1
|
Bartoszewska E, Misiąg P, Czapla M, Rakoczy K, Tomecka P, Filipski M, Wawrzyniak-Dzierżek E, Choromańska A. The Role of microRNAs in Lung Cancer: Mechanisms, Diagnostics and Therapeutic Potential. Int J Mol Sci 2025; 26:3736. [PMID: 40332376 PMCID: PMC12027727 DOI: 10.3390/ijms26083736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit oncogenic pathways, while oncogenic miRNAs, known as oncomiRs, promote malignant transformation and tumor growth. These dual roles position miRNAs as critical players in lung cancer biology. Studies in recent years have shown the significant potential of miRNAs as both prognostic and diagnostic biomarkers. Circulating miRNAs in plasma or sputum demonstrate specificity and sensitivity in detecting early-stage lung cancer. Liquid biopsy-based miRNA panels distinguish malignant from benign lesions, and specific miRNA expression patterns correlate with disease progression, response to treatment, and overall survival. Therapeutically, miRNAs hold promise for targeted interventions. Strategies such as miRNA replacement therapy using mimics for tumor-suppressive miRNAs and inhibition of oncomiRs with antagomiRs or miRNA sponges have shown preclinical success. Key miRNAs, including the let-7 family, miR-34a, and miR-21, are under investigation for their therapeutic potential. It should be emphasized that delivery difficulties, side effects, and limited stability of therapeutic miRNA molecules remain obstacles to their clinical use. This article examines the roles of miRNAs in lung cancer by indicating their mechanisms of action, diagnostic significance, and therapeutic potential. By addressing current limitations, miRNA-based approaches could revolutionize lung cancer management, offering precise, personalized, and minimally invasive solutions for diagnosis and treatment.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Elżbieta Wawrzyniak-Dzierżek
- Department and Clinic of Bone Marrow Transplantation, Oncology and Pediatric Hematology, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Karaca Dogan B, Salman Yilmaz S, Izgi GN, Ozen M. Circulating non-coding RNAs as a tool for liquid biopsy in solid tumors. Epigenomics 2025; 17:335-358. [PMID: 40040488 PMCID: PMC11970797 DOI: 10.1080/17501911.2025.2467021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Solid tumors are significant causes of global mortality and morbidity. Recent research has primarily concentrated on finding pathology-specific molecules that can be acquired non-invasively and that can change as the disease progresses or in response to treatment. The focus of research has moved to RNA molecules that are either freely circulating in body fluids or bundled in microvesicles and exosomes because of their great stability in challenging environments, ease of accessibility, and changes in level in response to therapy. In this context, there are many non-coding RNAs that can be used for this purpose in liquid biopsies. Out of these, microRNAs have been extensively studied. However, there has been an increase of interest in studying long non-coding RNAs, piwi interacting RNAs, circular RNAs, and other small non-coding RNAs. In this article, an overview of the most researched circulating non-coding RNAs in solid tumors will be reviewed, along with a discussion of the significance of these molecules for early diagnosis, prognosis, and therapeutic targets. The publications analyzed were extracted from the PubMed database between 2008 and June 2024.
Collapse
Affiliation(s)
- Beyza Karaca Dogan
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Seda Salman Yilmaz
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Medical Services and Techniques Medical Monitoring Techniques Pr. Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gizem Nur Izgi
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Sanchez V, Harel S, Sa’ub AK, Mayaki D, Hussain SNA. miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation. Cells 2025; 14:75. [PMID: 39851503 PMCID: PMC11763389 DOI: 10.3390/cells14020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Angiopoietin-1 (Ang-1) and its receptor Tie-2 promote vascular integrity and angiogenesis. MicroRNAs (miRNAs) are involved in the regulation of many cellular functions, including endothelial cell (EC) survival, proliferation, and differentiation. Several reports indicate that these effects of miRNAs on EC functions are mediated through the modulation of angiogenesis factor signaling including that of vascular endothelial growth factor (VEGF). To date, very little is known about the roles played by miRNAs in the signaling and angiogenesis promoted by the Ang-1-Tie-2 receptor axis. Our high-throughput screening of miRNAs regulated by Ang-1 exposure in human umbilical vein endothelial cells (HUVECs) has identified miR-1233-3p as a mature miRNA whose cellular levels are significantly downregulated in response to Ang-1 exposure. The expression of miR-1233-3p in these cells is also downregulated by other angiogenesis factors including VEGF, fibroblast growth factor 2 (FGF-2), transforming growth factor β (TGFβ), and angiopoietin-2 (Ang-2). The overexpression of miR-1233-3p in HUVECs using specific mimics significantly attenuated cell survival, migration, and capillary-like tube formation, and promoted apoptosis. Moreover, miR-1233-3p overexpression resulted in reversal of the anti-apoptotic, pro-migration, and pro-differentiation effects of Ang-1. Biotinylated miRNA pull-down assays showed that p53 and DNA damage-regulated 1 (PDRG1) is a direct target of miR-1233-3p in HUVECs. The exposure of HUVECs to Ang-1, angiopoietin-2 (Ang-2), fibroblast growth factor 2 (FGF2), vascular endothelial growth factor (VEGF), or transforming growth factor β (TGFβ) triggers the regulation of PDRG1 expression. This study highlights that miR-1233-3p exerts inhibitory effects on Ang-1-induced survival, migration, and the differentiation of cultured ECs.
Collapse
Affiliation(s)
- Veronica Sanchez
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada (A.K.S.); (D.M.)
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Montreal, QC H4A 3J1, Canada
- Department of Critical Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sharon Harel
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada (A.K.S.); (D.M.)
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Montreal, QC H4A 3J1, Canada
- Department of Critical Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Anas Khalid Sa’ub
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada (A.K.S.); (D.M.)
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Montreal, QC H4A 3J1, Canada
- Department of Critical Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Dominique Mayaki
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada (A.K.S.); (D.M.)
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Montreal, QC H4A 3J1, Canada
- Department of Critical Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Sabah N. A. Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada (A.K.S.); (D.M.)
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Montreal, QC H4A 3J1, Canada
- Department of Critical Care, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
5
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
6
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
7
|
Zhang Y, Huang Q, Shen Y, Ren H, Wu C, Zhou L. Non-canonical RNA-binding protein ANXA11 regulates microRNA resorting into small extracellular vesicles to mediate cisplatin resistance. FASEB J 2024; 38:e70048. [PMID: 39259536 DOI: 10.1096/fj.202400841r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The sensitivity of laryngeal squamous cell carcinoma (LSCC) to chemotherapy shows large heterogeneity. The role of miRNA in small extracellular vesicles (sEV) in chemotherapy resistance is under investigation. However, the regulation and sorting mechanism of sEV miRNAs remains unclear. In this study, small RNA sequencing was used to explore miRNA expression profiles in sEV of LSCC after cisplatin stimulation; RNA pull-down, mass spectrometry, and EMSA were used to clarify the binding of candidate RNA-binding protein (RBP) and candidate miRNA. Immunostaining and microRNA fluorescence in situ hybridization were performed to identify how candidate RBP affects miRNA stability and nuclear/cytoplasmic distribution. In vivo experiments were performed to verify the biological functions and response to cisplatin of candidate RBP. We found that cisplatin stimulation induced increased expression of miR-148a-3p and sEV sorting. ANXA11 binds to miR-148a-3p in a sequence-specific manner. ANXA11 inhibits tumor cell proliferation and drug resistance by binding to and retaining miR-148a-3p. Cisplatin stimulation reduced ANXA11 expression and promoted miR-148a-3p efflux through sEV pathways. ANXA11 overexpression reduced in vivo tumor proliferation and cisplatin-resistance. Taken together, ANXA11 mediates cisplatin resistance through sEV miRNA resorting. Mechanically, ANXA11 binds to miR-148a-3p in a sequence-specific manner to regulate its resorting and thus influences tumor proliferation and chemoresistance.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yujie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Henglei Ren
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Murakami K, Matsunaga T, Matsuzaki T, Naruke Y, Miyauchi S, Kobayashi S, Yoneyama S, Sakai Y, Ichijo T, Hirata TI, Kimura A, Chiba Y, Matsuda KI, Yamada S, Hikono H. Serum bta-miRNA-375 as a potential biomarker for the early diagnosis of enzootic bovine leukosis. PLoS One 2024; 19:e0302868. [PMID: 38723001 PMCID: PMC11081263 DOI: 10.1371/journal.pone.0302868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
To identify a biomarker for the early diagnosis of enzootic bovine leukosis (EBL) caused by bovine leukemia virus (BLV), we investigated the expression of a microRNA, bta-miR-375, in cattle serum. Using quantitative reverse-transcriptase PCR analysis, we measured bta-miR-375 levels in 27 samples from cattle with EBL (EBL cattle), 45 samples from animals infected with BLV but showing no clinical signs (NS cattle), and 30 samples from cattle uninfected with BLV (BLV negative cattle). In this study, we also compared the kinetics of bta-miR-375 with those of the conventional biomarkers of proviral load (PVL), lactate dehydrogenase (LDH), and thymidine kinase (TK) from the no-clinical-sign phase until EBL onset in three BLV-infected Japanese black (JB) cattle. Bta-miR-375 expression was higher in NS cattle than in BLV negative cattle (P < 0.05) and greater in EBL cattle than in BLV negative and NS cattle (P < 0.0001 for both comparisons). Receiver operating characteristic curves demonstrated that bta-miR-375 levels distinguished EBL cattle from NS cattle with high sensitivity and specificity. In NS cattle, bta-miR-375 expression was increased as early as at 2 months before EBL onset-earlier than the expression of PVL, TK, or LDH isoenzymes 2 and 3. These results suggest that serum miR-375 is a promising biomarker for the early diagnosis of EBL.
Collapse
Affiliation(s)
- Kenji Murakami
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Towa Matsunaga
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Kokubunji, Tokyo, Japan
| | - Takashi Matsuzaki
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Yuta Naruke
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, Chiyoda, Tokyo, Japan
| | - Sonoko Miyauchi
- Animal Diagnostic Laboratory, Ehime Prefecture, Toon, Ehime, Japan
| | - Sota Kobayashi
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Syuji Yoneyama
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Yusuke Sakai
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Toshihiro Ichijo
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Toh-ichi Hirata
- Faculty of Agriculture, Field Science Center, Iwate University, Shizukuishi, Iwate, Japan
| | - Atsushi Kimura
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Yuzumi Chiba
- Iwate Central Livestock Hygiene Center, Morioka, Iwate, Japan
| | - Kei-ich Matsuda
- Livestock Medicine Training Center, Miyagi Prefecture Agricultural Mutual Aid Association, Oohira, Miyagi, Japan
| | - Shinji Yamada
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Hirokazu Hikono
- Faculty of Life and Environmental Sciences, Department of Animal Sciences, Teikyo University of Science, Adachi, Tokyo, Japan
| |
Collapse
|
9
|
Pandya P, Al-Qasrawi DS, Klinge S, Justilien V. Extracellular vesicles in non-small cell lung cancer stemness and clinical applications. Front Immunol 2024; 15:1369356. [PMID: 38765006 PMCID: PMC11099288 DOI: 10.3389/fimmu.2024.1369356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancers, the leading cause of cancer associated deaths in the US and worldwide. Within NSCLC tumors, there is a subpopulation of cancer cells termed cancer stem cells (CSCs) which exhibit stem-like properties that drive NSCLC progression, metastasis, relapse, and therapeutic resistance. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells that carry vital messages for short- and long-range intercellular communication. Numerous studies have implicated NSCLC CSC-derived EVs in the factors associated with NSCLC lethality. In this review, we have discussed mechanisms of EV-directed cross-talk between CSCs and cells of the tumor microenvironment that promote stemness, tumor progression and metastasis in NSCLC. The mechanistic studies discussed herein have provided insights for developing novel NSCLC diagnostic and prognostic biomarkers and strategies to therapeutically target the NSCLC CSC niche.
Collapse
Affiliation(s)
- Prita Pandya
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Skyeler Klinge
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
10
|
El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, Viranaicken W, Krejbich-Trotot P. Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines (Basel) 2024; 12:280. [PMID: 38543914 PMCID: PMC10974137 DOI: 10.3390/vaccines12030280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Exosomes are small subtypes of extracellular vesicles (EVs) naturally released by different types of cells into their environment. Their physiological roles appear to be multiple, yet many aspects of their biological activities remain to be understood. These vesicles can transport and deliver a variety of cargoes and may serve as unconventional secretory vesicles. Thus, they play a crucial role as important vectors for intercellular communication and the maintenance of homeostasis. Exosome production and content can vary under several stresses or modifications in the cell microenvironment, influencing cellular responses and stimulating immunity. During infectious processes, exosomes are described as double-edged swords, displaying both beneficial and detrimental effects. Owing to their tractability, the analysis of EVs from multiple biofluids has become a booming tool for monitoring various pathologies, from infectious to cancerous origins. In this review, we present an overview of exosome features and discuss their particular and ambiguous functions in infectious contexts. We then focus on their properties as diagnostic or therapeutic tools. In this regard, we explore the capacity of exosomes to vectorize immunogenic viral antigens and their function in mounting adaptive immune responses. As exosomes provide interesting platforms for antigen presentation, we further review the available data on exosome engineering, which enables peptides of interest to be exposed at their surface. In the light of all these data, exosomes are emerging as promising avenues for vaccine strategies.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Alexandre Mokhtari
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Morgane Krejbich
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Alisé Lagrave
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- National Reference Center for Arboviruses, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Ugo Hirigoyen
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| |
Collapse
|
11
|
Tai MC, Bantis LE, Parhy G, Kato T, Tanaka I, Chow CW, Fujimoto J, Behrens C, Hase T, Kawaguchi K, Fahrmann JF, Ostrin EJ, Yokoi K, Chen-Yoshikawa TF, Hasegawa Y, Hanash SM, Wistuba II, Taguchi A. Circulating microRNA Panel for Prediction of Recurrence and Survival in Early-Stage Lung Adenocarcinoma. Int J Mol Sci 2024; 25:2331. [PMID: 38397007 PMCID: PMC10888571 DOI: 10.3390/ijms25042331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Early-stage lung adenocarcinoma (LUAD) patients remain at substantial risk for recurrence and disease-related death, highlighting the unmet need of biomarkers for the assessment and identification of those in an early stage who would likely benefit from adjuvant chemotherapy. To identify circulating miRNAs useful for predicting recurrence in early-stage LUAD, we performed miRNA microarray analysis with pools of pretreatment plasma samples from patients with stage I LUAD who developed recurrence or remained recurrence-free during the follow-up period. Subsequent validation in 85 patients with stage I LUAD resulted in the development of a circulating miRNA panel comprising miR-23a-3p, miR-320c, and miR-125b-5p and yielding an area under the curve (AUC) of 0.776 in predicting recurrence. Furthermore, the three-miRNA panel yielded an AUC of 0.804, with a sensitivity of 45.8% at 95% specificity in the independent test set of 57 stage I and II LUAD patients. The miRNA panel score was a significant and independent factor for predicting disease-free survival (p < 0.001, hazard ratio [HR] = 1.64, 95% confidence interval [CI] = 1.51-4.22) and overall survival (p = 0.001, HR = 1.51, 95% CI = 1.17-1.94). This circulating miRNA panel is a useful noninvasive tool to stratify early-stage LUAD patients and determine an appropriate treatment plan with maximal efficacy.
Collapse
Affiliation(s)
- Mei-Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Leonidas E. Bantis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gargy Parhy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Taketo Kato
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (S.M.H.)
| | - Edwin J. Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Toyofumi F. Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
- National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (S.M.H.)
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya 464-8681, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan
| |
Collapse
|
12
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
13
|
Shaterabadi D, Zamani Sani M, Rahdan F, Taghizadeh M, Rafiee M, Dorosti N, Dianatinasab A, Taheri-Anganeh M, Asadi P, Khatami SH, Movahedpour A. MicroRNA biosensors in lung cancer. Clin Chim Acta 2024; 552:117676. [PMID: 38007056 DOI: 10.1016/j.cca.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.
Collapse
Affiliation(s)
- Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
14
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
15
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
16
|
Saikia BJ, Bhardwaj J, Paul S, Sharma S, Neog A, Paul SR, Binukumar BK. Understanding the Roles and Regulation of Mitochondrial microRNAs (MitomiRs) in Neurodegenerative Diseases: Current Status and Advances. Mech Ageing Dev 2023:111838. [PMID: 37329989 DOI: 10.1016/j.mad.2023.111838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21 - 22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.
Collapse
Affiliation(s)
- Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Srishti Sharma
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - Swaraj Ranjan Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
17
|
Kemper M, Krekeler C, Menck K, Lenz G, Evers G, Schulze AB, Bleckmann A. Liquid Biopsies in Lung Cancer. Cancers (Basel) 2023; 15:1430. [PMID: 36900221 PMCID: PMC10000706 DOI: 10.3390/cancers15051430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
As lung cancer has the highest cancer-specific mortality rates worldwide, there is an urgent need for new therapeutic and diagnostic approaches to detect early-stage tumors and to monitor their response to the therapy. In addition to the well-established tissue biopsy analysis, liquid-biopsy-based assays may evolve as an important diagnostic tool. The analysis of circulating tumor DNA (ctDNA) is the most established method, followed by other methods such as the analysis of circulating tumor cells (CTCs), microRNAs (miRNAs), and extracellular vesicles (EVs). Both PCR- and NGS-based assays are used for the mutational assessment of lung cancer, including the most frequent driver mutations. However, ctDNA analysis might also play a role in monitoring the efficacy of immunotherapy and its recent accomplishments in the landscape of state-of-the-art lung cancer therapy. Despite the promising aspects of liquid-biopsy-based assays, there are some limitations regarding their sensitivity (risk of false-negative results) and specificity (interpretation of false-positive results). Hence, further studies are needed to evaluate the usefulness of liquid biopsies for lung cancer. Liquid-biopsy-based assays might be integrated into the diagnostic guidelines for lung cancer as a tool to complement conventional tissue sampling.
Collapse
Affiliation(s)
- Marcel Kemper
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Evers
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Arik Bernard Schulze
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
18
|
Longo V, Aloi N, Lo Presti E, Fiannaca A, Longo A, Adamo G, Urso A, Meraviglia S, Bongiovanni A, Cibella F, Colombo P. Impact of the flame retardant 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front Immunol 2023; 13:1069207. [PMID: 36685495 PMCID: PMC9852912 DOI: 10.3389/fimmu.2022.1069207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most widespread environmental brominated flame-retardant congeners which has also been detected in animal and human tissues. Several studies have reported the effects of PBDEs on different health issues, including neurobehavioral and developmental disorders, reproductive health, and alterations of thyroid function. Much less is known about its immunotoxicity. The aim of our study was to investigate the effects that treatment of THP-1 macrophage-like cells with PBDE-47 could have on the content of small extracellular vesicles' (sEVs) microRNA (miRNA) cargo and their downstream effects on bystander macrophages. To achieve this, we purified sEVs from PBDE-47 treated M(LPS) THP-1 macrophage-like cells (sEVsPBDE+LPS) by means of ultra-centrifugation and characterized their miRNA cargo by microarray analysis detecting the modulation of 18 miRNAs. Furthermore, resting THP-1 derived M(0) macrophage-like cells were cultured with sEVsPBDE+LPS, showing that the treatment reshaped the miRNA profiles of 12 intracellular miRNAs. This dataset was studied in silico, identifying the biological pathways affected by these target genes. This analysis identified 12 pathways all involved in the maturation and polarization of macrophages. Therefore, to evaluate whether sEVsPBDE+LPS can have some immunomodulatory activity, naïve M(0) THP-1 macrophage-like cells cultured with purified sEVsPBDE+LPS were studied for IL-6, TNF-α and TGF-β mRNAs expression and immune stained with the HLA-DR, CD80, CCR7, CD38 and CD209 antigens and analyzed by flow cytometry. This analysis showed that the PBDE-47 treatment does not induce the expression of specific M1 and M2 cytokine markers of differentiation and may have impaired the ability to make immunological synapses and present antigens, down-regulating the expression of HLA-DR and CD209 antigens. Overall, our study supports the model that perturbation of miRNA cargo by PBDE-47 treatment contributes to the rewiring of cellular regulatory pathways capable of inducing perturbation of differentiation markers on naïve resting M(0) THP-1 macrophage-like cells.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Antonino Fiannaca
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Alfonso Urso
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy,*Correspondence: Paolo Colombo,
| |
Collapse
|
19
|
Pallares-Rusiñol A, Bernuz M, Moura SL, Fernández-Senac C, Rossi R, Martí M, Pividori MI. Advances in exosome analysis. Adv Clin Chem 2022; 112:69-117. [PMID: 36642486 DOI: 10.1016/bs.acc.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is growing demand for novel biomarkers that detect early stage disease as well as monitor clinical management and therapeutic strategies. Exosome analysis could provide the next advance in attaining that goal. Exosomes are membrane encapsulated biologic nanometric-sized particles of endocytic origin which are released by all cell types. Unfortunately, exosomes are exceptionally challenging to characterize with current technologies. Exosomes are between 30 and 200nm in diameter, a size that makes them out of the sensitivity range to most cell-oriented sorting or analysis platforms, i.e., traditional flow cytometers. The most common methods for targeting exosomes to date typically involve purification followed by the characterization and the specific determination of their cargo. The whole procedure is time consuming, requiring thus skilled personnel as well as laboratory facilities and benchtop instrumentation. The most relevant methodology for exosome isolation, characterization and quantification is addressed in this chapter, including the most up-to-date approaches to explore the potential usefulness of exosomes as biomarkers in liquid biopsies and in advanced nanomedicine.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Bernuz
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silio Lima Moura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carolina Fernández-Senac
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosanna Rossi
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
20
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|
21
|
Fan WJ, Liu D, Pan LY, Wang WY, Ding YL, Zhang YY, Ye RX, Zhou Y, An SB, Xiao WF. Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol 2022; 10:949690. [PMID: 35959489 PMCID: PMC9362859 DOI: 10.3389/fcell.2022.949690] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) has remained a prevalent public health problem worldwide over the past decades. OA is a global challenge because its specific pathogenesis is unclear, and no effective disease-modifying drugs are currently available. Exosomes are small and single-membrane vesicles secreted via the formation of endocytic vesicles and multivesicular bodies (MVBs), which are eventually released when MVBs fuse with the plasma membrane. Exosomes contain various integral surface proteins derived from cells, intercellular proteins, DNAs, RNAs, amino acids, and metabolites. By transferring complex constituents and promoting macrophages to generate chemokines and proinflammatory cytokines, exosomes function in pathophysiological processes in OA, including local inflammation, cartilage calcification and degradation of osteoarthritic joints. Exosomes are also detected in synovial fluid and plasma, and their levels continuously change with OA progression. Thus, exosomes, specifically exosomal miRNAs and lncRNAs, potentially represent multicomponent diagnostic biomarkers for OA. Exosomes derived from various types of mesenchymal stem cells and other cell or tissue types affect angiogenesis, inflammation, and bone remodeling. These exosomes exhibit promising capabilities to restore OA cartilage, attenuate inflammation, and balance cartilage matrix formation and degradation, thus demonstrating therapeutic potential in OA. In combination with biocompatible and highly adhesive materials, such as hydrogels and cryogels, exosomes may facilitate cartilage tissue engineering therapies for OA. Based on numerous recent studies, we summarized the latent mechanisms and clinical value of exosomes in OA in this review.
Collapse
Affiliation(s)
- Wen-Jin Fan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Yuan Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Yang Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi-Lan Ding
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue-Yao Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Xi Ye
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Sen-Bo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| |
Collapse
|
22
|
Song M, Li Y, Chen Z, Zhang J, Yang L, Zhang F, Song C, Miao M, Chang W, Shi H. The Long Non-Coding RNA FAM222A-AS1 Negatively Modulates MiR-Let-7f to Promote Colorectal Cancer Progression. Front Oncol 2022; 12:764621. [PMID: 35646686 PMCID: PMC9133450 DOI: 10.3389/fonc.2022.764621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that lncRNAs are potential biomarkers and key regulators of tumor development and progression. The present study aimed to screen abnormal expression lncRNAs and investigate the mechanisms underlying the function in the progression of colorectal cancer (CRC). Potential CRC prognosis-associated dysregulated lncRNAs were screened and identified using bioinformatics analysis. Loss/gain-of-function experiments were performed to detect the biological roles of FAM222A-AS1 in CRC cell phenotypes in vitro and in vivo. The potential microRNAs that interact with FAM222A-AS1 were identified using online tools and were verified using qRT-PCR and luciferase reporter assay. The expression of FAM222A-AS1 is significantly upregulated in CRC tumor samples and cell lines. CRC patients with elevated FAM222A-AS1 expression in the tumor samples had unfavorable overall survival and disease-free survival. Silencing FAM222A-AS1 expression significantly inhibited CRC cell proliferation, migration, and invasion both in vitro and in vivo. Furthermore, FAM222A-AS1 was mainly distributed in the cytoplasm. It may directly bound to miR-let-7f and inhibit its expression and upregulate MYH9. In summary, FAM222A-AS1, as a novel oncogene in CRC, may promote the CRC progression by inhibiting miR-let-7f/MYH9 axis. The FAM222A-AS1/miR-let-7f/MYH9 signaling pathway may be a novel valuable target for inhibiting CRC.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ye Li
- Department of Digestive Endoscopy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Fan Zhang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, Henan Key Laboratory of Tumor Epidemiology College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingyong Miao
- Department of Biochemistry, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Wenjun Chang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| |
Collapse
|
23
|
Xie S, Zhang Q, Jiang L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. MEMBRANES 2022; 12:498. [PMID: 35629824 PMCID: PMC9144303 DOI: 10.3390/membranes12050498] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles released by donor cells that can be taken up by recipient cells. The study of EVs has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and disease. Exosomes, with an average diameter of ≈100 nanometers, are a subset of EVs. Different molecular families have been shown to be involved in the formation of exosomes and subsequent secretion of exosomes, which largely leads to the complexity of the form, structure and function of exosomes. In addition, because of their low immunogenicity and ability to transfer a variety of bioactive components to recipient cells, exosomes are regarded as effective drug delivery systems. This review summarizes the known mechanisms of exosomes biogenesis, cargo loading, exosomes release and bioengineering, which is of great importance for further exploration into the clinical applications of EVs.
Collapse
Affiliation(s)
- Shenmin Xie
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (S.X.); (Q.Z.)
| |
Collapse
|
24
|
Li X, Li X, Zhang B, He B. The Role of Cancer Stem Cell-Derived Exosomes in Cancer Progression. Stem Cells Int 2022; 2022:9133658. [PMID: 35571530 PMCID: PMC9095362 DOI: 10.1155/2022/9133658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small portion of tumor cells with self-renewal ability in tumor tissues and are a key factor in tumor resistance, recurrence, and metastasis. CSCs produce a large number of exosomes through various mechanisms, such as paracrine and autocrine signaling. Studies have shown that CSC-derived exosomes (CSC-Exos) carry a variety of gene mutations and specific epigenetic modifications indicative of unique cell phenotypes and metabolic pathways, enabling exchange of information in the tumor microenvironment (TME) to promote tumor invasion and metastasis. In addition, CSC-Exos carry a variety of metabolites, especially proteins and miRNAs, which can activate signaling pathways to further promote tumor development. CSC-Exos have dual effects on cancer development. Due to advances in liquid biopsy technology for early cancer detection, CSCs-Exos may become an important tool for early cancer diagnosis and therapeutic drug delivery. In this article, we will review how CSC-Exos exert the above effects based on the above two aspects and explore their mechanism of action.
Collapse
Affiliation(s)
- Xueting Li
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
25
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
26
|
Li W, Zhang S, Wang D, Zhang H, Shi Q, Zhang Y, Wang M, Ding Z, Xu S, Gao B, Yan M. Exosomes Immunity Strategy: A Novel Approach for Ameliorating Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:822149. [PMID: 35223870 PMCID: PMC8870130 DOI: 10.3389/fcell.2021.822149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), which is one of the most severe medical and social problems globally, has affected nearly 80% of the population worldwide, and intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that happens to be the primary trigger of LBP. The pathology of IDD is based on the impaired homeostasis of catabolism and anabolism in the extracellular matrix (ECM), uncontrolled activation of immunologic cascades, dysfunction, and loss of nucleus pulposus (NP) cells in addition to dynamic cellular and biochemical alterations in the microenvironment of intervertebral disc (IVD). Currently, the main therapeutic approach regarding IDD is surgical intervention, but it could not considerably cure IDD. Exosomes, extracellular vesicles with a diameter of 30–150 nm, are secreted by various kinds of cell types like stem cells, tumor cells, immune cells, and endothelial cells; the lipid bilayer of the exosomes protects them from ribonuclease degradation and helps improve their biological efficiency in recipient cells. Increasing lines of evidence have reported the promising applications of exosomes in immunological diseases, and regarded exosomes as a potential therapeutic source for IDD. This review focuses on clarifying novel therapies based on exosomes derived from different cell sources and the essential roles of exosomes in regulating IDD, especially the immunologic strategy.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Huan Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuyuan Zhang
- Department of Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mo Wang
- The First Brigade of Basic Medical College, Air Force Military Medical University, Xi’an, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Songjie Xu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| |
Collapse
|
27
|
Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 2022; 477:815-832. [PMID: 35059925 DOI: 10.1007/s11010-021-04326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Dinesh Kaul
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Anil Sachdev
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
28
|
Gottlin EB, Campa MJ, Gandhi R, Bushey RT, Herndon nd JE, Patz Jr. EF. Prognostic significance of a complement factor H autoantibody in early stage NSCLC. Cancer Biomark 2022; 34:385-392. [DOI: 10.3233/cbm-210355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND: Biomarkers that predict which patients with early stage NSCLC will develop recurrent disease would be of clinical value. We previously discovered that an autoantibody to a complement regulatory protein, complement factor H (CFH), is associated with early stage, non-recurrent NSCLC, and hypothesized that the anti-CFH antibody inhibits metastasis. OBJECTIVES: The primary objective of this study was to evaluate the anti-CFH antibody as a prognostic marker for recurrence in stage I NSCLC. A secondary objective was to determine if changes in antibody serum level one year after resection were associated with recurrence. METHODS: Anti-CFH antibody was measured in the sera of 157 stage I NSCLC patients designated as a prognostic cohort: 61% whose cancers did not recur, and 39% whose cancers recurred following resection. Impact of anti-CFH antibody positivity on time to recurrence was assessed using a competing risk analysis. Anti-CFH antibody levels were measured before resection and one year after resection in an independent temporal cohort of 47 antibody-positive stage I NSCLC patients: 60% whose cancers did not recur and 40% whose cancers recurred following resection. The non-recurrent and recurrent groups were compared with respect to the one-year percent change in antibody level. RESULTS: In the prognostic cohort, the 60-month cumulative incidence of recurrence was 40% and 22% among antibody negative and positive patients, respectively; this difference was significant (Gray’s test, P= 0.0425). In the temporal cohort, the antibody persisted in the serum at one year post-tumor resection. The change in antibody levels over the one year period was not statistically different between the non-recurrent and recurrent groups (Wilcoxon two-sample test, P= 0.4670). CONCLUSIONS: The anti-CFH autoantibody may be a useful prognostic marker signifying non-recurrence in early stage NSCLC patients. However, change in the level of this antibody in antibody-positive patients one year after resection had no association with recurrence.
Collapse
Affiliation(s)
| | - Michael J. Campa
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rikesh Gandhi
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Orthopaedic Surgery, Penn Medicine, Philadelphia, PA, USA
| | - Ryan T. Bushey
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - James E. Herndon nd
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Edward F. Patz Jr.
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
Cosandey J, Hamza E, Gerber V, Ramseyer A, Leeb T, Jagannathan V, Blaszczyk K, Unger L. Diagnostic and prognostic potential of eight whole blood microRNAs for equine sarcoid disease. PLoS One 2021; 16:e0261076. [PMID: 34941894 PMCID: PMC8699634 DOI: 10.1371/journal.pone.0261076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been proposed as biomarkers for equine sarcoids, the most prevalent equine skin tumors globally. This study served to validate the diagnostic and prognostic potential of whole blood microRNAs identified in a previous study for long-term equine sarcoid diagnosis and outcome prediction. Based on findings of a clinical examination at the age of 3 years and a follow-up following a further 5–12 years, 32 Franches-Montagnes and 45 Swiss Warmblood horses were assigned to four groups: horses with regression (n = 19), progression (n = 9), new occurrences of sarcoid lesions (n = 19) and tumor-free control horses (n = 30). The expression levels for eight microRNAs (eca-miR-127, eca-miR-432, eca-miR-24, eca-miR-125a-5p, eca-miR-134, eca-miR-379, eca-miR-381, eca-miR-382) were analyzed through reverse transcription quantitative polymerase chain reaction in whole blood samples collected on initial examination. Associations of sex, breed, diagnosis, and prognosis with microRNA expression levels were examined using multivariable analysis of variance. Sex and breed influenced the expression level of five and two microRNAs, respectively. Eca-miR-127 allowed discrimination between sarcoid-affected and tumor-free horses. No variation in microRNA expression was found when comparing horses with sarcoid regression and progression. Expression levels of eca-miR-125a-5p and eca-miR-432 varied in male horses that developed sarcoids throughout the study period in comparison to male control horses. While none of the investigated miRNAs was validated for predicting the prognosis of sarcoid regression / progression within young horses with this condition, two miRNAs demonstrated potential to predict if young male (though not female) tumor-free horse can develop sarcoids within the following years. Sex- and breed- biased miRNAs exist within the equine species and have an impact on biomarker discovery.
Collapse
Affiliation(s)
- Jeanne Cosandey
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
- * E-mail:
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Alessandra Ramseyer
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Klaudia Blaszczyk
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
30
|
Prigol AN, Rode MP, Silva AH, Cisilotto J, Creczynski-Pasa TB. Pro-angiogenic effect of PC-3 exosomes in endothelial cells in vitro. Cell Signal 2021; 87:110126. [PMID: 34474113 DOI: 10.1016/j.cellsig.2021.110126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
The progression to a castration-resistant prostate cancer can occur after treatment with androgen deprivation therapy, resulting in poor prognosis and ineffective therapy response. Hormone dependence transition has been associated with increased tumor vascularization. Considering that exosomes are important components in communication between tumor cells and the microenvironment, we examined the angiogenic potential of exosomes released from Pca cell lines with distinctive profiles of androgen response through exosomes isolation, microscopy and uptake, functional assays follow up by microarray, RT-qPCR and bioinformatics analysis. HUVEC cells treated with PC-3 exosomes (androgen independent) showed increased invasion and tube formation ability. In order to identify microRNAs (miRNAs) related to the angiogenic response, the characterization of exosomal miRNA profile was performed. As result we suggest that the miR-27a-3p could be involved in the pro-angiogenic effect of PC-3 exosomes.
Collapse
Affiliation(s)
- Anne Natalie Prigol
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Michele Patrícia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil.
| |
Collapse
|
31
|
Yang D, Li Z, Gao G, Li X, Liao Z, Wang Y, Li W, Zhang Y, Liu W. Combined Analysis of Surface Protein Profile and microRNA Expression Profile of Exosomes Derived from Brain Microvascular Endothelial Cells in Early Cerebral Ischemia. ACS OMEGA 2021; 6:22410-22421. [PMID: 34497930 PMCID: PMC8412952 DOI: 10.1021/acsomega.1c03248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Endothelial cell damage is an important pathological basis for the deterioration of acute ischemia stroke. Our previous studies have been exploring the mechanism of blood-brain barrier (BBB) endothelial cell injury in the early stage of cerebral ischemia. Exosomes act as an important intercellular player in neurovascular communication. However, the characteristic of exosomes derived from BBB endothelial cells in early ischemic stroke is poorly understood. We exposed cultured brain microvascular endothelial cells (bEnd.3) to 3 h oxygen glucose deprivation (OGD) to mimic early cerebral ischemia in vitro and compared miRome and surface protein contents of exosomes derived from bEnd.3 cells by miRNA sequencing and the proximity barcoding assay (PBA). A total of 346 differentially miRNA (159 upregulated and 187 downregulated) were identified via miRNA-Seq in bEnd.3 cells after exposure to OGD for 3 h. Moreover, Gene Ontology (GO) and KEGG pathway analyses showed that cell proliferation- and angiogenesis-associated miRNAs were significantly affected. The abnormal changes in top eight miRNAs were further verified by a quantitative polymerase chain reaction (qPCR). PBA experiments showed that the numbers of exosomes carrying the following proteins increased significantly under ischemia, including bFGF, CD146, EPHA2, ABCB5, and ITGB2. These proteins were related to angiogenesis, cell proliferation, and cell inflammation. The network analysis combining PBA data with miRNA-Seq data showed that 79 miRNAs were related to 24 membrane proteins and predicted that there were surface proteins associated with a variety of miRNA molecules, such as ITGA9, XIAP, ADAM1, ITGA2, ITGA3, PDPN, and ITGB1. Meanwhile, there were miRNAs related to various surface proteins including miR-410-3p, miR-378b, and miR-1960. Taken together, our data demonstrated for the first time the changes of exosomal miRNAs and surface protein profiles derived from ischemic microvascular endothelial cells, which may provide new therapeutic targets for BBB protection in ischemic stroke.
Collapse
Affiliation(s)
- Dexin Yang
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zongyang Li
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Guoqing Gao
- Department
of General Medicine, The Central Hospital
of Wulanchabu City, Wulanchabu 012000, China
| | - Xiaofeng Li
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zijun Liao
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yachao Wang
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Weiping Li
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yuan Zhang
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- Department
of Pathophysiology, Baotou Medical College, Baotou 014060, China
| | - Wenlan Liu
- Department
of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People’s Hospital/The First
Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- The
Central Laboratory, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
32
|
Liu Y, Xia Y, Smollar J, Mao W, Wan Y. The roles of small extracellular vesicles in lung cancer: Molecular pathology, mechanisms, diagnostics, and therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188539. [PMID: 33892051 DOI: 10.1016/j.bbcan.2021.188539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Small extracellular vesicles (sEVs) are submicron-sized, lipid-bilayer-enclosed particles that are released from cells. A variety of tissue-specific molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively encapsulated into sEVs and delivered to nearby and distant recipient cells. Incontestable and growing evidence shows the important biological roles and the clinical relevance of sEVs in tumors. In particular, recent studies validate sEVs can be used for early tumor diagnostics, staging, and treatment monitoring. Moreover, sEVs have been used as drug delivery nanocarriers, cancer vaccines, and antigen conferrers. While still in its infancy, the field of sEV-based fundamental and translational studies has been rapidly advancing. This review comprehensively examines the latest sEV-related studies in lung cancers, encompassing extracellular vesicles and their roles in lung cancer pathophysiology, diagnostics, and therapeutics. The state-of-the-art technologies for sEV isolation, downstream molecular analyses, and sEV-based therapies indicate their potency as tools for understanding the pathology and promising clinical management of lung cancers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jillian Smollar
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| |
Collapse
|
33
|
Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ, Marofi F, Nikoo M, Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12:297. [PMID: 34020704 PMCID: PMC8138094 DOI: 10.1186/s13287-021-02378-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30100nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | | | - Judi Januadi Endjun
- Medical Faculty, UPN Veteran, Jakarta, Indonesia.,Gatot Soebroto Indonesia Army Hospital, Jakarta, Indonesia
| | | | | | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
35
|
Feng Y, Liu X, Han Y, Chen M, Zhang L, Hu Y, Chen L, Chen G, Li N. Rotundic Acid Regulates the Effects of Let-7f-5p on Caco2 Cell Proliferation. Anticancer Agents Med Chem 2021; 21:902-909. [PMID: 32748760 DOI: 10.2174/1871520620999200730165829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Nowadays, the interaction between natural products and microRNAs provides a promising field for exploring the chemopreventive agents for various cancers. As a member of microRNAs, the expression of let-7f-5p is universally downregulated in Colorectal Cancer (CRC). The present study aimed to uncover the function of let-7f-5p in the proliferation of human colon cancer cell line Caco2 and explored chemopreventive agents from natural resources that can prevent the development of CRC. METHODS Herein, Caco2 cells were transfected with let-7f-5p mimic and inhibitor to manipulate let-7f-5p levels, and the expression of let-7f-5p was performed by RT-qPCR. Next, we determined how let-7f-5p regulates Caco2 cell proliferation by using MTT, wound-healing, cell cycle, and colony formation assays. Besides, to further understand the effect of let-7f-5p, we evaluated the protein level of AMER3 and SLC9A9 by using western blotting assays. RESULTS The results showed a suppressive function of let-7f-5p on Caco2 cell proliferation and then put forward a triterpenoid (Rotundic Acid, RA) which significant antagonized the effect of cell proliferation, restitution after wounding, and colony formation caused by let-7f-5p. Moreover, the western blot results further indicated that the inhibitory effect of RA might be due to its suppressive role in let-7f-5p-targeted AMER3 and SLC9A9 regulation. CONCLUSION Our validation study results confirmed that let-7f-5p was a potent tumor suppressor gene of Caco2 cell proliferation, and RA showed as a regulator of the effect of let-7f-5p on cell proliferation and then could be a potential chemopreventive agent for CRC treatment.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Xinran Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Mantian Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Lin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuling Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Liya Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Key Laboratory of Computational Chemistry- Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
36
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
37
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
38
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
39
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Jia Y, Zhao J, Yang J, Shao J, Cai Z. miR-301 regulates the SIRT1/SOX2 pathway via CPEB1 in the breast cancer progression. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:13-26. [PMID: 34377766 PMCID: PMC8313741 DOI: 10.1016/j.omto.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer, the most common malignant tumor in women, has become a worldwide burden for family and society. MicroRNAs (miRNAs or miRs) are recognized as critical mediators of cancer-related processes, since they have the ability to coordinately suppress multiple target genes. In this study, we aim to find out specific miRNAs involved in the progression of breast cancer and explore the underlying molecular mechanism. Bioinformatics analysis suggested miR-301 as a differentially overexpressed miRNA in breast cancer, which was confirmed by expression determination. Functional assays were employed to explore the effect of miR-301 and its downstream effectors cytoplasmic polyadenylation element-binding protein 1 (CPEB1), SIRT1, and SOX2 on malignant phenotypes of breast cancer. The interaction among these factors was explained using luciferase and RNA immunoprecipitation (RIP) assays. In addition, the in vivo impact of miR-301 on breast cancer was assessed by cellular tumorigenicity in nude mice. We found that miR-301 overexpression restricted CPEB1 level and further promoted cell proliferation, metastasis, and cell cycle progression and impeded apoptosis. Moreover, CPEB1 regulated breast cancer development by mediating the SIRT1/SOX2 pathway. Further, miR-301 overexpression accelerated tumor formation in nude mice. Our results indicate that miR-301 overexpression accelerates the progression of breast cancer through the CPEB1/SIRT1/SOX2 axis.
Collapse
Affiliation(s)
- Yanjing Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jie Zhao
- Department of Nursing, North Branch of Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinjie Yang
- Shanghai MCC Hospital, Shanghai 201900, PR China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
41
|
Mohammadi R, Hosseini SA, Noruzi S, Ebrahimzadeh A, Sahebkar A. Diagnostic and Therapeutic Applications of Exosome Nanovesicles in Lung Cancer: State-of-The-Art. Anticancer Agents Med Chem 2021; 22:83-100. [PMID: 33645488 DOI: 10.2174/1871520621666210301085318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is a malignant disease with a frequency of various morbidity, mortality, and poor prognosis in patients that the conventional therapeutic approaches are not efficient sufficiently. Recently, with the discovery of exosomes, researchers have examined new approaches in the development, diagnosis, treatment, and drug delivery of various cancer, such as lung cancer, and display various its potential. Investigation of exosome-derived lung cancer cells contents and preparation of their exhaustive profile by advanced technics such as labeling exosome with nanoparticle and types of mass spectroscopy methods will assist researchers for take advantage of the specific properties of exosomes. Moreover, scientists will present encouraging ways for the treatment of lung cancer with loaded of drugs, proteins, microRNA, and siRNA in specific antigen targeted exosomes. This manuscript will include brief details on the role of exosomes as a novel prognostic biomarker (by the content of lipid, surface and internal protein, miRNAs, and LnRNAs) and therapeutic agent (as vaccine and targeted drug delivery) in lung cancer.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Seyede A Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Somaye Noruzi
- Department of Biotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ailin Ebrahimzadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd. Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
42
|
He X, Park S, Chen Y, Lee H. Extracellular Vesicle-Associated miRNAs as a Biomarker for Lung Cancer in Liquid Biopsy. Front Mol Biosci 2021; 8:630718. [PMID: 33718435 PMCID: PMC7943919 DOI: 10.3389/fmolb.2021.630718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are cell-derived membranous vesicles that are secreted into biofluids. Emerging evidence suggests that EVs play an essential role in the pathogenesis of many diseases by transferring proteins, genetic material, and small signaling molecules between cells. Among these molecules, microRNAs (miRNAs), a type of small noncoding RNA, are one of the most important signals and are involved in various biological processes. Lung cancer is one of the leading causes of cancer-related deaths worldwide. Early diagnosis of lung cancer may help to reduce mortality and increase the 5 years survival rate and thereby reduce the associated socioeconomic burden. In the past, EV-miRNAs have been recognized as biomarkers of several cancers to assist in diagnosis or prognosis. In this review, we discuss recent findings and clinical practice for EV-miRNAs of lung cancer in several biofluids, including blood, bronchoalveolar lavage fluid (BALF), and pleural lavage.
Collapse
Affiliation(s)
- Xue He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
43
|
Amiri A, Pourhanifeh MH, Mirzaei HR, Nahand JS, Moghoofei M, Sahebnasagh R, Mirzaei H, Hamblin MR. Exosomes and Lung Cancer: Roles in Pathophysiology, Diagnosis and Therapeutic Applications. Curr Med Chem 2021; 28:308-328. [PMID: 32013817 DOI: 10.2174/0929867327666200204141952] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
Abstract
Lung cancer is a malignancy with a high morbidity and mortality rate, and affected patients have low survival and poor prognosis. The therapeutic approaches for the treatment of this cancer, including radiotherapy and chemotherapy, are not particularly effective partly due to late diagnosis. Therefore, the search for new diagnostic and prognostic tools is a critical issue. Novel biomarkers, such as exosomes, could be considered as potential diagnostic tools for malignancies, particularly lung cancer. Exosomes are nanovesicles, which are associated with different physiological and pathological conditions. It has been shown that these particles are released from many cells, such as cancer cells, immune cells and to some degree normal cells. Exosomes could alter the behavior of target cells through intercellular transfer of their cargo (e.g. DNA, mRNA, long non-coding RNAs, microRNAs and proteins). Thus, these vehicles may play pivotal roles in various physiological and pathological conditions. The current insights into lung cancer pathogenesis suggest that exosomes are key players in the pathogenesis of this cancer. Hence, these nanovesicles and their cargos could be used as new diagnostic, prognostic and therapeutic biomarkers in the treatment of lung cancer. Besides the diagnostic roles of exosomes, their use as drug delivery systems and as cancer vaccines is under investigation. The present review summarizes the current information on the diagnostic and pathogenic functions of exosomes in lung cancer.
Collapse
Affiliation(s)
- Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, United States
| |
Collapse
|
44
|
Othumpangat S, Lindsley WG, Beezhold DH, Kashon ML, Burrell CN, Mubareka S, Noti JD. Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons. Pathogens 2021; 10:pathogens10020149. [PMID: 33540650 PMCID: PMC7912959 DOI: 10.3390/pathogens10020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression.
Collapse
Affiliation(s)
- Sreekumar Othumpangat
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
- Correspondence: ; Tel.: +1-304-285-5839
| | - William G. Lindsley
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| | - Donald H. Beezhold
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| | - Michael L. Kashon
- Department of Biostatistics, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Carmen N. Burrell
- Department of Emergency Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Family Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Samira Mubareka
- Department of Microbiology, Division of Infectious Diseases, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - John D. Noti
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| |
Collapse
|
45
|
Chen GY, Cheng JCH, Chen YF, Yang JCH, Hsu FM. Circulating Exosomal Integrin β3 Is Associated with Intracranial Failure and Survival in Lung Cancer Patients Receiving Cranial Irradiation for Brain Metastases: A Prospective Observational Study. Cancers (Basel) 2021; 13:380. [PMID: 33498505 PMCID: PMC7864205 DOI: 10.3390/cancers13030380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Brain metastasis (BM) is a major problem in patients with cancer. Exosomes or extracellular vesicles (EV) and integrins contribute to the development of BM, and exosomal integrins have been shown to determine organotropic metastasis. We hypothesized that circulating EV integrins are able to influence the failure patterns and outcomes in patients treated for BM. We prospectively enrolled 75 lung cancer patients with BM who received whole brain radiotherapy (WBRT). We isolated and quantified their circulating EV integrins, and analyzed the association of EV integrins with clinical factors, survival, and intracranial/extracranial failure. Circulating EV integrin levels were independent of age, sex, histology, number of BM, or graded prognostic assessment score. Age, histology, and graded prognostic assessment score correlated with survival. Patients with higher levels of circulating EV integrin β3 had worse overall survival (hazard ratio: 1.15 per 1 ng/mL increase; p = 0.04) following WBRT. Multivariate regression analysis also showed a higher cumulative incidence of intracranial failure (subdistribution hazard ratio: 1.216 per 1 ng/mL increase; p = 0.037). In conclusion, circulating EV integrin β3 levels correlated with survival and intracranial control of patients with lung cancer after WBRT for BM. This supports that EV integrin β3 mediates a brain-tropic metastasis pattern, and may serve as a novel prognostic biomarker for BM.
Collapse
Affiliation(s)
- Guann-Yiing Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan;
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan;
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Division of Medical Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| |
Collapse
|
46
|
Zhong Y, Ding X, Bian Y, Wang J, Zhou W, Wang X, Li P, Shen Y, Wang JJ, Li J, Zhang C, Wang C. Discovery and validation of extracellular vesicle-associated miRNAs as noninvasive detection biomarkers for early-stage non-small-cell lung cancer. Mol Oncol 2021; 15:2439-2452. [PMID: 33340250 PMCID: PMC8410569 DOI: 10.1002/1878-0261.12889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
miRNAs in circulating extracellular vesicles (EVs) are promising biomarkers for cancer. However, their diagnostic ability for early‐stage non‐small‐cell lung cancer (NSCLC) is not well known. In this study, the circulating EV miRNAs profiling was initially performed in 36 untreated NSCLC patients and 36 healthy controls by TaqMan Low Density Array (TLDA). Subsequently, we performed quantitative reverse‐transcription PCR assay (RT‐qPCR) validation in several independent cohorts that included 159 NSCLC patients, 120 age/sex‐matched healthy controls and 31 benign nodule patients enrolled from three different clinical centres. In addition, 38 cases of NSCLC were analysed before and after surgery. We demonstrated that miR‐520c‐3p and miR‐1274b were significantly and steadily increased in NSCLC patients in comparison with healthy controls and benign nodule patients (P < 0.001) and decreased markedly after tumour resection (P < 0.001). The areas under the curve (AUCs) of the ROC curve of the two‐miRNA panel were 0.857 (95% CI, 0813–0.901; P < 0.0001) and 0.845 (95% CI, 0.793–0.896; P < 0.0001) for NSCLC and NSCLC stage I, respectively. Furthermore, the panel was able to differentiate NSCLC from benign nodules with an AUC of 0.823 (95% CI, 0.730–0.915; P < 0.0001). Furthermore, logistic regression analysis revealed the two‐miRNA panel as an independent risk factor for NSCLC (OR = 16.128, P < 0.0001). In conclusion, miR‐520c‐3p and miR‐1274b have biomarker potential for early diagnosis of NSCLC in multiple centres.
Collapse
Affiliation(s)
- Yujie Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Xiaoyu Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Yuying Bian
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Jing Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China
| | - Xiangdong Wang
- Department of Laboratory Medicine, the Affiliated Chest Hospital of Nanjing Medical School, China
| | - Pumin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Yi Shen
- Department of Thoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, China
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Medicine, Nanjing University, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing University, China
| |
Collapse
|
47
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
48
|
Manso J, Censi S, Mian C. Epigenetic in medullary thyroid cancer: the role of microRNA in tumorigenesis and prognosis. Curr Opin Oncol 2021; 33:9-15. [PMID: 33093335 DOI: 10.1097/cco.0000000000000692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW MicroRNAs emerged as pivotal regulators of cell differentiation, growth, and cell death, suggesting their implication in tumorigenesis and prognosis of cancer. In the last decades, knowledge about the alterations of microRNAs in medullary thyroid cancer (MTC) is increasing. In this review, we try to summarize the most relevant findings regarding microRNA dysregulation in MTC. RECENT FINDINGS A literature analysis was performed in MEDLINE for studies published up to August 2020. Comprehensively, at least 27 different microRNAs have been investigated in MTC showing evidence for overexpression or underexpression in comparison with normal thyroid tissue samples, healthy blood controls, or primary tumor site or hereditary form of MTC. We highlight the evidence in favor of a possible use of microRNAs for diagnosis, prognosis and treatment in MTC and their role in MTC pathogenesis. SUMMARY This review reveals the emerging complexity of the molecular genetic and epigenetic panorama in MTC. Further studies are needed to confirm and refine the findings on microRNA expression pattern in MTC. Thus, in the future, microRNA analysis could enter in clinical practice and may pave the way to new risk-stratification tools and novel therapeutic approaches for MTC.
Collapse
Affiliation(s)
- Jacopo Manso
- Department of Medicine (DIMED), Endocrinology Unit, Padua University, Padua, Italy
| | | | | |
Collapse
|
49
|
Censi S, Bertazza L, Piva I, Manso J, Benna C, Iacobone M, Mondin A, Plebani M, Faggian D, Galuppini F, Pennelli G, Barollo S, Mian C. Serum miR-375 for Diagnostic and Prognostic Purposes in Medullary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2021; 12:647369. [PMID: 33854485 PMCID: PMC8039521 DOI: 10.3389/fendo.2021.647369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Having previously demonstrated that tissue miR-375 expression in medullary thyroid carcinoma (MTC) tissues is linked to prognosis, the aim of this study was to assess the diagnostic and prognostic value of circulating miR-375 levels in MTC patients. METHODS A series of 68 patients with MTC was retrospectively retrieved and assessed in terms of their clinicopathological characteristics. MiR-375 levels were measured in all patients' presurgical blood samples. Both serum and tissue levels were tested prior to surgery in a subgroup of 57 patients. Serum miR-375 levels were also measured in serum from 49 patients with non-C-cell thyroid nodular diseases (non-CTN), 14 patients with pheochromocytoma, and 19 healthy controls. RESULTS Circulating miR-375 levels were 101 times higher in the serum of patients with MTC than in all other patients and controls, with no overlap (P < 0.01). No correlation emerged between serum and tissue miR-375 levels. Serum miR-375 levels were higher in MTC patients with N0 than in those with N1 disease (P = 0.01), and also in patients who were biochemically cured than in those who were not (P = 0.02). In the whole series of patients and controls, calcitonin (CT) and serum miR-375 levels were correlated at diagnosis (R2 = 0.40, P < 0.01), but in a U-shaped manner: a positive correlation was found with low CT levels, then the correlation turns negative as CT rises (in MTC patients). A negative correlation was indeed found in MTC patients between serum miR-375 and CT (R2 = -0.10, P = 0.01). On ROC curve analysis, a cut-off of 2.1 for serum miR-375 proved capable of distinguishing between MTC patients and the other patients and controls with a 92.6% sensitivity and a 97.6% specificity (AUC: 0.978, P < 0.01). CONCLUSIONS Serum miR-375 levels can serve as a marker in the diagnosis of MTC, with a remarkable specificity. Serum miR-375 also proved a novel marker of prognosis in this disease. Further in vitro experiments to corroborate our results are currently underway.
Collapse
Affiliation(s)
- Simona Censi
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Ilaria Piva
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Jacopo Manso
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Clara Benna
- Endocrine Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
| | - Alberto Mondin
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Mario Plebani
- Laboratory Medicine, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Diego Faggian
- Laboratory Medicine, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Francesca Galuppini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gianmaria Pennelli
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- *Correspondence: Caterina Mian,
| |
Collapse
|
50
|
Chaniad P, Trakunran K, Geater SL, Keeratichananont W, Thongsuksai P, Raungrut P. Serum miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer. PLoS One 2020; 15:e0241593. [PMID: 33125430 PMCID: PMC7598461 DOI: 10.1371/journal.pone.0241593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor-promoting cytokines are a cause of tumor progression; therefore, identifying key regulatory microRNAs (miRNAs) for controlling their production is important. The aim of this study is to identify promising miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer (NSCLC). We identified circulating miRNAs from 16 published miRNA profiles. The selected miRNAs were validated in the serum of 32 NSCLC patients and compared with 33 patients with other lung diseases and 23 healthy persons using quantitative real-time PCR. The cytokine concentration was investigated using the enzyme-linked immunoassay in the same sample set, with clinical validation of the miRNAs. The correlation between miRNA expression and cytokine concentration was evaluated by Spearman’s rank correlation. For consistent direction, one up-regulated miRNA (miR-145) was found in four studies, and seven miRNAs were reported in three studies. One miRNA (miR-20a) and four miRNAs (miR-25-3p, miR-223, let-7f, and miR-20b) were reported in six and five studies. However, their expression was inconsistent. In the clinical validation, serum miR-145 was significantly down-regulated, whereas serum miR-20a was significantly up-regulated in NSCLC, compared with controls. Regarding serum cytokine, all cytokines [vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and transforming growth factor β (TGF-β)], except tumor necrosis factor-α (TNF-α), had a higher level in NSCLC patients than controls. In addition, we found a moderate correlation between the TGF-β concentration and miR-20a (r = −0.537, p = 0.002) and miR-223 (r = 0.428, p = 0.015) and a weak correlation between the VEGF concentration with miR-20a (r = 0.376, p = 0.037) and miR-223 (r = −0.355, p = 0.046). MiR-145 and miR-20a are potential biomarkers for NSCLC. In addition, the regulation of tumor-promoting cytokine, through miR-20a and miR-223, might be a new therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Pichitpon Chaniad
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Keson Trakunran
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarayut Lucien Geater
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Warangkana Keeratichananont
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Pathology Department, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pritsana Raungrut
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- * E-mail:
| |
Collapse
|