1
|
Chiu M, Schimmer AD, Schuh AC, Bankar A, Richard-Carpentier G, Sibai H, Yee K, Davidson M, Chan SM, Gupta V, Maze D. Genomic profiles and outcomes in de novo versus therapy-related core binding factor AML. Blood Cancer J 2024; 14:190. [PMID: 39482301 PMCID: PMC11528045 DOI: 10.1038/s41408-024-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- May Chiu
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada.
| | - Aaron D Schimmer
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Andre C Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Aniket Bankar
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | - Hassan Sibai
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Karen Yee
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Marta Davidson
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Steven M Chan
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Vikas Gupta
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Dawn Maze
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| |
Collapse
|
2
|
Gao J, Santana-Santos L, Fu L, Alvey E, Chen Q, Wolniak K, Xia Z, Aqil B, Behdad A, Ji P, Sukhanova M, Abaza Y, Altman JK, Chen YH, Lu X. Clinical implications of additional chromosomal abnormalities in adult acute myeloid leukemia with inv (16)/t(16;16)/CBFB::MYH11. Eur J Haematol 2024; 112:964-974. [PMID: 38388794 DOI: 10.1111/ejh.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES This study assesses the clinical significance of additional cytogenetic abnormalities (ACAs) and/or the deletion of 3'CBFB (3'CBFBdel) resulting in unbalanced CBFB::MYH11 fusion in acute myeloid leukemia (AML) with inv (16)/t(16;16)/CBFB::MYH11. METHODS We retrospectively evaluated the clinicopathologic features of 47 adult de novo AML with inv (16)/t(16;16)/CBFB::MYH11 fusion. There were 44 balanced and 3 unbalanced CBFB::MYH11 fusions. Given the low frequency of unbalanced cases, the latter group was combined with 19 published cases (N = 22) for statistic and meta-analysis. RESULTS Both balanced and unbalanced cases were characterized by frequent ACAs (56.5% and 72.7%, respectively), with +8, +22, and del(7q) as the most frequent abnormalities. The unbalanced group tends to be younger individuals (p = .04) and is associated with a lower remission rate (p = .02), although the median overall survival (OS) was not statistically different (p = .2868). In the balanced group, "ACA" subgroup had higher mortality (p = .013) and shorter OS (p = .011), and patients with relapsed disease had a significantly shorter OS (p = .0011). Cox multivariate regression analysis confirmed that ACAs and history of disease relapse are independent risk factors, irrespective of disease relapse status. In the combined cohort, cases with ACAs had shorter OS than those with "Sole" abnormality (p = .0109). CONCLUSIONS ACAs are independent high-risk factors in adult AML with inv (16)/t(16;16)/CBFB::MYH11 fusion and should be integrated for risk stratification in this disease. Larger studies are needed to assess the clinical significance of the unbalanced CBFB::MYH11 fusion resulting from the 3'CBFBdel.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Adult
- Female
- Male
- Middle Aged
- Oncogene Proteins, Fusion/genetics
- Chromosome Inversion
- Aged
- Chromosomes, Human, Pair 16/genetics
- Chromosome Aberrations
- Prognosis
- Retrospective Studies
- Young Adult
- Core Binding Factor beta Subunit/genetics
- Adolescent
- Aged, 80 and over
- Translocation, Genetic
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lucy Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emily Alvey
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristy Wolniak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zongjun Xia
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Barina Aqil
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amir Behdad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yasmin Abaza
- Department of Internal Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica K Altman
- Department of Internal Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zhai Y, Wang Q, Ji L, Ren H, Dong Y, Yang F, Yin Y, Liang Z, Wang Q, Liu W, Mei Y, Zhang L, Li Y. Clinical characteristics and prognostic factors analysis of core binding factor acute myeloid leukemia in real world. Cancer Med 2023; 12:21592-21604. [PMID: 38062912 PMCID: PMC10757144 DOI: 10.1002/cam4.6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Chromosomal translocations involving core binding factor (CBF) genes account for 15% of adult acute myeloid leukemia (AML) cases in China. Despite being classified as favorable-risk by European Leukemia Net (ELN), CBF-AML patients have a 40% relapse rate. This study aims to analyze clinical characteristics and prognosis of CBF-AML, compare its subtypes (inv(16) and t(8;21)), and validate prognostic factors. METHODS Retrospective analysis of 149 AML patients (75 CBF-AML, 74 non-CBF) at Peking University First Hospital (March 2012-March 2022). RESULTS CBF-AML patients have significantly lower disease-free survival (DFS) (p = 0.005) and higher non-relapse mortality (NRM) (p = 0.028) compared to non-CBF AML. inv (16) and t(8;21) show distinct co-occurring gene mutation patterns, with inv(16) being prone to central nervous system (CNS) leukemia. Multivariate analysis identifies age as a risk factor for overall survival (OS) and disease free survival (DFS), kinase mutation as a risk factor for DFS and Recurrence, while WT1 mutation as a risk factor for OS and non relapse mortality (NRM) risk in t(8;21) AML. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) improves prognosis in low-risk t(8;21). CONCLUSION Prognosis of CBF-AML is poorer than ELN guidelines suggest. inv(16) and (8;21) are separate entities with relatively poor prognoses, requiring rational risk stratification strategies. Allo-HSCT may benefit low-risk t(8;21), but further research is needed for conclusive evidence.
Collapse
Affiliation(s)
- Yamei Zhai
- Department of HematologyPeking University First HospitalBeijingChina
| | - Qingya Wang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Li Ji
- Department of HematologyPeking University First HospitalBeijingChina
| | - Hanyun Ren
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yujun Dong
- Department of HematologyPeking University First HospitalBeijingChina
| | - Fan Yang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yue Yin
- Department of HematologyPeking University First HospitalBeijingChina
| | - Zeyin Liang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Qian Wang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Wei Liu
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yan Mei
- Department of HematologyPeking University First HospitalBeijingChina
| | - Lu Zhang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yuan Li
- Department of HematologyPeking University First HospitalBeijingChina
| |
Collapse
|
4
|
Chapilliquen Ramirez RM, Corbacho Pachas MTDJ, Zapata Dongo RJ. Prevalence and Prognosis of Secondary Genetic Aberrations Among Patients With Core Binding Factor Acute Myeloid Leukemia: A Mitelman Database Analysis. World J Oncol 2023; 14:488-498. [PMID: 38022406 PMCID: PMC10681777 DOI: 10.14740/wjon1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Core binding factor acute myeloid leukemia (CBF-AML) comprises t(8;21) and inv(16) and usually has a favorable prognosis. However, a wide spectrum of secondary genetic aberrations has been shown to be associated with worse outcomes with respect to overall survival (OS) and relapse. We aimed to identify secondary molecular and chromosomal aberrations within each group of CBF-AML, i.e., t(8;21) and inv(16), and to evaluate their prognosis with OS. Methods Using the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, we analyzed 193 cases of CBF-AML reported between 2011 and 2021. We conducted a survival analysis to determine the 5-year OS, and we conducted univariate and multivariate Cox regression to identify independent genetic factors related to OS. Results Among the 193 cases with CBF-AML, structural and numerical chromosome rearrangements were 25.9% and 40.9%, respectively, and secondary genetic mutations were 54.9%. The 5-year OS for the presence of del(7) and trisomy 22 was significantly worse. NRAS mutations had a worse 5-year OS in the t(8;21) group in the univariate analysis but showed no significant difference in the multivariate analysis. Conclusions CBF-AML has heterogeneous cytogenetic characteristics but no difference in the 5-year OS between the inv(16) and t(8;21) groups. Finally, the presence of del(7), trisomy 22 and NRAS mutations showed a potential prognostic impact in CBF-AML patients. Secondary genetic findings may need to be identified to determine its association to a worse prognosis, and in the future develop better targeted therapies in patients with CBF-AML.
Collapse
|
5
|
Darwish C, Farina K, Tremblay D. The core concepts of core binding factor acute myeloid leukemia: Current considerations for prognosis and treatment. Blood Rev 2023; 62:101117. [PMID: 37524647 DOI: 10.1016/j.blre.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Core binding factor acute myeloid leukemia (CBF AML), defined by t(8;21) or inv(16), is a subset of favorable risk AML. Despite its association with a high complete remission rate after induction and relatively good prognosis overall compared with other subtypes of AML, relapse risk after induction chemotherapy remains high. Optimizing treatment planning to promote recurrence free survival and increase the likelihood of survival after relapse is imperative to improving outcomes. Recent areas of research have included evaluation of the role of gemtuzumab in induction and consolidation, the relative benefit of increased cycles of high dose cytarabine in consolidation, the utility of hypomethylating agents and kinase inhibitors, and the most appropriate timing of stem cell transplant. Surveillance with measurable residual disease testing is increasingly being utilized for monitoring disease in remission, and ongoing investigation seeks to determine how to use this tool for early identification of patients who would benefit from proceeding to transplant. In this review, we outline the current therapeutic approach from diagnosis to relapse while highlighting the active areas of investigation in each stage of treatment.
Collapse
Affiliation(s)
- Christina Darwish
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA
| | - Kyle Farina
- Department of Pharmacy Practice, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
6
|
DeWolf S, Tallman MS, Rowe JM, Salman MY. What Influences the Decision to Proceed to Transplant for Patients With AML in First Remission? J Clin Oncol 2023; 41:4693-4703. [PMID: 37611216 PMCID: PMC10564290 DOI: 10.1200/jco.22.02868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Although allogeneic hematopoietic cell transplantation (allo-HCT) remains the backbone of curative treatment for the majority of fit adults diagnosed with AML, there is indeed a subset of patients for whom long-term remission may be achieved without transplantation. Remarkable changes in our knowledge of AML biology in recent years has transformed the landscape of diagnosis, management, and treatment of AML. Specifically, markedly increased understanding of molecular characteristics of AML, the expanded application of minimal/measurable residual diseases testing, and an increased armamentarium of leukemia-directed therapeutic agents have created a new paradigm for the medical care of patients with AML. An attempt is herein made to decipher the decision to proceed to transplant for patients with AML in first complete remission on the basis of the current best available evidence. The focus is on factors affecting the biology and treatment of AML itself, rather than on variables related to allo-HCT, an area characterized by significant advancements that have reduced overall therapy-related complications. This review seeks to focus on areas of particular complexity, while simultaneously providing clarity on how our current knowledge and treatment strategies may, or may not, influence the decision to pursue allo-HCT in patients with AML.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Division of Hematology and Oncology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jacob M. Rowe
- Rambam Health Care Campus and Technion, Israel Institute of Technology, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | |
Collapse
|
7
|
Bidet A, Quessada J, Cuccuini W, Decamp M, Lafage-Pochitaloff M, Luquet I, Lefebvre C, Tueur G. Cytogenetics in the management of acute myeloid leukemia and histiocytic/dendritic cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103421. [PMID: 38016419 DOI: 10.1016/j.retram.2023.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Genetic data are becoming increasingly essential in the management of hematological neoplasms as shown by two classifications published in 2022: the 5th edition of the World Health Organization Classification of Hematolymphoid Tumours and the International Consensus Classification of Myeloid Neoplasms and Acute Leukemias. Genetic data are particularly important for acute myeloid leukemias (AMLs) because their boundaries with myelodysplastic neoplasms seem to be gradually blurring. The first objective of this review is to present the latest updates on the most common cytogenetic abnormalities in AMLs while highlighting the pitfalls and difficulties that can be encountered in the event of cryptic or difficult-to-detect karyotype abnormalities. The second objective is to enhance the role of cytogenetics among all the new technologies available in 2023 for the diagnosis and management of AML.
Collapse
Affiliation(s)
- Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Avenue Magellan, Bordeaux, Pessac F-33600, France.
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Hôpital des enfants de la Timone, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille Université, Marseille 13005, France; CNRS, INSERM, CIML, Aix Marseille Université, Marseille 13009, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Hôpital des enfants de la Timone, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille Université, Marseille 13005, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse, Site IUCT-O, Toulouse, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| | - Giulia Tueur
- Laboratoire d'Hématologie, CHU Avicenne, APHP, Bobigny, France
| |
Collapse
|
8
|
Boscaro E, Urbino I, Catania FM, Arrigo G, Secreto C, Olivi M, D'Ardia S, Frairia C, Giai V, Freilone R, Ferrero D, Audisio E, Cerrano M. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers (Basel) 2023; 15:3512. [PMID: 37444622 DOI: 10.3390/cancers15133512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
An accurate estimation of AML prognosis is complex since it depends on patient-related factors, AML manifestations at diagnosis, and disease genetics. Furthermore, the depth of response, evaluated using the level of MRD, has been established as a strong prognostic factor in several AML subgroups. In recent years, this rapidly evolving field has made the prognostic evaluation of AML more challenging. Traditional prognostic factors, established in cohorts of patients treated with standard intensive chemotherapy, are becoming less accurate as new effective therapies are emerging. The widespread availability of next-generation sequencing platforms has improved our knowledge of AML biology and, consequently, the recent ELN 2022 recommendations significantly expanded the role of new gene mutations. However, the impact of rare co-mutational patterns remains to be fully disclosed, and large international consortia such as the HARMONY project will hopefully be instrumental to this aim. Moreover, accumulating evidence suggests that clonal architecture plays a significant prognostic role. The integration of clinical, cytogenetic, and molecular factors is essential, but hierarchical methods are reaching their limit. Thus, innovative approaches are being extensively explored, including those based on "knowledge banks". Indeed, more robust prognostic estimations can be obtained by matching each patient's genomic and clinical data with the ones derived from very large cohorts, but further improvements are needed.
Collapse
Affiliation(s)
- Eleonora Boscaro
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Urbino
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Maria Catania
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giulia Arrigo
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Carolina Secreto
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Olivi
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Stefano D'Ardia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Chiara Frairia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Valentina Giai
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Roberto Freilone
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Dario Ferrero
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Ernesta Audisio
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Cerrano
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
9
|
Bonneville EF, Schetelig J, Putter H, de Wreede LC. Handling missing covariate data in clinical studies in haematology. Best Pract Res Clin Haematol 2023; 36:101477. [PMID: 37353284 DOI: 10.1016/j.beha.2023.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023]
Abstract
Missing data are frequently encountered across studies in clinical haematology. Failure to handle these missing values in an appropriate manner can complicate the interpretation of a study's findings, as estimates presented may be biased and/or imprecise. In the present work, we first provide an overview of current methods for handling missing covariate data, along with their advantages and disadvantages. Furthermore, a systematic review is presented, exploring both contemporary reporting of missing values in major haematological journals, and the methods used for handling them. A principal finding was that the method of handling missing data was explicitly specified in a minority of articles (in 76 out of 195 articles reporting missing values, 39%). Among these, complete case analysis and the missing indicator method were the most common approaches to dealing with missing values, with more complex methods such as multiple imputation being extremely rare (in 7 out of 195 articles). An example analysis (with associated code) is also provided using hematopoietic stem cell transplantation data, illustrating the different approaches to handling missing values. We conclude with various recommendations regarding the reporting and handling of missing values for future studies in clinical haematology.
Collapse
Affiliation(s)
- Edouard F Bonneville
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| | - Johannes Schetelig
- Dresden University Hospital, Dresden, Germany; DKMS Clinical Trials Unit, Dresden, Germany
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; DKMS Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
10
|
Qiu KY, Liao XY, Li Y, Huang K, Xu HG, Fang JP, Zhou DH. Outcome and prognostic factors of CBF pediatric AML patients with t(8;21) differ from patients with inv(16). BMC Cancer 2023; 23:476. [PMID: 37231380 DOI: 10.1186/s12885-023-10965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
PURPOSE To explore the outcome and prognostic factors between inv(16) and t(8;21) disrupt core binding factor (CBF) in acute myeloid leukemia (AML). METHODS The clinical characteristic, probability of achieving complete remission (CR), overall survival (OS) and cumulative incidence of relapse (CIR) were compared between inv(16) and (8;21). RESULTS The CR rate was 95.2%, 10-year OS was 84.4% and CIR was 29.4%. Subgroup analysis showed that patients with t(8;21) had significant lower 10-year OS and CIR than patients with inv(16). Unexpectedly, there was a trend for pediatric AML receiving five courses cytarabine to have a lower CIR than four courses cytarabine (19.8% vs 29.3%, P = 0.06). Among the cohort of no-gemtuzumab ozogamicin(GO) treatment, inv (16) patients showed a similar 10-year OS (78.9% vs 83.5%; P = 0.69) and an inferior outcome on 10-year CIR (58.6% vs 28.9%, P = 0.01) than those patients with t(8;21). In contrast, inv (16) and t(8;21) patients receiving GO treatment had comparable OS (OS: 90.5% vs. 86.5%, P = 0.66) as well as CIR (40.4% vs. 21.4%, P = 0.13). CONCLUSION Our data demonstrated that more cumulative cytarabine exposure could improve the outcome of childhood patients with t(8;21), while GO treatment was beneficial to the pediatric patients with inv(16).
Collapse
Affiliation(s)
- Kun-Yin Qiu
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Xiong-Yu Liao
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Yang Li
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Ke Huang
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Hong-Gui Xu
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Jian-Pei Fang
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| | - Dun-Hua Zhou
- Department of Hematology/Oncology, Children's Medical Center, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
11
|
Thao LTT, Ha CT, Ha NTT, Beaupha SMC, Nghia H, Tung TT, Son NT, Binh NT, Dung PC, Vu HA, Xinh PT. Cytogenetic Characteristics of de novo Acute Myeloid Leukemia in Southern Vietnam. Asian Pac J Cancer Prev 2023; 24:1789-1795. [PMID: 37247302 PMCID: PMC10495905 DOI: 10.31557/apjcp.2023.24.5.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The cytogenetic characteristics are important factors for risk stratification at diagnosis of acute myeloid leukemia (AML); however, cytogenetic profile of Vietnamese patients with AML remains undetermined. In this study, we present the chromosomal data of de novo AML patients in Southern Vietnam. METHODS We performed cytogenetic testing for 336 AML patients using G banding. If the patients had suspected abnormalities, fluorescence in situ hybridization with probes of inv(3)(q21q26)/t(3;3)(q21;q26), 5q31, 7q31, t(8;21)(q21.3;q22), 11q23, t(15;17)(q24;q21), inv(16)(p13q22)/t(16;16)(p13;q22)were analyzed. Patients without above aberrations or with normal karyotype were tested by fluorescence in situ hybridization using probe 11q23. RESULTS We found that the median age was 39 years. According to French - American - British classification, AML-M2 is the most frequent type with 35.1%. Chromosomal abnormalities were detected in 208 cases, accounting for 61.9%. Among structural abnormalities, t(15;17) was the most common (19.6%), followed by t(8;21) and inv (16)/t(16;16) in 10.1% and 6.2%, respectively. In perspective of chromosomal numerical abnornmalities, loss of sex chromosomes are the most common (7.7%), followed by +8 in 6.8%, -7/del(7q) in 4.4%, +21 in 3.9% and -5/del (5q) in 2.1%. The prevalence of addditional cytogenetic aberrations accompanying with t(8;21) and inv(16)/t(16;16) were 82.4% and 52.4%, repectively. None of +8 cases was associated with t(8;21). Regarding cytogenetic risk assessment according to European Leukemia Net 2017, there were 121 (36%) patients in favorable-risk, 180 (53.6%) in intermediate-risk and 35 (10.4%) in adverse-risk group. CONCLUSION In conclusion, this is the first comprehensive cytogenetic profile of Vietnamese patients diagnosed with de novo AML, which helps clinical doctors in prognostic classification for AML patients in Southern Vietnam.
Collapse
Affiliation(s)
- Lai Thi Thanh Thao
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Department of Hematology, Cho Ray Hospital, Ho Chi Minh City, Vietnam.
| | - Chau Thuy Ha
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam.
| | - Nguyen Thi Thanh Ha
- Department of Molecular Biology, Dai Phuoc Clinic, Ho Chi Minh City, Vietnam.
| | - Suzanne Monivong Cheanh Beaupha
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Department of Hematology, Cho Ray Hospital, Ho Chi Minh City, Vietnam.
| | - Huynh Nghia
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam.
| | - Tran Thanh Tung
- Department of Hematology, Cho Ray Hospital, Ho Chi Minh City, Vietnam.
| | - Nguyen Truong Son
- Department of Hematology, Cho Ray Hospital, Ho Chi Minh City, Vietnam.
| | - Nguyen Tan Binh
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam.
| | - Phu Chi Dung
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam.
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, District 5, Ho Chi Minh City, Vietnam.
| | - Phan Thi Xinh
- Department of Hematology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Ho Chi Minh City Blood Transfusion and Hematology Hospital, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
George B, Yohannan B, Mohlere V, Gonzalez A. Therapy-related core binding factor acute myeloid leukemia. Int J Hematol Oncol 2023; 12:IJH43. [PMID: 36874378 PMCID: PMC9979104 DOI: 10.2217/ijh-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) usually stems from exposure of the bone marrow to cytotoxic chemotherapy and/or radiation therapy. t-AML is usually associated with poor overall survival, but occasionally t-AML can involve favorable-risk cytogenetics, including core binding factor AML (CBF-AML), which shows a recurrent chromosomal rearrangement with t(8;21) (q22;22) and 'inv(16) (p13.1;q22)/t(16;16)(p13.1;q22)', leading to 'RUNX1::RUNX1T1 and CBFB::MYH11' fusion genes, respectively. Therapy-related CBF-AML (t-CBF-AML) accounts for 5-15% of CBF-AML cases and tends to have better outcomes than t-AML with unfavorable cytogenetics. Although CBF-AML is sensitive to high-dose cytarabine, t-CBF-AML has worse overall survival than de novo CBF- AML. The objective of this review is to discuss the available data on the pathogenesis, mutations, and therapeutic options in patients with t-CBF-AML.
Collapse
Affiliation(s)
- Binsah George
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Binoy Yohannan
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Virginia Mohlere
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Anneliese Gonzalez
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| |
Collapse
|
13
|
Abbas HA, Ayoub E, Sun H, Kanagal-Shamanna R, Short NJ, Issa G, Yilmaz M, Pierce S, Rivera D, Cham B, Wing S, Li Z, Hammond D, Jabbour E, Borthakur G, Garcia-Manero G, Andreeff M, Daver N, Kadia T, Konopleva M, DiNardo C, Ravandi F. Clinical and molecular profiling of AML patients with chromosome 7 or 7q deletions in the context of TP53 alterations and venetoclax treatment. Leuk Lymphoma 2022; 63:3105-3116. [PMID: 36089905 PMCID: PMC9772202 DOI: 10.1080/10428194.2022.2118533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 01/26/2023]
Abstract
Deletions in chromosome 7 (del(7)) or its long arm (del(7q)) constitute the most common adverse cytogenetic events in acute myeloid leukemia (AML). We retrospectively analyzed 243 treatment-naive patients with AML and del(7) (168/243; 69%) or del(7q) (75/243; 31%) who did not receive any myeloid-directed therapy prior to AML diagnosis. This is the largest comprehensive clinical and molecular analysis of AML patients with del(7) and del(7q). Our results show that relapse-free survival was significantly longer for AML patients with del(7q) compared to del(7), but the overall survival and remission duration were similar. TP53 mutations and del5/5q were the most frequent co-occurring mutations and cytogenetic abnormalities, and conferred worse outcomes in del(7) and del(7q) patients. Venetoclax-based treatments were associated with worse outcomes in TP53 mutated AML patients with del(7) or del(7q), as well as del(7) with TP53 wildtype status, requiring further investigation.
Collapse
Affiliation(s)
- Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology and Medical Oncology, The University of Texas Health Science Center, Houston, TX, USA
| | - Edward Ayoub
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanxiao Sun
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas Issa
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Rivera
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brent Cham
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Shane Wing
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danielle Hammond
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Tazi Y, Arango-Ossa JE, Zhou Y, Bernard E, Thomas I, Gilkes A, Freeman S, Pradat Y, Johnson SJ, Hills R, Dillon R, Levine MF, Leongamornlert D, Butler A, Ganser A, Bullinger L, Döhner K, Ottmann O, Adams R, Döhner H, Campbell PJ, Burnett AK, Dennis M, Russell NH, Devlin SM, Huntly BJP, Papaemmanuil E. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun 2022; 13:4622. [PMID: 35941135 PMCID: PMC9360033 DOI: 10.1038/s41467-022-32103-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 02/02/2023] Open
Abstract
Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool.
Collapse
Grants
- MC_PC_17230 Medical Research Council
- BRC-1215-20014 Department of Health
- 203151/Z/16/Z Wellcome Trust
- MR-R009708-1 Medical Research Council
- C18680/A25508 Cancer Research UK
- 29806 Cancer Research UK
- 25350 Cancer Research UK
- P30 CA008748 NCI NIH HHS
- Wellcome Trust
- 25508 Cancer Research UK
- 25643 Cancer Research UK
- MR/R009708/1 Medical Research Council
- C49940/A25117 Cancer Research UK
- 205254/Z/16/Z Wellcome Trust
- E.P. is a Josie Robertson Investigator and is supported by the European Hematology Association, American Society of Hematology, Gabrielle’s Angels Foundation, V Foundation and The Geoffrey Beene Foundation and is a Damon Runyon Rachleff Innovator fellow. Work in the BJPH lab is funded by Cancer Research UK (C18680/A25508), the European Research Council (647685), MRC (MR-R009708-1), the Kay Kendall Leukaemia Fund (KKL1243), the Wellcome Trust (205254/Z/16/Z) and the Cancer Research UK Cambridge Major Centre (C49940/A25117). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014), and was funded in part, by the Wellcome Trust who supported the Wellcome - MRC Cambridge Stem Cell Institute (203151/Z/16/Z). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. L.B., H.D. and B.J.P.H. are supported by the HARMONY Alliance (IMI Project No. 116026; https://www.harmony-alliance.eu/). The UK-NCRI AML working group trials were supported with research grants from the Medical Research Council (MRC), Cancer Research UK (CRUK), Blood Cancer UK and Cardiff University. We would like to thank all patients and investigators for their participation in the trials and the study.
Collapse
Affiliation(s)
- Yanis Tazi
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Computational Biology and Medicine PhD Program, Weill Cornell Medicine of Cornell University and Rockefeller University, New York, NY, USA
- The Rockefeller University, New York, NY, USA
| | - Juan E Arango-Ossa
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yangyu Zhou
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Thomas
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Amanda Gilkes
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yoann Pradat
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean J Johnson
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, UK
| | - Max F Levine
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Adam Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Oliver Ottmann
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard Adams
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Alan K Burnett
- Visiting Professor University of Glasgow, formerly Cardiff University, Cardiff, UK
| | | | - Nigel H Russell
- Department of Haematology, Nottingham University Hospital, Nottingham, UK
| | - Sean M Devlin
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian J P Huntly
- Department of Haematology and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Shafik NF, Ibraheem D, Selim MM, Allam RM, Fathalla LA. The Prognostic Significance of c-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e363-e375. [PMID: 34972661 DOI: 10.1016/j.clml.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many recurrent mutations are encountered in core binding factor acute myeloid leukemia (CBF-AML) which may affect the prognosis. Approximately 20 to 45% of CBF-AML patients have KIT mutations which are having poor prognosis and high incidence of relapse. There is still insufficient data to categorize the patients with c-kit mutation into which risk group and there is a debate around whether Tyrosine kinase inhibitors can decrease the relapse risk and improve the prognosis of those patients. PATIENTS AND METHODS This study was conducted throughout a period of 3 years, where 102 CBF-AML were enrolled in our study. We analyzed the incidence of c-KIT exon 8 and 17 D816V mutations in CBF-AML patients and studied the prognosis. RESULTS The prevalence of CBF-AML was 102 of 989 (10.3%), 13.7% and 8.7% in pediatrics and adults' groups respectively. c-KIT fragment mutation analysis revealed a mutant form in 27 of 102 (26.5%) patients. Exon 8 mutation was found in 4 of 40 pediatric and 2 of 62 adult patients, while exon 17 mutation was found in 9 of 40 pediatric and 12 of 62 adult patients. The c-KIT mutations was more common in t(8;21). There was no significant relationship between c-kit mutation and CR rates, while there was a significant inferior overall, disease free as well as progression free survival in the c-KIT mutant patients as compared to the wild group (P value .045, .036 and .024 respectively) in the pediatric group, however, this significance was not evident in the adults' group. CONCLUSION According to our study, the results may suggest c-KIT mutation as a poor risk factor in pediatric CBF-AML.
Collapse
Affiliation(s)
- Nevine F Shafik
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt.
| | - Dalia Ibraheem
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Marwa Mahmoud Selim
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Egypt
| | - Lamiaa A Fathalla
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
17
|
Assaf N, Lefebvre C, Raggueneau V, Guignedoux G, Marceau-Renaut A, Chevalier S, Tondeur S, Bories D, Benramdane R, Rousselot P, Terré C. AML with inv(16)/t(16;16) and high-risk cytogenetic abnormalities: atypical features and unfavorable outcome. Hematology 2022; 27:636-641. [PMID: 35622005 DOI: 10.1080/16078454.2022.2078027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) with inv(16)/t(16;16) is among the most frequent AML subtypes. It is recognized by the detection of the CBFB-MYH11 fusion which confers a favorable prognosis, irrespective of the presence of secondary cytogenetic abnormalities. However, the effect of additional genetic anomalies on the behavior of inv(16) AML is debatable. Recent case reports describe an unfavorable prognosis for those patients, characterized by early relapse and death. In this study, we present a series of patients with CBFB-MYH11 fusion and high-risk rearrangements to increase knowledge about this potentially distinct subgroup. METHODS All cases with inv(16)/ t(16;16) and one or more high risk abnormalities were reviewed at two tertiary healthcare centers between years 2006 and 2020 in terms of demographics, biological and clinical data. RESULTS Among the total 1447 and 1283 AML cases, the frequency was found to be 0,2% and 0.3%. Clinical data could be retrieved for 5 patients. Detected high-risk abnormalities included TP53 and 5q deletion, complex and monosomal karyotype. The median age was 67 years, with a majority of females (M:F = 1:1.5). Two out of 5 patients presented with therapy related AML, with short latency periods. All patients presented with thrombocytopenia and/or leukocytopenia. Bone marrow aspirates revealed atypical morphology and the detection of rare CBFB-MYH11 fusion transcripts. All 5 patients died, with a short mean overall survival of 5.8 months. DISCUSSION AND CONCLUSION Our series suggests that the presence of high risk abnormalities confers distinct biological features and poor prognosis to inv(16) AML.
Collapse
Affiliation(s)
- Nada Assaf
- Department of Pathology and Laboratory Medicine, Cytogenetics division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christine Lefebvre
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Grenoble Alpes (CHUGA), La Tronche, France
| | - Victoria Raggueneau
- Department of Laboratory Medicine, Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Geoffroy Guignedoux
- Laboratoire d'Hématologie, Centre Hospitalier René Dubos Pontoise, Pontoise, France
| | - Alice Marceau-Renaut
- University of Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Simon Chevalier
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Grenoble Alpes (CHUGA), La Tronche, France
| | - Sylvie Tondeur
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Grenoble Alpes (CHUGA), La Tronche, France
| | - Dominique Bories
- Department of Molecular Onco-Hematology Henri Mondor Hospital (APHP-UPEC), Créteil, France
| | - Riad Benramdane
- Laboratoire d'Hématologie, Centre Hospitalier René Dubos Pontoise, Pontoise, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, France & University Paris-Saclay, UMR1184, Le Chesnay, France
| | - Christine Terré
- Department of Laboratory Medicine, Hemato-Oncologic Cytogenetics, Centre Hospitalier de Versailles, Le Chesnay, France
| |
Collapse
|
18
|
Mori A, Onozawa M, Hidaka D, Yokoyama S, Miyajima T, Yokoyama E, Ogasawara R, Izumiyama K, Saito M, Fujisawa S, Ota S, Kakinoki Y, Tsutsumi Y, Yamamoto S, Miyagishima T, Nagashima T, Iwasaki H, Kobayashi H, Haseyama Y, Kurosawa M, Morioka M, Teshima T, Kondo T. Non-age-related neoplastic loss of sex chromosome correlated with prolonged survival in real-world CBF-AML patients. Int J Hematol 2021; 115:188-197. [PMID: 34739701 DOI: 10.1007/s12185-021-03238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
In this real-world clinical study, in which we determined eligibility for allogenic hematopoietic stem cell transplantation by prognostic factors and minimal residual disease status, we retrospectively evaluated cytogenetic, genetic, and clinical features in 96 patients with core-binding factor acute myeloid leukemia (CBF-AML) including 62 patients with RUNX1/RUNX1T1 and 34 patients with CBFβ/MYH11. Multivariate analyses for 5-year overall survival (OS) in CBF-AML patients revealed that age of 50 years or older (HR: 3.46, 95% CI 1.47-8.11, P = 0.004) and receiving 2 or more induction cycles (HR: 3.55, 95% CI 1.57-8.05, P = 0.002) were independently associated with worse OS and that loss of sex chromosome (LOS) was independently associated with better OS (HR: 0.09, 95% CI 0.01-0.71, P = 0.022). At the time of complete remission, all 21 karyotyped patients with LOS had a normal karyotype. Furthermore, in all 9 patients with LOS who had a mosaic of metaphase cells with and without t(8;21) or inv(16), the metaphase cells without t(8;21)/inv(16) showed a normal karyotype. These results proved that LOS was not age-related and physiological, but rather a neoplastic chromosomal abnormality.
Collapse
Affiliation(s)
- Akio Mori
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan.
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toru Miyajima
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Emi Yokoyama
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Reiki Ogasawara
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Koh Izumiyama
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Makoto Saito
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Takahiro Nagashima
- Department of Internal Medicine/General Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Hiroshi Iwasaki
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Hajime Kobayashi
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Mitsutoshi Kurosawa
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Masanobu Morioka
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| |
Collapse
|
19
|
Yang RK, Toruner GA, Wang W, Fang H, Issa GC, Wang L, Quesada AE, Thakral B, Patel KP, Peng G, Liu S, Yin CC, Borthakur G, Tang Z, Wang SA, Miranda RN, Khoury JD, Medeiros LJ, Tang G. CBFB Break-Apart FISH Testing: An Analysis of 1629 AML Cases with a Focus on Atypical Findings and Their Implications in Clinical Diagnosis and Management. Cancers (Basel) 2021; 13:5354. [PMID: 34771519 PMCID: PMC8582369 DOI: 10.3390/cancers13215354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/05/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) is a confirmatory test to establish a diagnosis of inv(16)/t(16;16) AML. However, incidental findings and their clinical diagnostic implication have not been systemically studied. We studied 1629 CBFB FISH cases performed in our institution, 262 (16.1%), 1234 (75.7%), and 133 (8.2%) were reported as positive, normal, and abnormal, respectively. The last included CBFB copy number changes (n = 120) and atypical findings such as 3'CBFB deletion (n = 11), 5'CBFB deletion (n = 1), and 5'CBFB gain (n = 1). Correlating with CBFB-MYH11 RT-PCR results, totally 271 CBFB rearrangement cases were identified, including five with discrepancies between FISH and RT-PCR due to new partner genes (n = 3), insertion (n = 1), or rare CBFB-MYH11 variant (n = 1) and eight with 3'CBFB deletion. All cases with atypical findings and/or discrepancies presented clinical diagnostic challenges. Correlating FISH signal patterns and karyotypes, additional chromosome 16 aberrations (AC16As) show impacts on the re-definition of a complex karyotype and prognostic prediction. The CBFB rearrangement but not all AC16As will be detected by NGS-based methods. Therefore, FISH testing is currently still needed to provide a quick and straightforward confirmatory inv(16)/t(16;16) AML diagnosis and additional information related to clinical management.
Collapse
Affiliation(s)
- Richard K. Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.C.I.); (G.B.)
| | - Lulu Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.W.); (G.P.)
| | - Andrés E. Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.W.); (G.P.)
| | - Shujuan Liu
- Parkview Regional Medical Center, Allied Hospital Pathologists, Fort Wayne, IN 46845, USA;
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.C.I.); (G.B.)
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Sa A. Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.K.Y.); (G.A.T.); (W.W.); (H.F.); (A.E.Q.); (B.T.); (K.P.P.); (C.C.Y.); (S.A.W.); (R.N.M.); (J.D.K.); (L.J.M.); (G.T.)
| |
Collapse
|
20
|
Kim HJ, Weisdorf D, Gottlieb DJ. Allogeneic Hematopoietic Cell Transplantation and Cellular Therapy. BLOOD CELL THERAPY 2021; 4:S20-S27. [PMID: 36713469 PMCID: PMC9847286 DOI: 10.31547/bct-2021-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 02/01/2023]
Abstract
Patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) generally require allogeneic hematopoietic cell transplantation (allo-HCT) for a cure, except for patients with favorable genetic genotypes such as those with core-binding factor AML. However, the use of intensive chemotherapy followed by prompt HCT does not fully prevent relapse or refractory disease. Despite improvements in transplant techniques and management of complications, further improvement of HCT outcomes is urgently needed. Moreover, careful patient counseling, donor selection, and choice of transplant type are essential to maximize the benefits of early allografting. Maintenance after HCT focusing on selective immunomodulation combined with targeted immunotherapies that control persisting or relapsed hematologic malignancies is currently under active investigation. To improve the balance between GVHD, relapse, and infection, the use of purified blood stem cell grafts in conjunction with ex vivo expanded T-cells from stem cell donors targeting common infectious and leukemic antigens has been explored. T cells against infectious agents might also be generated using partially HLA-matched third-party T cells from cryopreserved cell banks, and a series of studies confirmed the clinical value of donor-derived CMV- and EBV-specific T cells. This approach has also been applied to acute leukemia, and trials using donor-derived cytotoxic T-cells targeting multiple leukemic antigens such as WT1, PRAME, survivin, and NY-ESO, as well as donor-derived CAR19 T-cells after allo-HCT, are currently underway.
Collapse
Affiliation(s)
- Hee-Je Kim
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, the Republic of Korea
| | - Daniel Weisdorf
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, U.S.A
| | | |
Collapse
|
21
|
Srinivasan S, Kumar S, Vijayasekharan K, Agrawal AK. Prevalence and Clinical Outcome of FMS-Like Tyrosine Kinase Mutations Among Patients With Core Binding Factor-Acute Myeloid Leukemia: Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e221-e232. [PMID: 34750085 DOI: 10.1016/j.clml.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Core binding factor acute myeloid leukemia (CBF-AML) belongs to favorable risk group in AML. However, approximately 50% of patients with CBF-AML remain incurable and their outcomes are also determined by the various co-occurring mutations. Though, FMS-like tyrosine kinase-3(FLT3) mutation in AML is associated with poor survival, the prevalence and prognostic significance of FLT3 mutations among CBF-AML is unknown. PATIENTS AND METHODS We performed a systematic review and meta-analysis to assess the prevalence of FLT3 mutations (ITD and TKD) among patients with CBF-AML. The pooled prevalence of FLT3 mutations was estimated for patients with CBF-AML, t(8;21) and Inv(16). Pooled odds ratio was calculated to compare the prevalence of various FLT3 mutations within the 2 subsets of CBF-AML. A random effects model was adopted for analysis when heterogenicity existed (Pheterogenicity< 0.05 or I2 > 50%). Otherwise, a fixed effects model was used. RESULTS The pooled prevalence of any FLT3 mutations among patients with CBF-AML was available from 18 studies and was 13% (95% CI: 10%-16%; I2 = 79%). Comparison of prevalence of FLT3 mutations between the 2 subgroups of CBF-AML showed that patients with t(8;21) had a higher prevalence of FLT3-ITD [pooled odds ratio(OR): 2.23 (95% CI:1.41-3.53, P < .01)] and lower prevalence of FLT3-TKD [pooled OR: 0.29 (95% CI:0.19-0.44; P < .01)] compared to patients with Inv(16). Additionally, we have discussed the prognostic significance of FLT3 mutations in CBF-AML patients. CONCLUSION The prevalence of FLT3-TKD mutation was commoner among Inv(16) AML while FLT3-ITD mutation was commoner among t(8;21) AML. Uniform reporting of outcomes is essential to understand the prognostic significance of FLT3 mutations among CBF-AML.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Shathish Kumar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | | | - Amit Kumar Agrawal
- Department of Medical Oncology, All India Institute of Medical Sciences, Raipur, India
| |
Collapse
|
22
|
Prognostic of Core Binding Factor (CBF) Acute Myeloid Leukemia With Complex Karyotype. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e199-e205. [PMID: 34674982 DOI: 10.1016/j.clml.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Core-binding factor acute myeloid leukemia (CBF AML) with recurrent genetic abnormalities inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB-MYH11 are usually prognostically favorable but heterogeneous group and additional abnormalities change their prognosis. MATERIALS AND METHODS To evaluate the impact of a complex karyotype on CBF AML prognosis, we included 24 patients with a median age of 56.4 years (23.2-83.3) and a median number of abnormalities of 5 (4-13). RESULTS Median follow-up was 110.4 months. Among patients with a primary clone, complete remission (CR) was reached in 66.7% of patients. 31.3% of patients experienced AML relapse with a median of 8.5 months. Median OS for transplanted patients was 80.7 versus 40.5 months for non-transplanted patients, excluding the 4 patients with early death. Among patients harboring AML with clonal evolution, CR was reached in 62.5% of patients. 50% of patients underwent allogeneic stem cell transplantation (ASCT). In these, median RFS was 19.3 versus 0 months in non-transplanted patients. Median OS seemed also longer in transplanted patients with 23.5 versus 2.95 months in non-transplanted. CONCLUSION Use of new treatment and tailored strategy based on measurable residual disease monitoring may now improve these results. However, these data allow us to reconsider the good prognosis historically associated with CBF patients despite of karyotype and the place of ASCT in the strategy.
Collapse
|
23
|
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, Maffei R, Martinelli S, Barozzi P, Potenza L, Marasca R, Trenti T, Tagliafico E, Comoli P, Luppi M, Forghieri F. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021; 9:biomedicines9080953. [PMID: 34440157 PMCID: PMC8391269 DOI: 10.3390/biomedicines9080953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morphological complete remission after induction, approximately 30% of cases eventually relapse. While well-established clinical features and concomitant cytogenetic/molecular lesions have been recognized to be relevant to predict prognosis at disease onset, the independent prognostic impact of measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11 AML should have MRD assessment at informative clinical timepoints, at least after two cycles of intensive chemotherapy and after the end of treatment, several controversies could be raised, especially on the frequency of subsequent serial monitoring, the most significant MRD thresholds (most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively common and not predictive of relapse, provided that transcript levels remain stably below specific thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed in subsequent samples. Further prospective studies would be required to optimize post-remission monitoring and to define effective MRD-based therapeutic strategies.
Collapse
Affiliation(s)
- Annalisa Talami
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Corrado Colasante
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Laura Galassi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rachele Giubbolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Hillary Catellani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Donatelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Silvia Martinelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy;
| | - Enrico Tagliafico
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy;
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| |
Collapse
|