1
|
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S. Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC. J Pharm Anal 2024; 14:100977. [PMID: 39493309 PMCID: PMC11531627 DOI: 10.1016/j.jpha.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 11/05/2024] Open
Abstract
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of "strengthening body and eliminating toxin", exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible Src homology 2 (SH2) containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Collapse
Affiliation(s)
- Feifei Li
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Youyang Shi
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Yang
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Sheng Liu
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Gordon MJ, Dubois S, Bryant B, Ng S, Conlon K, Miljkovic MD, Waldmann T, Roschewski M. A phase 1 study of interleukin-15 in combination with avelumab in relapsed or refractory T-cell lymphoma. Leuk Lymphoma 2024; 65:1008-1011. [PMID: 38459780 DOI: 10.1080/10428194.2024.2326847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Max J Gordon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bonita Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Samuel Ng
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cartesian therapeutics, Gaithersburg, MD, USA
| | - Thomas Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
3
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
4
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
5
|
Liu M, Jin Q, Wang H, Li Y. Progressive sarcopenia and myosteatosis predict prognosis of advanced HCC patients treated with immune checkpoint inhibitors. Front Immunol 2024; 15:1396927. [PMID: 38690276 PMCID: PMC11058658 DOI: 10.3389/fimmu.2024.1396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Background Immunotherapy stands as a pivotal modality in the therapeutic landscape for the treatment of advanced hepatocellular carcinoma, yet responses vary among patients. This study delves into the potential impact of sarcopenia, myosteatosis and adiposity indicators, as well as their changes during immunotherapy, on treatment response and prognosis in patients with advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Methods In this retrospective analysis, 116 patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors were recruited. Skeletal muscle, intramuscular, subcutaneous, and visceral adipose tissue were assessed by computed tomography at the level of the third lumbar vertebrae before and after 3 months of treatment. Sarcopenia and myosteatosis were evaluated by skeletal muscle index and mean muscle density using predefined threshold values. Patients were stratified based on specific baseline values or median values, along with alterations observed during the treatment course. Overall survival (OS) and progression-free survival (PFS) were compared using the log-rank test and a multifactorial Cox proportional risk model. Results A total of 116 patients were recruited and divided into two cohorts, 81 patients for the training set and 35 patients for the validating set. In the overall cohort, progressive sarcopenia (P=0.021) and progressive myosteatosis (P=0.001) were associated with objective response rates, whereas progressive myosteatosis (P<0.001) was associated with disease control rates. In the training set, baseline sarcopenia, myosteatosis, and subcutaneous and visceral adipose tissue were not significantly associated with PFS and OS. In multivariate analysis adjusting for sex, age, and other factors, progressive sarcopenia(P=0.002) and myosteatosis (P=0.018) remained independent predictors of PFS. Progressive sarcopenia (P=0.005), performance status (P=0.006) and visceral adipose tissue index (P=0.001) were all independent predictors of OS. The predictive models developed in the training set also had good feasibility in the validating set. Conclusion Progressive sarcopenia and myosteatosis are predictors of poor clinical outcomes in patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors, and high baseline visceral adiposity is associated with a poorer survival.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianna Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Huiyan Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
7
|
Tomala J, Cao SD, Spangler JB. Engineering Anticytokine Antibodies for Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:225-234. [PMID: 38166248 DOI: 10.4049/jimmunol.2300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The delicate balance of immune homeostasis is regulated by the interactions between cytokines and their cognate cell surface signaling receptors. There is intensive interest in harnessing cytokines as drugs for diseases such as cancer and autoimmune disorders. However, the multifarious and often contradictory activities of cytokines, coupled with their short serum half-lives, limit clinical performance and result in dangerous toxicities. There is thus growing emphasis on manipulating natural cytokines to enhance their selectivity, safety, and durability through various strategies. One strategy that has gained traction in recent years is the development of anticytokine Abs that not only extend the circulation half-life of cytokines but also specifically bias their immune activities through multilayered molecular mechanisms. Although Abs are notorious for their antagonistic activities, this review focuses on anticytokine Abs that selectively agonize the activity of the target protein. This approach has potential to help realize the clinical promise of cytokine-based therapies.
Collapse
Affiliation(s)
- Jakub Tomala
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shanelle D Cao
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
8
|
Takei K, Kijima T, Okubo N, Kurashina R, Kokubun H, Uematsu T, Betsunoh H, Yashi M, Kamai T. Association between Immune Checkpoint Inhibitor Treatment Outcomes and Body Composition Factors in Metastatic Renal Cell Carcinoma Patients. Cancers (Basel) 2023; 15:5591. [PMID: 38067295 PMCID: PMC10705346 DOI: 10.3390/cancers15235591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic renal cell carcinoma (mRCC); however, validating body composition-related biomarkers for their efficacy remains incomplete. We evaluated the association between body composition-related markers and the prognosis of patients with mRCC who received ICI-based first-line therapies. PATIENTS AND METHODS We retrospectively investigated 60 patients with mRCC who underwent ICI-based therapy as their first-line treatment between 2019 and 2023. Body composition variables, including skeletal muscle, subcutaneous fat, and visceral fat indices, were calculated using baseline computed tomography scans. Sarcopenia was defined according to sex-specific cut-off values of the skeletal mass index. The associations between body composition indices and objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS Patients with sarcopenia had lower ORR and DCR than those without sarcopenia (33.3% vs. 61.1%, p = 0.0436 and 52.4% vs. 94.4%, p = 0.0024, respectively). Patients with sarcopenia had a significantly shorter median PFS (14 months vs. not reached, p = 0.0020) and OS (21 months vs. not reached, p = 0.0023) than patients without sarcopenia did. Sarcopenia was a significant predictor of PFS (hazard ratio [HR], 4.31; 95% confidence interval [CI], 1.65-14.8; p = 0.0018) and OS (HR, 5.44; 95% CI, 1.83-23.4; p = 0.0013) along with poor IMDC risk. No association was found between the subcutaneous, visceral, and total fat indices and the therapeutic effect of ICI-based therapy. CONCLUSIONS Sarcopenia was associated with a lower response and shorter survival rates in patients with mRCC who received first-line ICI-based therapy.
Collapse
Affiliation(s)
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga 321-0293, Tochigi, Japan; (K.T.); (N.O.); (R.K.); (H.K.); (T.U.); (H.B.); (M.Y.); (T.K.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
10
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289 DOI: 10.5483/bmbrep.2023-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 09/22/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
11
|
Sindaco P, Pandey H, Isabelle C, Chakravarti N, Brammer JE, Porcu P, Mishra A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front Immunol 2023; 14:1141208. [PMID: 37153603 PMCID: PMC10157481 DOI: 10.3389/fimmu.2023.1141208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Cytokines are a vital component of the immune system that controls the activation and growth of blood cells. However, chronic overexpression of cytokines can trigger cellular events leading to malignant transformation. The cytokine interleukin-15 (IL-15) is of particular interest, which has been shown to contribute to the development and progression of various hematological malignancies. This review will provide an overview of the impact of the immunopathogenic function of IL-15 by studying its role in cell survival, proliferation, inflammation, and treatment resistance. We will also review therapeutic approaches for inhibiting IL-15 in blood cancers.
Collapse
Affiliation(s)
- Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hritisha Pandey
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colleen Isabelle
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Anjali Mishra,
| |
Collapse
|
12
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|
13
|
Waldmann TA, Waldmann R, Lin JX, Leonard WJ. The implications of IL-15 trans-presentation on the immune response. Adv Immunol 2022; 156:103-132. [PMID: 36410873 DOI: 10.1016/bs.ai.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-15 is a pleiotropic cytokine type I four alpha-helical bundle cytokine that along with IL-2, IL-4, IL-7, IL-9, and IL-21 shares the common cytokine receptor γ chain, γc. IL-15 is vital for the development, survival, and expansion of natural killer cells and for the development of CD8+ memory T cells. Whereas other family γc cytokines signal by directly binding to their target cells, IL-15 is distinctive in that it binds to IL-15Rα, a sushi domain containing binding protein that is expressed on a number of cell types, including monocytes and dendritic cells as well as T cells, and then is trans-presented to responding cells that express IL-2Rβ and γc. This distinctive mechanism for IL-15 relates to its role in signaling in the context of cell-cell interactions and signaling synapses. The actions of IL-15 and ways of manipulating its actions to potential therapeutic benefit are discussed.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|