1
|
Song S, Rhee S. CKAP4 is a potential therapeutic target to overcome resistance to EGFR-TKIs in lung adenocarcinoma. Genes Genomics 2024:10.1007/s13258-024-01606-7. [PMID: 39704929 DOI: 10.1007/s13258-024-01606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatments for non-small cell lung cancer (NSCLC) patients with EGFR mutations; however, drug resistance limits their efficacy. Cytoskeleton-associated protein 4 (CKAP4) has been linked to cancer progression, but its role in EGFR-TKI resistance remains unclear. OBJECTIVE This study investigates the clinical relevance of CKAP4 as a therapeutic target to overcome EGFR-TKI resistance in lung adenocarcinoma (LUAD) patients. METHODS GEO datasets were analyzed to identify 24 differentially expressed genes associated with EGFR-TKI resistance, with CKAP4 selected via functional annotation and scoring using the VarElect tool. The prognostic significance of CKAP4 was evaluated using public databases, and its upregulation was confirmed in osimertinib-tolerant H1975 cells through quantitative reverse transcription-polymerase chain reaction. RESULTS Integrated bioinformatics analysis identified CKAP4 as strongly associated with EGFR-TKI resistance. Elevated CKAP4 expression was particularly linked to poorer clinical outcomes in LUAD patients. Notably, osimertinib-tolerant cells exhibited high CKAP4 expression, correlating positively with increased half-maximal inhibitory concentrations of EGFR-TKIs. LUAD patients with upregulated CKAP4 showed significantly reduced overall and relapse-free survival. CONCLUSION This study underscores the prognostic value of CKAP4 in EGFR-mutated LUAD and highlights its potential as a therapeutic target to counter EGFR-TKI resistance.
Collapse
Affiliation(s)
- Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Zheng Y, Hu R, Hu J, Feng L, Li S. Protective effects of butorphanol in oleic acid-endotoxin "two-hit" induced rat lung injury by suppression of inflammation and apoptosis. Sci Rep 2024; 14:14231. [PMID: 38902260 PMCID: PMC11190203 DOI: 10.1038/s41598-024-53483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/31/2024] [Indexed: 06/22/2024] Open
Abstract
Butorphanol is widely used as an anesthetic drug, whether butorphanol could reduce organ injury and protecting lung tissue is unknown. This study explored the effects of butorphanol on ALI and investigated its underlying mechanisms. We established a "two-hit" rat model and "two-hit" cell model to prove our hypothesis. Rats were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 mg/kg and 8 mg/kg) (OA + LPS + B1 and OA + LPS + B2)]. RPMVE cells were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 μM and 8 μM) (OA + LPS + 4 μM and OA + LPS + 8 μM)]. Inflammatory injury was assessed by the histopathology and W/D ratio, inflammatory cytokines, and arterial blood gas analysis. Apoptosis was assessed by Western blotting and flow cytometry. The effect of NF-κB p65 was detected by ELISA. Butorphanol could relieve the "two-hit" induced lung injury, the expression of TNF, IL-1β, IL-6, and improve lung ventilation. In addition, butorphanol decreased Bax and cleaved caspase-3, increased an antiapoptotic protein (Bcl-2), and inhibited the "two-hit" cell apoptosis ratio. Moreover, butorphanol suppressed NF-κB p65 activity in rat lung injury. Our research showed that butorphanol may attenuate "two-hit"-induced lung injury by regulating the activity of NF-κB p65, which may supply more evidence for ALI treatment.
Collapse
Affiliation(s)
- Yanlei Zheng
- Department of Intensive Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ronghua Hu
- Department of Intensive Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Jinrong Hu
- Department of Intensive Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Lina Feng
- Department of Intensive Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Shi Li
- Department of Intensive Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China.
| |
Collapse
|
5
|
Jiang H, Wang L, Zhang Q, Wang S, Jia L, Cheng H, Wang J, Li X, Xie Y, Wang Y, Hu M, Guo J, Li Q, Peng Z, Wang M, Xie Y, Li T, Wang Y, Geng BD, Swaminathan S, Bergsagel PL, Liu Z. Bone marrow stromal cells dictate lanosterol biosynthesis and ferroptosis of multiple myeloma. Oncogene 2024; 43:1644-1653. [PMID: 38594504 PMCID: PMC11108777 DOI: 10.1038/s41388-024-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Ferroptosis has been demonstrated a promising way to counteract chemoresistance of multiple myeloma (MM), however, roles and mechanism of bone marrow stromal cells (BMSCs) in regulating ferroptosis of MM cells remain elusive. Here, we uncovered that MM cells were more susceptible to ferroptotic induction under the interaction of BMSCs using in vitro and in vivo models. Mechanistically, BMSCs elevated the iron level in MM cells, thereby activating the steroid biosynthesis pathway, especially the production of lanosterol, a major source of reactive oxygen species (ROS) in MM cells. We discovered that direct coupling of CD40 ligand and CD40 receptor constituted the key signaling pathway governing lanosterol biosynthesis, and disruption of CD40/CD40L interaction using an anti-CD40 neutralizing antibody or conditional depletion of Cd40l in BMSCs successfully eliminated the iron level and lanosterol production of MM cells localized in the Vk*MYC Vk12653 or NSG mouse models. Our study deciphers the mechanism of BMSCs dictating ferroptosis of MM cells and highlights the therapeutic potential of non-apoptosis strategies for managing refractory or relapsed MM patients.
Collapse
Affiliation(s)
- Hongmei Jiang
- Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276037, China
| | - Qiguo Zhang
- Department of Hematology, The First People's Hospital of Chuzhou, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, 239000, China
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Sheng Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Linchuang Jia
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Hao Cheng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingya Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Xin Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Ying Xie
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Yixuan Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Meilin Hu
- School of Stomatology, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Guo
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, 300192, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, 300192, China
| | - Ziyi Peng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Mengqi Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Yangyang Xie
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Tiantian Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, 300192, China
| | - Bill D Geng
- School of Natual Science, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - P Leif Bergsagel
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
| | - Zhiqiang Liu
- The Proton Center of Shandong Cancer Institute and Hospital, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, 250117, China.
| |
Collapse
|
6
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
7
|
Hu C, Kuang C, Zhou W. Advances in the pathogenesis of multiple myeloma bone disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1403-1410. [PMID: 38044652 PMCID: PMC10929876 DOI: 10.11817/j.issn.1672-7347.2023.220534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/05/2023]
Abstract
Multiple myeloma (MM) is a clonal proliferative malignant tumor of plasma cells in bone marrow. With the aging of population in China, the incidence of MM is on the rise. Multiple myeloma bone disease (MBD) is one of the common clinical manifestations of MM, and 80%-90% of MM patients are accompanied by osteolytic lesions at the time of their first visit to the clinic. MBD not only increases the disability rate of patients, but also severely reduces the physical function of patients due to skeletal lesions and bone-related events. Currently available drugs for treating of MBD are ineffective and associated with side effects. Therefore, it is important to find new therapeutic approaches for the treatment of MBD. It is generally believed that the increased osteoclast activity and suppressed osteoblast function are the main pathologic mechanisms for MBD. However, more and more studies have suggested that soluble molecules in the bone marrow microenvironment, including cytokines, extracellular bodies, and metabolites, play an important role in the development of MBD. Therefore, exploring the occurrence and potential molecular mechanisms for MBD from multiple perspectives, and identifying the predictive biomarkers and potential therapeutic targets are of significance for the clinical treatment of MBD.
Collapse
Affiliation(s)
- Cong Hu
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China.
| | - Chunmei Kuang
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Wen Zhou
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
8
|
Yuan S, Hoggard NK, Kantake N, Hildreth BE, Rosol TJ. Effects of Dickkopf-1 (DKK-1) on Prostate Cancer Growth and Bone Metastasis. Cells 2023; 12:2695. [PMID: 38067123 PMCID: PMC10705757 DOI: 10.3390/cells12232695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoblastic bone metastases are commonly detected in patients with advanced prostate cancer (PCa) and are associated with an increased mortality rate. Dickkopf-1 (DKK-1) antagonizes canonical WNT/β-catenin signaling and plays a complex role in bone metastases. We explored the function of cancer cell-specific DKK-1 in PCa growth, metastasis, and cancer-bone interactions using the osteoblastic canine PCa cell line, Probasco. Probasco or Probasco + DKK-1 (cells transduced with human DKK-1) were injected into the tibia or left cardiac ventricle of athymic nude mice. Bone metastases were detected by bioluminescent imaging in vivo and evaluated by micro-computed tomography and histopathology. Cancer cell proliferation, migration, gene/protein expression, and their impact on primary murine osteoblasts and osteoclasts, were evaluated in vitro. DKK-1 increased cancer growth and stimulated cell migration independent of canonical WNT signaling. Enhanced cancer progression by DKK-1 was associated with increased cell proliferation, up-regulation of NF-kB/p65 signaling, inhibition of caspase-dependent apoptosis by down-regulation of non-canonical WNT/JNK signaling, and increased expression of epithelial-to-mesenchymal transition genes. In addition, DKK-1 attenuated the osteoblastic activity of Probasco cells, and bone metastases had decreased cancer-induced intramedullary woven bone formation. Decreased bone formation might be due to the inhibition of osteoblast differentiation and stimulation of osteoclast activity through a decrease in the OPG/RANKL ratio in the bone microenvironment. The present study indicated that the cancer-promoting role of DKK-1 in PCa bone metastases was associated with increased growth of bone metastases, reduced bone induction, and altered signaling through the canonical WNT-independent pathway. DKK-1 could be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Shiyu Yuan
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Nathan K. Hoggard
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| |
Collapse
|
9
|
Mielnik M, Szudy-Szczyrek A, Homa-Mlak I, Mlak R, Podgajna-Mielnik M, Gorący A, Małecka-Massalska T, Hus M. The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines 2023; 11:3012. [PMID: 38002012 PMCID: PMC10669681 DOI: 10.3390/biomedicines11113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological neoplasm. Cytokines, chemokines, and their receptors, induced by the microenvironment of MM, participate in tumor growth, the attraction of leukocytes, cell homing, and bone destruction. This study aimed to assess the correlation between the pretreatment serum concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), angiogenic chemokine monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor (VEGF) and the clinical outcomes and survival of patients newly diagnosed with MM. The study group consisted of 82 individuals. The IL-8 concentration was significantly positively correlated with the age of onset (p = 0.007), the International Staging System (ISS) stage (p = 0.03), the Eastern Cooperative Oncology Group (ECOG) performance status (p < 0.001), the degree of anemia before treatment (p < 0.0001), the degree of kidney disease (p < 0.001), and VEGF (p = 0.0364). Chemotherapy responders had significantly lower concentrations of IL-8 (p < 0.001), IL-6 (p < 0.001), and VEGF (p = 0.04) compared with non-responders. Patients with treatment-induced polyneuropathy had significantly higher levels of IL-8 (p = 0.033). Patients with a high level of IL-6 had a 2-fold higher risk of progression-free survival (PFS) reduction (17 vs. 35 months; HR = 1.89; p = 0.0078), and a more than 2.5-fold higher risk of overall survival (OS) reduction (28 vs. 78 months; HR = 2.62; p < 0.001). High levels of IL-6, IL-8, and VEGF demonstrated significant predictive values for some clinical conditions or outcomes of newly diagnosed MM patients. Patients with an early response to chemotherapy had a significantly lower concentration of these cytokines. A high pretreatment IL-6 concentration was an independent negative prognostic marker for newly diagnosed MM patients.
Collapse
Affiliation(s)
- Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.)
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Doktora Witolda Chodźki 1 Str., 20-093 Lublin, Poland;
| | - Martyna Podgajna-Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Gorący
- Department of Hematology and Bone Marrow Transplantation, Saint Jan of Dukla Oncology Centre of the Lublin Region, Doktora Kazimierza Jaczewskiego 7 Str., 20-090 Lublin, Poland
| | | | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
10
|
Deng Y, Chen L, Zhang Q, Xu Y. PPFIBP1 activates NF-κB signaling to enhance chemoresistance of multiple myeloma. Transl Oncol 2023; 37:101765. [PMID: 37619524 PMCID: PMC10458954 DOI: 10.1016/j.tranon.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Easily developed chemoresistance is a major characteristic of multiple myeloma (MM) and the main obstacle in curing MM in the clinic, but the key regulators have not been fully identified. In the current study, we find that PPFIA Binding Protein 1 (PPFIBP1) is highly expressed in the plasma cells from MM patients, and higher PPFIBP1 expression predicts poorer outcomes. PPFPIBP1 enhances chemoresistance of MM cells to the treatment of bortezomib (BTZ), a proteasome inhibitor, and manipulation of PPFPIBP1 can alter chemosensitivity of MM cells to BTZ. Mechanistic studies reveal that PPFPIBP1 directly binds and stabilizes RelA, promotes the cyto-nuclear translocation of RelA, and activates NF-κB signaling pathway. Targeting PPFPIBP1 in a xenograft mouse model of MM prohibits tumor growth and prolongs overall survival of mice. Taken together, our findings suggest that PPFIBP1 is a crucial regulator of chemoresistance to PIs in MM cells, and shed light on developing therapeutic strategies to overcome chemoresistance by targeting PPFIBP1.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yinyin Xu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, No.439 Xuanhua Rd, Chongqing 402160, China.
| |
Collapse
|
11
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
12
|
Manzo P, Giudice V, Napolitano F, De Novellis D, Serio B, Moscato P, Montuori N, Selleri C. Macrophages and Urokinase Plasminogen Activator Receptor System in Multiple Myeloma: Case Series and Literature Review. Int J Mol Sci 2023; 24:10519. [PMID: 37445697 DOI: 10.3390/ijms241310519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The microenvironment plays an essential role in multiple myeloma (MM) development, progression, cell proliferation, survival, immunological escape, and drug resistance. Mesenchymal stromal cells and macrophages release tolerogenic cytokines and favor anti-apoptotic signaling pathway activation, while the urokinase plasminogen activator receptor (uPAR) system contributes to migration through an extracellular matrix. Here, we first summarized the role of macrophages and the uPAR system in MM pathogenesis, and then we reported the potential therapeutic effects of uPAR inhibitors in a case series of primary MM-derived adherent cells. Our preliminary results showed that after uPAR inhibitor treatments, interleukein-6 (mean ± SD, 8734.95 ± 4169.2 pg/mL vs. 359.26 ± 393.8 pg/mL, pre- vs. post-treatment; p = 0.0012) and DKK-1 levels (mean ± SD, 7005.41 ± 6393.4 pg/mL vs. 61.74 ± 55.2 pg/mL, pre- vs. post-treatment; p = 0.0043) in culture medium were almost completely abolished, supporting further investigation of uPAR blockade as a therapeutic strategy for MM treatment. Therefore, uPAR inhibitors could exert both anti-inflammatory and pro-immunosurveillance activity. However, our preliminary results need further validation in additional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Paola Manzo
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples "Federico II", 80138 Naples, Italy
| | - Danilo De Novellis
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Paolo Moscato
- Rheumatology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples "Federico II", 80138 Naples, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
13
|
何 旎, 周 文. [Latest Findings on the Mechanism of the Interaction Between Multiple Myeloma Cells and Bone Marrow Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:475-481. [PMID: 37248571 PMCID: PMC10475439 DOI: 10.12182/20230560207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 05/31/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy of terminally differentiated plasma cells. The mechanisms of the pathogenesis and progression of MM include genetic abnormalities of the MM cells and the interaction between MM cells and bone marrow microenvironment (BMME). MM cells start malignant proliferation in BMME and contribute to the pathogenesis and progression of MM through direct or indirect interactions between cells and the extracellular matrix. Exploring the mechanism of interaction between MM cells and the microenvironment is crucial to improving our understanding of the pathogenesis and progression of MM and early diagnosis and treatment. In addition, the metabolic reprogramming of tumors is one of the key issues of oncology research. Herein, we summarized published findings on the the altered metabolic reprogramming of MM and the characteristics of MM metabolic-microbial interactions in order to gain an in-depth understanding of MM pathogenesis and progression and drug resistance mechanisms, and ultimately to explore for new strategies for MM treatment.
Collapse
Affiliation(s)
- 旎涵 何
- 中南大学基础医学院 肿瘤研究所 (长沙 412000)Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 412000, China
| | - 文 周
- 中南大学基础医学院 肿瘤研究所 (长沙 412000)Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 412000, China
| |
Collapse
|
14
|
Doucet D, Brubaker C, Turner D, Gregory CA. Factors affecting the role of canonical Wnt inhibitor Dickkopf-1 in cancer progression. Front Oncol 2023; 13:1114822. [PMID: 37007131 PMCID: PMC10050559 DOI: 10.3389/fonc.2023.1114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to modulate homeostasis between canonical and non-canonical Wnt pathways and also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor physiology are therefore unpredictable with examples of Dkk-1 serving as either a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a potential treatment for some types of cancer, we questioned whether it is possible to predict the role of Dkk-1 on tumor progression based on the tissue origin of the tumor.MethodsOriginal research articles that described Dkk-1 in terms a tumor suppressor or driver of cancer growth were identified. To determine the association between tumor developmental origin and the role of Dkk-1, a logistic regression was performed. The Cancer Genome Atlas database was interrogated for survival statistics based on tumor Dkk-1 expression.ResultsWe report that Dkk-1 is statistically more likely to serve as a suppressor in tumors arising from the ectoderm (p = 0.0198) or endoderm (p = 0.0334) but more likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155). Survival analyses indicated that in cases where Dkk-1 expression could be stratified, high Dkk-1 expression is usually associated with poor prognosis. This in part may be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its influence on immunomodulatory and angiogenic processes in the tumor stroma.ConclusionDkk-1 has a context-specific dual role as a tumor suppressor or driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors arising from ectoderm and endoderm while the converse is true for mesodermal tumors. Patient survival data indicated high Dkk-1 expression is generally a poor prognostic indicator. These findings provide further support for the importance of Dkk-1 as a therapeutic cancer target in some cases.
Collapse
Affiliation(s)
- Dakota Doucet
- Medical Sciences Program, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Connor Brubaker
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Donald Turner
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
- *Correspondence: Carl A. Gregory,
| |
Collapse
|
15
|
Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24031823. [PMID: 36768145 PMCID: PMC9916119 DOI: 10.3390/ijms24031823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nuclear factor-κB (NF-κB) transcription factors play a key role in the pathogenesis of multiple myeloma (MM). The survival, proliferation and chemoresistance of malignant plasma cells largely rely on the activation of canonical and noncanonical NF-κB pathways. They are triggered by cancer-associated mutations or by the autocrine and paracrine production of cytokines and growth factors as well as direct interaction with cellular and noncellular components of bone marrow microenvironment (BM). In this context, NF-κB also significantly affects the activity of noncancerous cells, including mesenchymal stromal cells (MSCs), which have a critical role in disease progression. Indeed, NF-κB transcription factors are involved in inflammatory signaling that alters the functional properties of these cells to support cancer evolution. Moreover, they act as regulators and/or effectors of pathways involved in the interplay between MSCs and MM cells. The aim of this review is to analyze the role of NF-κB in this hematologic cancer, focusing on NF-κB-dependent mechanisms in tumor cells, MSCs and myeloma-mesenchymal stromal cell crosstalk.
Collapse
|
16
|
Zhang L, Zhou L, Zhang H, Zhang Y, Li L, Xie T, Chen Y, Li X, Ling N, Dai J, Sun X, Liu J, Zhao J, Peng T, Ye M. Development of a DNA Aptamer against Multidrug-Resistant Hepatocellular Carcinoma for In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54656-54664. [PMID: 34779207 DOI: 10.1021/acsami.1c12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer that has high rates of recurrence and mortality. One of the most important factors that lead to treatment failure of HCC is the acquisition of multidrug resistance (MDR). Development of specific ligands for multidrug-resistant HCC will provide useful molecular tools for precise diagnosis and targeted theranostics. Herein, a multidrug-resistant HCC cell (HepG2/MDR)-specific aptamer was developed through Cell-SELEX (systematic evolution of ligands by exponential enrichment) technology. With dissociation constants lying in the nanomolar range, the molecularly designed PS-ZL-7c aptamer showed great selectivity to drug-resistant cancer cells. The in vivo imaging results illustrated that the PS-ZL-7c specifically accumulated in the drug-resistant tumors but not in drug-sensitive tumors and normal tissues, indicating that the PS-ZL-7c aptamer possessed excellent potential as a targeting ligand for precise diagnosis and target theranostics of multidrug-resistant HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Aptamers, Nucleotide/chemical synthesis
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/pharmacology
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/drug therapy
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Development
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Hep G2 Cells
- Humans
- Liver Neoplasms/diagnostic imaging
- Liver Neoplasms/drug therapy
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Optical Imaging
- SELEX Aptamer Technique
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lingli Zhou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yibin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tiantian Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinglei Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaodong Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jing Dai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xing Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|