med Chem 2024; 67:10967-10985. [PMID: 38943600 DOI: 10.1021/acs.jmedchem.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Antibody-based targeted therapy in cancer faces a challenge due to uneven antibody distribution in solid tumors, hindering effective drug delivery. We addressed this by developing peptide mimetics with nanomolar-range affinity for Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1) using computational methods. These peptides showed both specific targeting and deep penetration in vitro and in vivo. Additionally, we created peptide-drug conjugates (PDCs) by linking targeting peptides to toxin drugs via various linkers and enhancing their in vivo half-life with fatty side chains for albumin binding. The antitumor candidate II-3 displayed exceptional affinity (KD = 1.72 × 10-9 M), internalization efficiency, anticancer potency (IC50 = 0.015 ± 0.002 μM), and pharmacokinetics (t1/2 = 2.6 h), showcasing a rational approach for designing PDCs with favorable tissue distribution and strong tumor penetration.
Collapse
Affiliation(s)
- Yang Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Department of Life Sciences, Changzhi University, Changzhi, Shanxi 046011, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuyu Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yonghui Guan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiale Wan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jialing Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhipeng Hu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
7
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2024:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
8
|
Nunes J, Tafesse R, Mao C, Purcell M, Mo X, Zhang L, Long M, Cyr MG, Rader C, Muthusamy N. Siglec-6 as a therapeutic target for cell migration and adhesion in chronic lymphocytic leukemia. Nat Commun 2024; 15:5180. [PMID: 38890323 PMCID: PMC11189495 DOI: 10.1038/s41467-024-48678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Humans
- Animals
- Cell Movement
- Cell Adhesion
- Lectins/metabolism
- Mice
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Female
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Cell Line, Tumor
- Mesenchymal Stem Cells/metabolism
- Male
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jessica Nunes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Rakeb Tafesse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Charlene Mao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew Purcell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew G Cyr
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Christoph Rader
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Wang Y, Zhang Y, Sun H, Chen J, Yang H, Zhong Z, Xiao X, Li Y, Tang Y, Lu H, Tang X, Zhang M, Wu W, Zhou S, Yang J. Antitumor activity of a ROR1 × CD3 bispecific antibody in non-small cell lung cancer. Int Immunopharmacol 2023; 123:110686. [PMID: 37499397 DOI: 10.1016/j.intimp.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Over the last decade, immuno-oncologic drugs especially CD3-engaging bispecific antibodies (biAbs) are experiencing fast-paced evolution, but big challenges still exist in the clinical development of biAbs in solid tumors, especially non-small cell lung cancer (NSCLC). In this study, we choose a ROR1 × CD3 biAb in scFv-Fc format, named R11 × v9 biAb, to investigate its tumor-inhibiting role in NSCLC. Notably, the ROR1-engaging arm binds both human and mouse ROR1. We found that R11 × v9 biAb specifically binds T cells and tumor cells simultaneously, and dose-dependent cytotoxicity was detected for various ROR1+ NSCLC cell lines. Further, R11 × v9 biAb mediated T-cell derived proinflammatory cytokine secretion, boosted granzyme B and perforin production from CD8+ T cells, and recruited more CD4+ T cells and CD8+ T cells into the tumor tissues. The antitumor activity of R11 × v9 biAb was confirmed in two xenograft mouse models of ROR1+ NSCLC. Importantly, no harmful side effects were observed in these in vivo studies, warranting further preclinical and clinical studies of R11 × v9 biAb in NSCLC.
Collapse
Affiliation(s)
- Yi Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxi Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haoyi Sun
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jilan Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Yang
- Department of Pathology, the First People's Hospital of Yunnan Province, Kunming 650034, China
| | - Zhanqiong Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoqian Xiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yibei Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haolan Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinzhi Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenjun Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiahui Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Meng S, Li M, Qin L, Lv J, Wu D, Zheng D, Jia H, Chen D, Wu Q, Long Y, Tang Z, Tang Y, Yang L, Yao Y, Luo X, Li P. The onco-embryonic antigen ROR1 is a target of chimeric antigen T cells for colorectal cancer. Int Immunopharmacol 2023; 121:110402. [PMID: 37301125 DOI: 10.1016/j.intimp.2023.110402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer is globally ranked second in both incidence and mortality rate. It usually develops during the middle or late stages of diagnosis, and is characterized by easy metastasis, poor prognosis, and a significant decline in postoperative quality of life. ROR1 is an excellent oncoembryonic antigen in numerous immunotherapy treatments for tumors. Additionally, it is overexpressed in colorectal cancer. To fill the void in CRC treatment with ROR1 as a target of CAR-T immunotherapy, we designed and prepared antiROR1-CART. This third-generation CAR-T cell can effectively inhibit the growth of colorectal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Shangsen Meng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heng Jia
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongmei Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai In Vivo Biomedicine Co. Ltd., Guangzhou 510700, China
| | - Yanlai Tang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuequn Luo
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Peng Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, China; Department of Surgery of the Faculty of Medicine, The Chinese University of Hong Kong (CUHK), China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
11
|
Kent A, Pollyea DA. Top advances of the year: Leukemia. Cancer 2023; 129:981-985. [PMID: 36585394 PMCID: PMC10173446 DOI: 10.1002/cncr.34619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the year 2021, there were three new Food and Drug Administration approvals for all leukemia types: asciminib (Scemblix) for chronic myeloid leukemia, brexucabtagene autoleucel (Tecartus) for relapsed/refractory B-cell acute lymphocytic leukemia, and asparaginase erwinia chrysanthemi (recombinant)-rywn (Rylaze) for acute lymphocytic leukemia. This is down from 2017-2018 when eight new therapies were approved for acute myeloid leukemia alone. However, this decrease from prior years does not imply that little progress was made in our understanding or treatment of leukemias in 2021. Asciminib and brexucabtagene autoleucel, in particular, are representative of major developing trends. Asciminib, a targeted therapy, is only one of many drugs in development that are products of a bedside-to-bench approach fueled by new sequencing and other genetic technologies that have greatly increased our understanding of the biology behind hematologic diseases. Brexucabtagene autoleucel, an adoptive cell therapy, is the newest of several similar treatments for B cell-associated neoplasms, and it is representative of a massive push to develop novel immunotherapies for a broad range of hematologic malignancies. This commentary reviews the development of asciminib and brexucabtagene autoleucel and describes other major advances in the associated fields of targeted therapy and immunotherapy for leukemias.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
12
|
Osorio-Rodríguez DA, Camacho BA, Ramírez-Segura C. Anti-ROR1 CAR-T cells: Architecture and performance. Front Med (Lausanne) 2023; 10:1121020. [PMID: 36873868 PMCID: PMC9981679 DOI: 10.3389/fmed.2023.1121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a membrane receptor that plays a key role in development. It is highly expressed during the embryonic stage and relatively low in some normal adult tissues. Malignancies such as leukemia, lymphoma, and some solid tumors overexpress ROR1, making it a promising target for cancer treatment. Moreover, immunotherapy with autologous T-cells engineered to express a ROR1-specific chimeric antigen receptor (ROR1 CAR-T cells) has emerged as a personalized therapeutic option for patients with tumor recurrence after conventional treatments. However, tumor cell heterogeneity and tumor microenvironment (TME) hinder successful clinical outcomes. This review briefly describes the biological functions of ROR1 and its relevance as a tumor therapeutic target, as well as the architecture, activity, evaluation, and safety of some ROR1 CAR-T cells used in basic research and clinical trials. Finally, the feasibility of applying the ROR1 CAR-T cell strategy in combination with therapies targeting other tumor antigens or with inhibitors that prevent tumor antigenic escape is also discussed. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02706392.
Collapse
Affiliation(s)
- Daniel Andrés Osorio-Rodríguez
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | | | - César Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia.,Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
13
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
14
|
Goswami S, Chiang CL, Zapolnik K, Nunes J, Ventura A, Mo X, Xie Z, Lee LJ, Baskar S, Rader C, Byrd JC, Phelps M, Bhatnagar B, Muthusamy N. ROR1 targeted immunoliposomal delivery of OSU-2S shows selective cytotoxicity in t(1;19)(q23;p13) translocated B-cell acute lymphoblastic leukemia. Leuk Res 2022; 118:106872. [PMID: 35640397 PMCID: PMC10029232 DOI: 10.1016/j.leukres.2022.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Swagata Goswami
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Chi-Ling Chiang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevan Zapolnik
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jessica Nunes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ann Ventura
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zhiliang Xie
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Sivasubramanian Baskar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mitch Phelps
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Bhavana Bhatnagar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Etrych T, Braunova A, Zogala D, Lambert L, Renesova N, Klener P. Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas. Cancers (Basel) 2022; 14:626. [PMID: 35158894 PMCID: PMC8833783 DOI: 10.3390/cancers14030626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant lymphomas represent the most common type of hematologic malignancies. The first clinically approved TDD modalities in lymphoma patients were anti-CD20 radioimmunoconjugates (RIT) 131I-tositumomab and 90Y-ibritumomab-tiuxetan. The later clinical success of the first approved antibody-drug conjugate (ADC) for the treatment of lymphomas, anti-CD30 brentuximab vedotin, paved the path for the preclinical development and clinical testing of several other ADCs, including polatuzumab vedotin and loncastuximab tesirine. Other modalities of TDD are based on new formulations of "old" cytostatic agents and their passive trapping in the lymphoma tissue by means of the enhanced permeability and retention (EPR) effect. Currently, the diagnostic and restaging procedures in aggressive lymphomas are based on nuclear imaging, namely PET. A theranostic approach that combines diagnostic or restaging lymphoma imaging with targeted treatment represents an appealing innovative strategy in personalized medicine. The future of theranostics will require not only the capability to provide suitable disease-specific molecular probes but also expertise on big data processing and evaluation. Here, we review the concept of targeted drug delivery in malignant lymphomas from RIT and ADC to a wide array of passively and actively targeted nano-sized investigational agents. We also discuss the future of molecular imaging with special focus on monoclonal antibody-based and monoclonal antibody-derived theranostic strategies.
Collapse
Affiliation(s)
- Tomas Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (T.E.); (A.B.)
| | - Alena Braunova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic; (T.E.); (A.B.)
| | - David Zogala
- Institute of Nuclear Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 128 08 Prague, Czech Republic;
| | - Lukas Lambert
- Department of Radiology, General University Hospital and First Faculty of Medicine, Charles University in Prague, 128 08 Prague, Czech Republic;
| | - Nicol Renesova
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 121 08 Prague, Czech Republic;
| | - Pavel Klener
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 121 08 Prague, Czech Republic;
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
16
|
Peng H. Perspectives on the development of antibody-drug conjugates targeting ROR1 for hematological and solid cancers. Antib Ther 2021; 4:222-227. [PMID: 34805745 PMCID: PMC8597957 DOI: 10.1093/abt/tbab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are targeted therapeutics generated by conjugation of cytotoxic small molecules to monoclonal antibodies (mAbs) via chemical linkers. Due to their selective delivery of toxic payloads to antigen-positive cancer cells, ADCs demonstrate wider therapeutic indexes compared with conventional chemotherapy. After decades of intensive research and development, significant advances have been made in the field, leading to a total of 10 U.S. food and drug administration (FDA)-approved ADCs to treat cancer patients. Currently, ~80 ADCs targeting different antigens are under clinical evaluation for treatment of either hematological or solid malignancies. Notably, three ADCs targeting the same oncofetal protein, receptor tyrosine kinase like orphan receptor 1 (ROR1), have attracted considerable attention when they were acquired or licensed successively in the fourth quarter of 2020 by three major pharmaceutical companies. Apparently, ROR1 has emerged as an attractive target for cancer therapy. Since all the components of ADCs, including the antibody, linker and payload, as well as the conjugation method, play critical roles in ADC’s efficacy and performance, their choice and combination will determine how far they can be advanced. This review summarizes the design and development of current anti-ROR1 ADCs and highlights an emerging trend to target ROR1 for cancer therapy.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, C278, Jupiter, FL 33458, USA
| |
Collapse
|