1
|
Chang W, Wang M, Zhu W, Dai T, Han Z, Sun N, Wang D. Effect of allyl isothiocyanate on 4-HNE induced glucocorticoid resistance in COPD and the underlying mechanism. Heliyon 2024; 10:e37275. [PMID: 39296102 PMCID: PMC11408060 DOI: 10.1016/j.heliyon.2024.e37275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition, and its clinical management primarily targets bronchodilation and anti-inflammatory therapy. However, these treatments often fail to directly address the progression of COPD, particularly its associated glucocorticoid (GC) resistance. This study elucidates the mechanisms underlying GC resistance in COPD and explores the therapeutic potential of allyl isothiocyanate (AITC) in modulating MRP1 transport. We assessed the levels of the oxidative stress product 4-HNE, HDAC2 protein, inflammatory markers, and pulmonary function indices using animal and cell models of GC-resistant COPD. The cascade effects of these factors were investigated through interventions involving AITC, protein inhibitors, and dexamethasone (DEX). Cigarette smoke-induced oxidative stress in COPD leads to the accumulation of the lipid peroxidation product 4-HNE, which impairs HDAC2 protein activity and diminishes GC-mediated anti-inflammatory sensitivity due to disrupted histone deacetylation. AITC regulates MRP1, facilitating the effective efflux of 4-HNE from cells, thereby reducing HDAC2 protein degradation and restoring dexamethasone sensitivity in COPD. These findings elucidate the mechanism of smoking-induced GC resistance in COPD and highlight MRP1 as a potential therapeutic target, as well as the enormous potential of AITC for combined GC therapy in COPD, promoting their clinical applications.
Collapse
Affiliation(s)
- WenLi Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - MengWen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - WenTao Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - TingTing Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - ZhiLi Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - NianXia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - DianLei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
| |
Collapse
|
2
|
Chen Y, Huang J, Wang K, Li X, Rui Y, Fan W. Research on evolution process of full-layer incision of skin tissue under different laser incidences. JOURNAL OF BIOPHOTONICS 2024; 17:e202300284. [PMID: 37700597 DOI: 10.1002/jbio.202300284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Considering difficulties of achieving vertical incidence of beam in different positions of skin, it is significant to study potential effects of incidence angles of laser on incisions. Surgical platform with a 1064 nm continuous fiber laser was established. Incident angle was adopted and real-time temperature fluctuations in laser operating area could be monitored. The rats were treated with laser at day 0 and day 3 after incision modeling, and H&E, Masson, Sirius Red, and Immuno-histochemical staining and enzyme-linked immunosorbent assay were adopted at day 3, 7, 14 to analyze the performance of healing. Laser with energy density of 67.54 J/mm2 can effectively accelerate wound healing in vivo, in which a laser with incident angle around 60° can effectively avoid scar hyperplasia. Therefore, the use of low energy laser with a small deflection angle has a good clinical application prospect in promoting wound healing.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaopeng Li
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Southeast University, Zhongda Hospital, Nanjing, China
| | - Wentao Fan
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
4
|
Tousif MI, Nazir M, Riaz N, Saleem M, Tauseef S, Azam SM, Arfan Yawer M, Zengin G. Terpenoids as Human Neutrophil Elastase (HNE) Inhibitors: A Comprehensive Review of Natural Anti-inflammatory Isoprenoids. Chembiochem 2023; 24:e202300346. [PMID: 37642535 DOI: 10.1002/cbic.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Human neutrophil elastase (HNE) is an enzyme that plays a key role in the body's inflammatory response. It has been linked to several diseases such as chronic obstructive pulmonary disease (COPD), emphysema, and cystic fibrosis. As potential treatments for these diseases, HNE inhibitors are of great interest. Metabolites derived from plants, particularly terpenoids such as β-caryophyllene found in black pepper and other plants, and geraniol present in several essential oils, are recognized as significant sources of inhibitors for HNE. Because of their ability to inhibit HNE, terpenoids are considered promising candidates for developing novel therapies to treat inflammatory conditions such as COPD and emphysema. Furthermore, nature can serve as an excellent designer, and it may offer a safer drug candidate for inhibiting HNE production and activity in the future. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were searched to get relevant and up-to-date literature on terpenoids as human neutrophil elastase inhibitors. This review focuses on the isolation, chemical diversity, and inhibition of human neutrophil elastase (HNE) of various terpenoids reported from natural sources up to 2022. A total of 251 compounds from various terpenoids classes have been reported. Further, it also provides a summary of HNE inhibitors and includes a thorough discussion on the structure-activity relationship.
Collapse
Affiliation(s)
- Muhammad Imran Tousif
- Department of Chemistry Division of Science and Technology, University of Education, 54770, Lahore, Pakistan
| | - Mamona Nazir
- Department of Chemistry Government Sadiq College, Women University Bahawalpur, 63100-, Bahawalpur, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad Campus the Islamia University of Bahawalpur, 63100-, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad Campus the Islamia University of Bahawalpur, 63100-, Bahawalpur, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research International Center for Chemical and Biological Sciences, University of Karachi, 75270, Karachi, Pakistan
| | - Sheikh Muhammad Azam
- Department of Zoology Division of Science and Technology, University of Education Lahore, 75270, Lahore, Punjab, Pakistan
| | - Mirza Arfan Yawer
- Department of Chemistry Division of Science and Technology, University of Education, 54770, Lahore, Pakistan
| | - Gokhan Zengin
- Department of Biology Science Faculty, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
5
|
Hoffman E, Urbano L, Martin A, Mahendran R, Patel A, Murnane D, Page C, Dailey LA, Forbes B, Hutter V. Profiling alveolar macrophage responses to inhaled compounds using in vitro high content image analysis. Toxicol Appl Pharmacol 2023; 474:116608. [PMID: 37385476 DOI: 10.1016/j.taap.2023.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
One of the main hurdles in the development of new inhaled medicines is the frequent observation of foamy macrophage (FM) responses in non-clinical studies in experimental animals, which raises safety concerns and hinders progress into clinical trials. We have investigated the potential of a novel multi-parameter high content image analysis (HCIA) assay as an in vitro safety screening tool to predict drug induced FM. Rat (NR8383) and human U937-derived alveolar macrophages were exposed in vitro to a panel of model compounds with different biological activity, including inhaled bronchodilators, inhaled corticosteroids (ICS), phospholipidosis inducers and proapoptotic agents. An HCIA was utilized to produce drug-induced cell response profiles based on individual cell health, morphology and lipid content parameters. The profiles of both rat and human macrophage cell lines differentiated between cell responses to marketed inhaled drugs and compounds known to induce phospholipidosis and apoptosis. Hierarchical clustering of the aggregated data allowed identification of distinct cell profiles in response to exposure to phospholipidosis and apoptosis inducers. Additionally, in NR8383 cell responses formed two distinct clusters, associated with increased vacuolation with or without lipid accumulation. U937 cells presented a similar trend but appeared less sensitive to drug exposure and presented a narrower range of responses. These results indicate that our multi-parameter HCIA assay is suitable to generate characteristic drug-induced macrophage response profiles, thus enabling differentiation of foamy macrophage phenotypes associated with phospholipidosis and apoptosis. This approach shows great potential as pre-clinical in vitro screening tool for safety assessment of candidate inhaled medicines.
Collapse
Affiliation(s)
- Ewelina Hoffman
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Laura Urbano
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Abigail Martin
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rhamiya Mahendran
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Aateka Patel
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Darragh Murnane
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, UZA II, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | - Victoria Hutter
- Centre for Topical Drug Delivery and Toxicology, School of Life and medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
6
|
Celli B, Vestbo J. Simplifying pharmacotherapy for patients with COPD: a viewpoint. Eur Respir J 2023; 62:2300115. [PMID: 37591551 DOI: 10.1183/13993003.00115-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Bartolome Celli
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, and the North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Silva LLSD, Barbosa JAS, João JMLG, Fukuzaki S, Camargo LDN, Dos Santos TM, Campos ECD, Costa AS, Saraiva-Romanholo BM, Bezerra SKM, Lopes FTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Effects of a Peptide Derived from the Primary Sequence of a Kallikrein Inhibitor Isolated from Bauhinia bauhinioides (pep-BbKI) in an Asthma-COPD Overlap (ACO) Model. Int J Mol Sci 2023; 24:11261. [PMID: 37511021 PMCID: PMC10379932 DOI: 10.3390/ijms241411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) There are several patients with asthma-COPD overlap (ACO). A peptide derived from the primary sequence of a kallikrein inhibitor isolated from Bauhinia bauhinioides (pep-BbKI) has potent anti-inflammatory and antioxidant effects. Purpose: To investigate the effects of pep-BbKI treatment in an ACO model and compare them with those of corticosteroids. (2) BALB/c mice were divided into groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep-BbKI (treated with inhibitor), ACO-DX (dexamethasone treatment), ACO-DX-pep-BbKI (both treatments), and SAL-pep-BbKI (saline group treated with inhibitor). We evaluated: hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), exhaled nitric oxide (eNO), IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-γ, TNF-α, MMP-9, MMP-12, TGF-β, collagen fibers, iNOS, eNO, linear mean intercept (Lm), and NF-κB in airways (AW) and alveolar septa (AS). (3) ACO-pep-BbKI reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, neutrophils, IL-5, IL-10, IL-17, IFN-γ, TNF-α, MMP-12 (AW), collagen fibers, iNOS (AW), and eNO (p > 0.05). ACO-DX reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, total cells and differentials, IL-1β(AS), IL-5 (AS), IL-6 (AS), IL-10 (AS), IL-13 (AS), IFN-γ, MMP-12 (AS), TGF-β (AS), collagen fibers (AW), iNOS, and eNO (p > 0.05). SAL was similar to SAL-pep-BbKI for all comparisons (p > 0.05). (4) Pep-BbKI was similar to dexamethasone in reducing the majority of alterations of this ACO model.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | | | | | | | - Arthur Silva Costa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | | |
Collapse
|
8
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
10
|
Wildung M, Herr C, Riedel D, Wiedwald C, Moiseenko A, Ramírez F, Tasena H, Heimerl M, Alevra M, Movsisyan N, Schuldt M, Volceanov-Hahn L, Provoost S, Nöthe-Menchen T, Urrego D, Freytag B, Wallmeier J, Beisswenger C, Bals R, van den Berge M, Timens W, Hiemstra PS, Brandsma CA, Maes T, Andreas S, Heijink IH, Pardo LA, Lizé M. miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. Int J Mol Sci 2022; 23:ijms23147749. [PMID: 35887096 PMCID: PMC9320302 DOI: 10.3390/ijms23147749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.
Collapse
Affiliation(s)
- Merit Wildung
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany;
| | - Cornelia Wiedwald
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Alena Moiseenko
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Fidel Ramírez
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Hataitip Tasena
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Maren Heimerl
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, Goettingen University, 37073 Goettingen, Germany;
| | - Naira Movsisyan
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Maike Schuldt
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Larisa Volceanov-Hahn
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Diana Urrego
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Bernard Freytag
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Julia Wallmeier
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Christoph Beisswenger
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2333 Leiden, The Netherlands;
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Stefan Andreas
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Muriel Lizé
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
11
|
Chen Y, Gong X, Zhou M, Xu Y, Fan F, Xiao J, Liu L, Shi K, Li S, Zhuo J, Chen Z, Yu X, Fan L, Chen Y, Wu L, Lin L. Treatment with JianPiYiFei II granules for patients with moderate to very severe chronic obstructive pulmonary disease: A 52-week randomised, double-blinded, placebo-controlled, multicentre trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154057. [PMID: 35349835 DOI: 10.1016/j.phymed.2022.154057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Complementary and alternative therapy is widely used to treat chronic obstructive pulmonary disease (COPD). A Chinese herbal medicine, JianPiYiFei (JPYF) II granules, have been shown to improve COPD patients' quality of life, however long-term effectiveness has not been examined. PURPOSE To investigate whether long-term treatment with JPYF II granules is effective and safe for patients with stable, moderate to very severe COPD. STUDY DESIGN AND METHODS A multicentre, randomised, double-blinded, placebo-controlled trial was conducted. Eligible participants from six hospitals were randomly assigned 1:1 to receive either JPYF II granules or placebo for 52 weeks. The primary outcome was the change in St. George's Respiratory Questionnaire (SGRQ) score during treatment. Secondary outcomes included the frequency of acute exacerbations during treatment, COPD Assessment Test (CAT), 6-minute walking test (6MWT), lung function, body mass index, airflow obstruction, dyspnoea, exercise capacity (BODE) index, and peripheral capillary oxygen saturation (SpO2) at the end of treatment. RESULTS A total of 276 patients (138 in each group) were included in the analysis. JPYF II granules led to a significantly greater reduction in SGRQ score (-7.33 points, 95% CI -10.59 to -4.07; p < 0.0001) which reflects improved quality of life. JPYF II granules improved CAT (-3.49 points, 95% CI -5.12 to -1.86; p < 0.0001) and 6MWT (45.61 metres, 95% CI 20.26 to 70.95; p = 0.0005), compared with placebo. Acute exacerbations were less frequent with JPYF II granules than with placebo (0.87 vs. 1.34 events per patient; p = 0.0043). There were no significant differences between the groups in lung function, BODE index and SpO2. JPYF II granules were well tolerated and no significant adverse effects were noted. CONCLUSIONS Long-term treatment with JPYF II granules is effective in moderate to very severe COPD, improving quality of life and exercise capacity, decreasing the risk of acute exacerbation, and relieving symptoms.
Collapse
Affiliation(s)
- Yuanbin Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao Gong
- Department of Biostatistics, Guangzhou Jeeyor Medical Research Co., Ltd, Guangzhou, China
| | - Mingjuan Zhou
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yinji Xu
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Feiting Fan
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingmin Xiao
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Liangji Liu
- Department of Respiratory Medicine, Jiangxi Provincial Hospital of Chinese Medicine, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kehua Shi
- Department of Respiratory Medicine, Shanghai Hospital of Chinese Medicine, Shanghai, China
| | - Suyun Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinsheng Zhuo
- Department of Respiratory Medicine, Hainan Provincial Hospital of Chinese Medicine, Haikou, China
| | - Zhibin Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xuhua Yu
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Long Fan
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaolong Chen
- Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lei Wu
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lin Lin
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Jasemi SV, Khazaei H, Momtaz S, Farzaei MH, Echeverría J. Natural products in the treatment of pulmonary emphysema: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153988. [PMID: 35217434 DOI: 10.1016/j.phymed.2022.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a class of lung diseases including chronic bronchitis, asthma, and emphysema. Long-time smoking is considered the main reason for developing emphysema. Emphysema can be defined as damage to the walls of the air sacs (alveoli) of the lung. It has been demonstrated that natural compounds with antioxidant and anti-inflammatory effects can effectively improve or protect the lung against this disease. This paper is dedicated to systematically review the effective natural compounds in the treatment of pulmonary emphysema. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating pulmonary emphysema STUDY DESIGN AND METHODS: A systematic and comprehensive review was done based on Scopus, PubMed, and Cochrane Library databases were searched using the "emphysema", "plant", "herb", and "phytochemical" keywords. Non-English, review, and repetitive articles were excluded from the study. Search results were included in the Prisma diagram. RESULTS From a total of 1285 results, finally, 22 articles were included in the present study. The results show that some herbs such as Scutellaria baicalensis Georgi and Monascus adlay and some phytochemicals such as gallic acid and quercetin and blackboard tree indole alkaloids affect more factors in improving the lung emphysema. Also, some natural compounds such as marijuana smoke and humic acid also play an aggravating role in this disease. It also seems that some of the medicinal plants such as PM014 herbal formula, pomegranate juice and açaí berry sometimes have side effects that are inconsistent with their therapeutic effects. CONCLUSION We concluded that natural compounds can effectively improve pulmonary emphysema due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. However, additional studies are suggested to prove efficacy and side effects.
Collapse
Affiliation(s)
- Sayed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Suehiro CL, Souza NTS, da Silva EB, Cruz MM, Laia RM, de Oliveira Santos S, Santana-Novelli FPR, de Castro TBP, Lopes FD, Pinheiro NM, de FátimaLopes Calvo Tibério I, Olivo CR, Alonso-Vale MI, Prado MAM, Prado VF, de Toledo-Arruda AC, Prado CM. Aerobic exercise training engages cholinergic signaling to improve emphysema induced by cigarette smoke exposure in mice. Life Sci 2022; 301:120599. [DOI: 10.1016/j.lfs.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
14
|
Exacerbation of Elastase-Induced Emphysema via Increased Oxidative Stress in Metallothionein-Knockout Mice. Biomolecules 2022; 12:biom12040583. [PMID: 35454172 PMCID: PMC9030156 DOI: 10.3390/biom12040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Although the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood, recent studies suggest that the disruption of the intracellular balance of oxidative (such as reactive oxygen species (ROS)) and antioxidant molecules plays an important role in COPD development and progression. Metallothionein is an endogenous metal-binding protein with reported ROS scavenging activity. Although there have been many publications on the protective effects of metallothionein in the kidney and liver, its role in COPD models such as elastase- or cigarette smoke (CS)-induced lung injury is unknown. Thus, in the present study, we analyzed the elastase-induced lung injury model using metallothionein-knockout (MT-KO; MT-1 and -2 gene deletion) mice. The expression of MT-1 and MT-2 in the lungs of MT-KO mice was markedly lower compared with that in the lungs of wildtype (WT) mice. Porcine pancreatic elastase (PPE)-induced lung injury (alveolar enlargement and respiratory impairment) was significantly exacerbated in MT-KO mice compared with WT mice. Additionally, PPE-induced increases in the number of inflammatory cells, inflammatory cytokines, and cell death in lung tissue were significantly more pronounced in MT-KO mice compared with WT mice. Finally, using an in vivo imaging system, we also found that PPE-induced ROS production in the lungs was enhanced in MT-KO mice compared with WT mice. These results suggest that metallothionein may act as an inhibitor against elastase-induced lung injury by suppressing ROS production. These results suggest that metallothionein protein, or compounds that can induce metallothionein, could be useful in the treatment of COPD.
Collapse
|
15
|
Kooltheat N, Chujit K, Nuangnong K, Nokkaew N, Bunluepuech K, Yamasaki K, Chatatikun M. Artemisia lactiflora Extracts Prevent Inflammatory Responses of Human Macrophages Stimulated with Charcoal Pyrolysis Smoke. J Evid Based Integr Med 2021; 26:2515690X211068837. [PMID: 34939447 PMCID: PMC8725217 DOI: 10.1177/2515690x211068837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Artemisia lactiflora, a Chinese-origin plant, has been reported
to have unique phytochemicals responsible for its medicinal properties. The
growth of the agricultural industry emits air pollution, which has adverse
effects on health. There are limited scientific reports on the biological
activities of A. lactiflora. Studies on its activities and
mechanisms may provide insight into its use in medicinal purposes to treat those
health problems and conditions. In this study, leaves of A.
lactiflora were extracted and fractioned with solvents of different
polarities. Total phenolics, total flavonoids DPPH• scavenging,
ABTS•+ scavenging, and cytotoxicity of A.
lactiflora were assessed. Anti-inflammatory activities were
evaluated by pre-treating macrophages with extract or fractions then induced
inflammatory response by coconut shell pyrolysis smoke. Inflammatory responses
were assessed by measuring pro-inflammatory genes expression and
pro-inflammatory cytokines secretion. Among all extract and fractions of
A. lactiflora, butanol fraction has the highest phenolic,
flavonoid, and DPPH• scavenging activity. All extract and fractions
significantly down-regulated pro-inflammatory genes expression (RelA,
TNF, IL6) and decreased pro-inflammatory cytokines secretion
(TNF-α, IL-6), p < 0.0001, compared with pyrolysis
smoke-induced macrophages. The ethyl acetate fraction showed the highest
anti-inflammatory activity in decreasing pro-inflammatory cytokines secretion.
These results may prove the anti-inflammatory activities of A.
lactiflora through the inhibition of the NF-κB-dependent pathway.
Taken together, this study first reported the anti-inflammatory activities of
A. lactiflora. Thus, the plant can be used to prevent and
treat inflammatory responses caused by highly oxidative pyrolysis smoke released
from the re-utilization of agro-industrial leftovers.
Collapse
Affiliation(s)
- Nateelak Kooltheat
- School of Allied Health Sciences, 65133Walailak University, Nakhon Si Thammarat, Thailand.,Research Excellence Center for Innovation and Health Products,65133Walailak University, Nakhon Si Thammarat, Thailand
| | - Kamonrat Chujit
- School of Allied Health Sciences, 65133Walailak University, Nakhon Si Thammarat, Thailand
| | - Kanjana Nuangnong
- School of Allied Health Sciences, 65133Walailak University, Nakhon Si Thammarat, Thailand
| | - Nuttikarn Nokkaew
- School of Pharmacy, 65133Walailak University, Nakhon Si Thammarat, Thailand
| | - Kingkan Bunluepuech
- School of Medicine, 65133Walailak University, Nakhon Si Thammarat, Thailand.,Research Excellence Center for Innovation and Health Products,65133Walailak University, Nakhon Si Thammarat, Thailand
| | - Kenshi Yamasaki
- 38047Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Moragot Chatatikun
- School of Allied Health Sciences, 65133Walailak University, Nakhon Si Thammarat, Thailand.,Research Excellence Center for Innovation and Health Products,65133Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
16
|
Lehr CM, Yeo L, Sznitman J. Editorial: Innovative In Vitro Models for Pulmonary Physiology and Drug Delivery in Health and Disease. Front Bioeng Biotechnol 2021; 9:788682. [PMID: 34746115 PMCID: PMC8569608 DOI: 10.3389/fbioe.2021.788682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Claus-Michael Lehr
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Leslie Yeo
- School of Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Josué Sznitman
- Departments of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
19
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Guerrina N, Traboulsi H, Rico de Souza A, Bossé Y, Thatcher TH, Robichaud A, Ding J, Li PZ, Simon L, Pareek S, Bourbeau J, Tan WC, Benedetti A, Obeidat M, Sin DD, Brandsma CA, Nickle DC, Sime PJ, Phipps RP, Nair P, Zago M, Hamid Q, Smith BM, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms. FASEB J 2021; 35:e21376. [PMID: 33605487 DOI: 10.1096/fj.202002350r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Abstract
Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Thomas H Thatcher
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jun Ding
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Pei Z Li
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Leora Simon
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Swati Pareek
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Wan C Tan
- The University of British Columbia (UBC) James Hogg Research Centre, UBC, Vancouver, BC, Canada
| | - Andrea Benedetti
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada.,Department of Epidemiology, McGill University, Montreal, QC, Canada.,Department of Biostatistics, McGill University, Montreal, QC, Canada.,Department of Occupational Health, McGill University, Montreal, QC, Canada
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Division of Respiratory Medicine, UBC, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Division of Respiratory Medicine, UBC, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, ON, Canada
| | | | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,University of Sharjah College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Benjamin M Smith
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada
| | | | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front Immunol 2021; 12:630427. [PMID: 33659010 PMCID: PMC7917085 DOI: 10.3389/fimmu.2021.630427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.
Collapse
Affiliation(s)
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xinyu Wang
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Jorg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Becerra D, Jeffs S, Wojtkiewicz G, Ott H. Characterization of an elastase-induced emphysema model in immune-deficient rats. Eur J Cardiothorac Surg 2020; 59:ezaa320. [PMID: 33141186 DOI: 10.1093/ejcts/ezaa320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Emphysema affects millions of patients worldwide. Cell transplantation and tissue engineering are promising approaches for the regeneration of gas exchange tissue in vivo. A reproducible and resource-efficient animal model with relevant pathological and physiological features is critical to assess efficacy of novel therapies. Here, we share a method for rapid development of emphysema in an adaptive immune-deficient rat with <5% mortality, which is ideal for high-throughput human cell-based experimentation. METHODS Porcine pancreatic elastase (PPE) was intratracheally administered to male RNU rats. Rats were monitored for 21 days after which subjects underwent lung computed tomography (CT) scans. Rats were then weighed, intubated and mechanically ventilated to measure dynamic compliance. After sacrifice, lungs were fixed, and histological sections were quantitatively assessed for emphysematous changes. RESULTS A single instillation of elastase was enough to produce anatomic and physiological evidence of emphysema. Weight change for doses of 16 and 32 units PPE/100 g were significantly lower than controls (P = 0.028 and P = 0.043, respectively). Compliance values for doses of 16 and 32 units PPE/100 g were significantly higher than controls (P = 0.037 and P = 0.006, respectively). Lung hyperlucency was confirmed by CT with mean Hounsfield units for a dose of 32 units PPE/100 g being significantly lower than controls (P < 0.001). The mean linear intersect for doses of 16 and 32 units PPE/100 g were significantly higher than controls (both P < 0.001). All reported P-values are one-sided. CONCLUSIONS We present an efficient method for emphysema development in immune-deficient rats as a tool to evaluate human biological therapeutics. Changes in dynamic compliance, histology and cross-sectional imaging recapitulate human emphysema.
Collapse
Affiliation(s)
- David Becerra
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sydney Jeffs
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Harald Ott
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Hong S, Lee B, Kim JH, Kim EY, Kim M, Kwon B, Cho HR, Sohn Y, Jung HS. Solanum nigrum Linne improves DNCB‑induced atopic dermatitis‑like skin disease in BALB/c mice. Mol Med Rep 2020; 22:2878-2886. [PMID: 32945415 PMCID: PMC7453610 DOI: 10.3892/mmr.2020.11381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the effects of Solanum nigrum Linne (SNL) in a model of 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) and in TNF-α/IFN-γ-stimulated HaCaT cells. AD is a chronic inflammatory skin disease and is characterized by erythema, edema, increased pruritus and eczema. Steroids are most commonly used for anti-inflammatory therapy; however, their long-term use is limited due to side-effects, such as osteoporosis, brittle skin, muscle weaknesses and diabetes. Therefore, patients with AD require alternative treatment strategies. In previous studies, SNL has been reported to be effective against oxidants and cancer. However, to the best of our knowledge, the effects of SNL on AD have not yet been investigated. The present study examined the effects of SNL ethanol extract on a model of DNCB induced AD and on TNF-α/IFN-γ-stimulated HaCaT cells. The skin tissue was sectioned to measure the thicknesses of the epidermis and dermis, as well as the numbers of eosinophils, mast cells and CD8 infiltration by H&E, toluidine blue, Masson's trichrome and IHC staining. ELISA was performed using serum to measure IgE levels. The present study also examined the expression of various inflammatory cytokines, MAPK and NF-κB in TNF-α/IFN-γ-stimulated HaCaT cells. SNL significantly reduced the levels of cytokines released from HaCaT cells stimulated with TNF-α/IFN-γ. SNL also significantly reduced the levels of p-p38 at 30 min and significantly reduced the activation of NF-κB in a time course experiment. In addition, SNL significantly reduced the level of serum IgE and dermal thickness and the infiltration of mast cells and CD8 in the BALB/c mouse model of DNCB-induced AD. The results of the current study suggest that SNL exerts a suppressive effect on pro-inflammatory cytokines in vitro and in vivo through the regulation of the immune system.
Collapse
Affiliation(s)
- Sooyeon Hong
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Bina Lee
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Jae-Hyun Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Eun-Young Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Minsun Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Boguen Kwon
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Hye-Rin Cho
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Youngjoo Sohn
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Hyuk-Sang Jung
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| |
Collapse
|
24
|
Ahmad S, Saleem M, Riaz N, Lee YS, Diri R, Noor A, Almasri D, Bagalagel A, Elsebai MF. The Natural Polypeptides as Significant Elastase Inhibitors. Front Pharmacol 2020; 11:688. [PMID: 32581778 PMCID: PMC7291377 DOI: 10.3389/fphar.2020.00688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Human neutrophil elastase (HNE) is a major cause of the destruction of tissues in cases of several different chronic andinflammatory diseases. Overexpression of the elastase enzyme plays a significant role in the pathogenesis of various diseases including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome, rheumatoid arthritis, the rare disease cyclic hematopoiesis (or cyclic neutropenia), infections, sepsis, cystic fibrosis, myocardial ischemia/reperfusion injury and asthma, inflammation, and atherosclerosis. Human neutrophil elastase is secreted by human neutrophils due to different stimuli. Medicine-based inhibition of the over-activation of neutrophils or production and activity of elastase have been suggested to mend inflammatory diseases. Although the development of new elastase inhibitors is an essential strategy for treating the different inflammatory diseases, it has been a challenge to specifically target the activity of elastase because of its overlapping functions with those of other serine proteases. This review article highlights the reported natural polypeptides as potential inhibitors of elastase enzyme. The mechanism of action, structural features, and activity of the polypeptides have also been correlated wherever they were available.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Chemistry, Post-Graduate College, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences & Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diena Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Fahmi Elsebai
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, Acovic A, Djonov V, Arsenijevic N, Volarevic V. Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-Derived Product "Exo-d-MAPPS" in Attenuation of Chronic Airway Inflammation. Anal Cell Pathol (Amst) 2020; 2020:3153891. [PMID: 32257769 PMCID: PMC7109559 DOI: 10.1155/2020/3153891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), due to their potential for differentiation into alveolar epithelial cells and their immunosuppressive characteristics, are considered a new therapeutic agent in cell-based therapy of inflammatory lung disorders, including chronic obstructive pulmonary disease (COPD). Since most of the MSC-mediated beneficent effects were the consequence of their paracrine action, herewith, we investigated the effects of a newly designed MSC-derived product "Exosome-derived Multiple Allogeneic Protein Paracrine Signaling (Exo-d-MAPPS)" in the attenuation of chronic airway inflammation by using an animal model of COPD (induced by chronic exposure to cigarette smoke (CS)) and clinical data obtained from Exo-d-MAPPS-treated COPD patients. Exo-d-MAPPS contains a high concentration of immunomodulatory factors which are capable of attenuating chronic airway inflammation, including soluble TNF receptors I and II, IL-1 receptor antagonist, and soluble receptor for advanced glycation end products. Accordingly, Exo-d-MAPPS significantly improved respiratory function, downregulated serum levels of inflammatory cytokines (TNF-α, IL-1β, IL-12, and IFN-γ), increased serum concentration of immunosuppressive IL-10, and attenuated chronic airway inflammation in CS-exposed mice. The cellular makeup of the lungs revealed that Exo-d-MAPPS treatment attenuated the production of inflammatory cytokines in lung-infiltrated macrophages, neutrophils, and natural killer and natural killer T cells and alleviated the antigen-presenting properties of lung-infiltrated macrophages and dendritic cells (DCs). Additionally, Exo-d-MAPPS promoted the expansion of immunosuppressive IL-10-producing alternatively activated macrophages, regulatory DCs, and CD4+FoxP3+T regulatory cells in inflamed lungs which resulted in the attenuation of chronic airway inflammation. In a similar manner, as it was observed in an animal model, Exo-d-MAPPS treatment significantly improved the pulmonary status and quality of life of COPD patients. Importantly, Exo-d-MAPPS was well tolerated since none of the 30 COPD patients reported any adverse effects after Exo-d-MAPPS administration. In summing up, we believe that Exo-d-MAPPS could be considered a potentially new therapeutic agent in the treatment of chronic inflammatory lung diseases whose efficacy should be further explored in large clinical trials.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Dragica Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Ruxana Sadikot
- Emory University School of Medicine, 648 Pierce Dr. NE, Atlanta, GA, USA
- Atlanta VA Medical Center, 1670 Clairmont Rd., Decatur/Atlanta, GA, USA
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Dragana Miloradovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Department for Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| |
Collapse
|
26
|
Li ZP, Kim JY, Ban YJ, Park KH. Human neutrophil elastase (HNE) inhibitory polyprenylated acylphloroglucinols from the flowers of Hypericum ascyron. Bioorg Chem 2019; 90:103075. [DOI: 10.1016/j.bioorg.2019.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/23/2023]
|
27
|
Houslay KF, Fertig BA, Christian F, Tibbo AJ, Ling J, Findlay JE, Houslay MD, Baillie GS. Phosphorylation of PDE4A5 by MAPKAPK2 attenuates fibrin degradation via p75 signalling. J Biochem 2019; 166:97-106. [PMID: 30859186 PMCID: PMC6607969 DOI: 10.1093/jb/mvz016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- K F Houslay
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, UK
| | - B A Fertig
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - F Christian
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A J Tibbo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Ling
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J E Findlay
- Institute of Cancer Studies and Pharmaceutical Science, King's College, 150 Stamford Street, London, UK
| | - M D Houslay
- Institute of Cancer Studies and Pharmaceutical Science, King's College, 150 Stamford Street, London, UK
| | - G S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Yamashita Y, Tanaka KI, Yamakawa N, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Chemical modification-mediated optimisation of bronchodilatory activity of mepenzolate, a muscarinic receptor antagonist with anti-inflammatory activity. Bioorg Med Chem 2019; 27:3339-3346. [PMID: 31204225 DOI: 10.1016/j.bmc.2019.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
Abstract
The treatment for patients with chronic obstructive pulmonary disease (COPD) usually involves a combination of anti-inflammatory and bronchodilatory drugs. We recently found that mepenzolate bromide (1) and its derivative, 3-(2-hydroxy-2, 2-diphenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (5), have both anti-inflammatory and bronchodilatory activities. We chemically modified 5 with a view to obtain derivatives with both anti-inflammatory and longer-lasting bronchodilatory activities. Among the synthesized compounds, (R)-(-)-12 ((R)-3-(2-hydroxy-2,2-diphenylacetoxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide) showed the highest affinity in vitro for the human muscarinic M3 receptor (hM3R). Compared to 1 and 5, (R)-(-)-12 exhibited longer-lasting bronchodilatory activity and equivalent anti-inflammatory effect in mice. The long-term intratracheal administration of (R)-(-)-12 suppressed porcine pancreatic elastase-induced pulmonary emphysema in mice, whereas the same procedure with a long-acting muscarinic antagonist used clinically (tiotropium bromide) did not. These results suggest that (R)-(-)-12 might be therapeutically beneficial for use with COPD patients given the improved effects seen against both inflammatory pulmonary emphysema and airflow limitation in this animal model.
Collapse
Affiliation(s)
- Yasunobu Yamashita
- Technology Research Association for Next-Generation Natural Products Chemistry, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ken-Ichiro Tanaka
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Naoki Yamakawa
- Shujitsu University School of Pharmacy, 1-6-1, Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Teita Asano
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Yuki Kanda
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Ayaka Takafuji
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022, Japan.
| |
Collapse
|
29
|
Crocetti L, Quinn MT, Schepetkin IA, Giovannoni MP. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat 2019; 29:555-578. [PMID: 31204543 PMCID: PMC9642779 DOI: 10.1080/13543776.2019.1630379] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Human neutrophil elastase (HNE) is involved in a variety of serious chronic diseases, especially cardiopulmonary pathologies. For this reason, the regulation of HNE activity represents a promising therapeutic approach, which is evident by the development of a number of new and selective HNE inhibitors, both in the academic and pharmaceutical environments. AREAS COVERED The present review analyzes and summarizes the patent literature regarding human neutrophil elastase inhibitors for the treatment of cardiopulmonary diseases over 2014-2018. EXPERT OPINION HNE is an interesting and defined target to treat various inflammatory diseases, including a number of cardiopulmonary pathologies. The research in this field is quite active, and a number of HNE inhibitors are currently in various stages of clinical development. In addition, new opportunities for HNE inhibitor development stem from recent studies demonstrating the involvement of HNE in many other inflammatory pathologies, including rheumatoid arthritis, inflammatory bowel disease, skin diseases, and cancer. Furthermore, the development of dual HNE/proteinase 3 inhibitors is being pursued as an innovative approach for the treatment of neutrophilic inflammatory diseases. Thus, these new developments will likely stimulate new and increased interest in this important therapeutic target and for the development of novel and selective HNE inhibitors.
Collapse
Affiliation(s)
- L Crocetti
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - MT Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - IA Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - MP Giovannoni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
31
|
Masubuchi H, Ueno M, Maeno T, Yamaguchi K, Hara K, Sunaga H, Matsui H, Nagasawa M, Kojima I, Iwata Y, Wakabayashi S, Kurabayashi M. Reduced transient receptor potential vanilloid 2 expression in alveolar macrophages causes COPD in mice through impaired phagocytic activity. BMC Pulm Med 2019; 19:70. [PMID: 30914062 PMCID: PMC6434859 DOI: 10.1186/s12890-019-0821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Defective phagocytosis in alveolar macrophages is associated with chronic obstructive pulmonary disease (COPD). Transient receptor potential cation channel subfamily V member 2 (TRPV2), a type of nonselective cation channel pertinent to diverse physiological functions, regulates macrophage phagocytosis. However, the role of TRPV2 in COPD remains poorly understood. Here, we explored the role of TRPV2 in the development of COPD. Methods Macrophage TRPV2 expression and phagocytosis function were measured in MH-S cells (a murine alveolar macrophage cell line) and a cigarette smoke exposure mouse model. Results TRPV2 expression and phagocytosis function were reduced when MH-S cells were exposed to cigarette smoke extract (CSE). TRPV2 knockdown by siRNA decreased phagocytosis in MH-S cells. Consistently, TRPV2 expression was reduced in alveolar macrophages prepared from bronchoalveolar lavage samples of mice which were exposed to cigarette smoke for 2 months. In addition, the alveolar space was progressively enlarged during development in TRPV2 knockout (TRPV2KO) mice. Moreover, exposure to cigarette smoke for 2 months significantly induced alveolar space enlargement in TRPV2KO mice, but not in wild-type (WT) mice. The phagocytic function of alveolar macrophages from TRPV2KO mice was reduced, compared with macrophages from WT mice. Conclusions TRPV2 expression is profoundly downregulated in alveolar macrophages at early time points of cigarette smoke exposure. Reduced TRPV2-mediated phagocytic function renders the lung susceptible to cigarette smoke-induced alveolar space enlargement. TRPV2 may provide a therapeutic target for COPD induced by cigarette smoke. Electronic supplementary material The online version of this article (10.1186/s12890-019-0821-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroaki Masubuchi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Manabu Ueno
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshitaka Maeno
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Koichi Yamaguchi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kenichiro Hara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, 371-8511, Gunma, Japan
| | - Masahiro Nagasawa
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Yuko Iwata
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujisirodai, Suita, Osaka, 565-8565, Japan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, 569-8686, Osaka, Japan
| | - Masahiko Kurabayashi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
32
|
Wu Z, Tan B, Zhang H, Guo Y, Tu Y, Qiu F, Yang A. Effects of Sodium Houttuyfonate on Pulmonary Inflammation in COPD Model Rats. Inflammation 2018; 40:2109-2117. [PMID: 28812176 DOI: 10.1007/s10753-017-0650-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anti-inflammatory effect of sodium houttuyfonate (SH), an herbal-originated drug that used in China clinically, was investigated on chronic obstructive pulmonary disease (COPD) inflammatory model rats induced by combination usage of cigarette smoke (CS) and lipopolysaccharide (LPS). The morphology of the lung tissue, the expression levels of cytokines in the bronchoalveolar lavage fluid (BALF), the protein levels of TLR4, NF-κB p65, and SIGIRR, and the mRNA levels of TLR4, MyD88, NF-κB p65, and SIGIRR in lung tissues were investigated, respectively. After treated by SH (24.3 mg/kg), the abnormal morphology changes of lung tissues in COPD rats, such as neutrophil infiltration and airway obstruction, were considerably alleviated, as well as both proinflammatory cytokines, TNF-α and IL-1β, significantly decreased in BALF. The mRNA level of TLR4, MyD88, and NF-κB p65 and protein expression of TLR4 and NF-κB p65 in lung tissues decreased significantly after SH treatment, while both SIGIRR mRNA and protein levels increased significantly. These results suggest that SH markedly attenuated the pulmonary inflammation induced by CS and LPS and protected the lung tissue in COPD model rat. The anti-inflammatory effects were related to suppress the TLR4/NF-κB pathway dependent on MyD88. TIR8/SIGIRR might contribute to the protective effects of SH on pulmonary inflammation.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiying Zhang
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinuo Guo
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanjie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Aidong Yang
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
33
|
Giovannoni MP, Schepetkin IA, Quinn MT, Cantini N, Crocetti L, Guerrini G, Iacovone A, Paoli P, Rossi P, Bartolucci G, Menicatti M, Vergelli C. Synthesis, biological evaluation, and molecular modelling studies of potent human neutrophil elastase (HNE) inhibitors. J Enzyme Inhib Med Chem 2018; 33:1108-1124. [PMID: 29969929 PMCID: PMC6032016 DOI: 10.1080/14756366.2018.1480615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report the synthesis and biological evaluation of a new series of 3- or 4-(substituted)phenylisoxazolones as HNE inhibitors. Due to tautomerism of the isoxazolone nucleus, two isomers were obtained as final compounds (2-NCO and 5-OCO) and the 2-NCO derivatives were the most potent with IC50 values in the nanomolar range (20–70 nM). Kinetic experiments indicated that 2-NCO 7d and 5-OCO 8d are both competitive HNE inhibitors. Molecular modelling on 7d and 8d suggests for the latter a more crowded region about the site of the nucleophilic attack, which could explain its lowered activity. In addition molecular dynamics (MD) simulations showed that the isomer 8d appears more prone to form H-bond interactions which, however, keep the reactive sites quite distant for the attack by Ser195. By contrast the amide 7d appears more mobile within the active pocket, since it makes single H-bond interactions affording a favourable orientation for the nucleophilic attack.
Collapse
Affiliation(s)
- Maria Paola Giovannoni
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Igor A Schepetkin
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Mark T Quinn
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Niccolò Cantini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Letizia Crocetti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Gabriella Guerrini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Antonella Iacovone
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Paola Paoli
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Patrizia Rossi
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Gianluca Bartolucci
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Marta Menicatti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Claudia Vergelli
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
34
|
Tanaka KI, Yamakawa N, Yamashita Y, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Identification of Mepenzolate Derivatives With Long-Acting Bronchodilatory Activity. Front Pharmacol 2018; 9:344. [PMID: 29692733 PMCID: PMC5902689 DOI: 10.3389/fphar.2018.00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
The standard treatment for chronic obstructive pulmonary disease is a combination of anti-inflammatory drugs and bronchodilators. We recently found that mepenzolate bromide (MP), an antagonist for human muscarinic M3 receptor (hM3R), has both anti-inflammatory and short-acting bronchodilatory activities. To obtain MP derivatives with longer-lasting bronchodilatory activity, we synthesized hybrid compounds based on MP and two other muscarinic antagonists with long-acting bronchodilatory activity glycopyrronium bromide (GC) and aclidinium bromide (AD). Of these three synthesized hybrid compounds (MP-GC, GC-MP, MP-AD) and MP, MP-AD showed the highest affinity for hM3R and had the longest lasting bronchodilatory activity, which was equivalent to that of GC and AD. Both MP-GC and MP-AD exhibited an anti-inflammatory effect equivalent to that of MP, whereas, in line with GC and AD, GC-MP did not show this effect. We also confirmed that administration of MP-AD suppressed elastase-induced pulmonary emphysema in a mouse model. These findings provide important information about the structure-activity relationship of MP for both bronchodilatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | | | - Yasunobu Yamashita
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Teita Asano
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yuki Kanda
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Ayaka Takafuji
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
35
|
Hu HL, Nie ZQ, Lu Y, Yang X, Song C, Chen H, Zhu S, Chen BB, Huang J, Geng S, Zhao S. Circulating miR-125b but not miR-125a correlates with acute exacerbations of chronic obstructive pulmonary disease and the expressions of inflammatory cytokines. Medicine (Baltimore) 2017; 96:e9059. [PMID: 29390434 PMCID: PMC5758136 DOI: 10.1097/md.0000000000009059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the correlation of miR-125a/b expression with acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients and inflammatory cytokines.Eighty-seven AECOPD patients, 93 stable chronic obstructive pulmonary disease (COPD) patients and 100 health volunteers (HCs) were recruited. Plasma samples were collected from AECOPD patients at the day 1, day 7, day 14, and day 28 of admission and from stable COPD patients as well as HCs. Total RNA was extracted from plasma, and miR-125a/b relative expressions were determined by quantitative real time-polymerase chain reaction.MiR-125b had a great capacity for distinguishing AECOPD from stable COPD (AUC = 0.926, 95% CI: 0.884-0.967) and HCs (AUC = 0.923, 95% CI: 0.880-0.966), while miR-125a did not. There were associations between miR-125b expression with TNF-α, IL-8, and LTB-4 in AECOPD patients (P = .012, P = .032, and P = .047, respectively), while no correlation of miR-125a with inflammatory cytokines was found. MiR-125b expression gradually decreased at day 7, day 14, and day 28 compared with day 1 (all P < .05) on admission, while no difference in miR-125a was discovered between each visit compared to day 1. Besides, TNF-α, IL-1β, IL-8, and LTB-4 were elevated in AECOPD patients compared with stable COPD patients (all P < .01).MiR-125b, but not miR-125a, was positively associated with inflammatory cytokines and could be a novel biomarker for distincting AECOPD from stable COPD patients and HCs.
Collapse
Affiliation(s)
- Hong-Ling Hu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Zu-Qiong Nie
- Department of Geriatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Xun Yang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Cheng Song
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Hao Chen
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Shan Zhu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Bei-Bei Chen
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Jing Huang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Shuang Geng
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Su Zhao
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
36
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
37
|
Watz H. Next generation of anti-inflammatory therapy for COPD? Eur Respir J 2017; 50:50/4/1702084. [PMID: 29074550 DOI: 10.1183/13993003.02084-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
38
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
39
|
Truong TM, Li H, Dhapare S, Desai UR, Voelkel NF, Sakagami M. Sulfated dehydropolymer of caffeic acid: In vitro anti-lung cell death activity and in vivo intervention in emphysema induced by VEGF receptor blockade. Pulm Pharmacol Ther 2017. [PMID: 28648907 DOI: 10.1016/j.pupt.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Induced lung cell death and impaired hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) signaling are proposed as a pathobiologic mechanism for alveolar structural destruction and loss in emphysema. We hypothesized that our sulfated dehydropolymer of caffeic acid, CDSO3, exerts anti-cell death activities and therapeutic interventions in emphysema by virtue of Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation. The Fe2+ chelating activity was determined in the chromogenic ferrozine-Fe2+ chelation inhibitory assay. The in vitro anti-cell death activities and their Fe2+ and HIF-1α dependence were assessed against a range of emphysematous insults in the lung endothelial (HMVEC-L) and epithelial (A549) cells. CDSO3 was spray-dosed to the lung for three weeks (day 1-21) in an in vivo rat model of apoptotic emphysema induced with a VEGF receptor antagonist SU5416. Post-treatment treadmill exercise endurance, airspace enlargement, and several lung biomarkers/proteins were measured. CDSO3 was a potent Fe2+ chelating molecule. At 10 μM, CDSO3 inhibited HMVEC-L and A549 cell death induced by histone deacetylase inhibition with trichostatin A, VEGF receptor blockade with SU5416, and cigarette smoke extract by 65-99%, which were all significantly opposed by addition of excess Fe2+ or HIF-1α inhibitors. As a potent elastase inhibitor and antioxidant, CDSO3 also inhibited elastase- and H2O2-induced cell death by 92 and 95%, respectively. In the rat model of SU5416-induced apoptotic emphysema, CDSO3 treatment at 60 μg/kg 1) produced 61-77% interventions against exercise endurance impairment, airspace enlargement [mean linear intercept] and oxidative lung damage [malondialdehyde activity]; 2) normalized the apoptotic marker [cleaved caspase-3]; 3) stimulated the VEGF signaling [VEGF receptor 2 phosphorylation] by 1.4-fold; and 4) elevated the HIF-1α and VEGF expression by 1.8- and 1.5-fold, respectively. All of these were consistent with CDSO3's Fe2+ chelation-based HIF-1α/VEGF stabilization and elevation against their pathobiologic deficiency, inhibiting lung cell death and development of apoptotic emphysema.
Collapse
Affiliation(s)
- Tien M Truong
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Hua Li
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Sneha Dhapare
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Umesh R Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery and Development, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Nobert F Voelkel
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N, 12th Street, P. O. Box 980533, Richmond, VA 23298, USA.
| |
Collapse
|
40
|
Integrating 3-omics data analyze rat lung tissue of COPD states and medical intervention by delineation of molecular and pathway alterations. Biosci Rep 2017; 37:BSR20170042. [PMID: 28450497 PMCID: PMC5479022 DOI: 10.1042/bsr20170042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious health problem. However, the molecular pathogenesis of COPD remains unknown. Here, we explored the molecular effects of cigarette smoke and bacterial infection in lung tissues of COPD rats. We also investigated therapeutic effects of aminophylline (APL) on the COPD rats and integrated transcriptome, proteome, and metabolome data for a global view of molecular mechanisms of COPD progression. Using molecular function and pathway analyses, the genes and proteins regulated in COPD and APL-treated rats were mainly attributed to oxidoreductase, antioxidant activity, energy and fatty acid metabolism. Furthermore, we identified hub proteins such as Gapdh (glyceraldehyde-3-phosphate dehydrogenase), Pkm (pyruvate kinase isozymes M1/M2), and Sod1 (superoxide dismutase 1), included in energy metabolism and oxidative stress. Then, we identified the significantly regulated metabolic pathways in lung tissues of COPD- and APL-treated rats, such as arachidonic acid, linoleic acid, and α-linolenic acid metabolism, which belong to the lipid metabolism. In particular, we picked the arachidonic acid metabolism for a more detailed pathway analysis of transcripts, proteins, and metabolites. We could observe an increase in metabolites and genes involved in arachidonic acid metabolism in COPD rats and the decrease in these in APL-treated rats, suggesting that inflammatory responses were up-regulated in COPD rats and down-regulated in APL-treated rats. In conclusion, these system-wide results suggested that COPD progression and its treatment might be associated with oxidative stress, lipid and energy metabolism disturbance. Additionally, we demonstrated the power of integrated omics for the elucidation of genes, proteins, and metabolites’ changes and disorders that were associated with COPD.
Collapse
|
41
|
Torres-Sánchez I, Valenza MC, Cebriá I Iranzo MDÀ, López-López L, Moreno-Ramírez MP, Ortíz-Rubio A. Effects of different physical therapy programs on perceived health status in acute exacerbation of chronic obstructive pulmonary disease patients: a randomized clinical trial. Disabil Rehabil 2017; 40:2025-2031. [PMID: 28478693 DOI: 10.1080/09638288.2017.1323236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate the repercussion of different physical therapy interventions on the perceived health status of chronic obstructive pulmonary disease (COPD) patients during acute exacerbation. MATERIALS AND METHODS Randomized controlled trial. Patients were assigned to: control group (standard medical treatment), controlled breathing + range of motion exercises group or Resistance exercises group. Perceived health status was assessed at baseline and discharge using the EuroQol-5D (EQ-5D) questionnaire. Clinical profile of patients was evaluated at baseline for descriptive purposes. RESULTS Ninety patients were randomized into the groups. Perceived health status improved significantly in all groups. Significant differences were found in mobility, self-care and usual activities subscales of EQ-5D and Visual Analogue Scale between control and controlled breathing + range of motion exercises group. Significant differences were found in all variables except pain between control group and Resistance exercises group. Finally, usual care and anxiety/depression subscales of EQ-5D showed significant differences between controlled breathing + range of motion exercises group and Resistance exercises group, the improvements being greater in Resistance exercises group. CONCLUSIONS Physical therapy added to standard medical treatment of acute exacerbated COPD patients achieves a higher improvement in perceived health status than the prescription of standard medical treatment alone. Implications for Rehabilitation Physical therapy added to standard medical treatment in patients hospitalized due to acute exacerbation of chronic obstructive pulmonary disease achieves a higher improvement in the perceived health status than the prescription of standard medical treatment alone. Short duration physical therapy programs added to the standard care appear to be helpful in the management of acute exacerbations of chronic obstructive pulmonary disease patients.
Collapse
Affiliation(s)
- Irene Torres-Sánchez
- a Department of Physical Therapy, School of Health Sciences , University of Granada , Granada , Spain
| | - Marie Carmen Valenza
- a Department of Physical Therapy, School of Health Sciences , University of Granada , Granada , Spain
| | | | - Laura López-López
- a Department of Physical Therapy, School of Health Sciences , University of Granada , Granada , Spain
| | - Ma Paz Moreno-Ramírez
- a Department of Physical Therapy, School of Health Sciences , University of Granada , Granada , Spain
| | - Araceli Ortíz-Rubio
- a Department of Physical Therapy, School of Health Sciences , University of Granada , Granada , Spain
| |
Collapse
|
42
|
Almeida-Reis R, Theodoro-Junior OA, Oliveira BTM, Oliva LV, Toledo-Arruda AC, Bonturi CR, Brito MV, Lopes FDTQS, Prado CM, Florencio AC, Martins MA, Owen CA, Leick EA, Oliva MLV, Tibério IFLC. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8287125. [PMID: 28466019 PMCID: PMC5390602 DOI: 10.1155/2017/8287125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rafael Almeida-Reis
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bruno T M Oliveira
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro V Oliva
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Camila R Bonturi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marlon V Brito
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ariana C Florencio
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Edna A Leick
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maria L V Oliva
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Integrating Transcriptomics, Proteomics, and Metabolomics Profiling with System Pharmacology for the Delineation of Long-Term Therapeutic Mechanisms of Bufei Jianpi Formula in Treating COPD. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7091087. [PMID: 28424787 PMCID: PMC5382313 DOI: 10.1155/2017/7091087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
In previous work, we identified 145 active compounds from Bufei Jianpi formula (BJF) by system pharmacology and found that BJF showed short-term effect on chronic obstructive pulmonary disease (COPD) rats. Here, we applied the transcriptomic, proteomic, and metabolomics approaches to illustrate the long-term anti-COPD action and its system mechanism of BJF. BJF has obvious anti-COPD effect through decreasing inflammatory cytokines level, preventing protease-antiprotease imbalance and collagen deposition on week 32 by continuous oral administration to rats from weeks 9 to 20. Subsequently, applying the transcriptomic, proteomic, and metabolomics techniques, we detected a number of regulated genes, proteins, and metabolites, mainly related to antioxidant activity, focal adhesion, or lipid metabolism, in lung tissues of COPD and BJF-treated rats. Afterwards, we integrated system pharmacology target, transcript, protein, and metabolite data sets and found that many genes, proteins, and metabolites in rats BJF-treated group and the target proteins of BJF were mainly attributed to lipid metabolism, inflammatory response, oxidative stress, and focal adhesion. Taken together, BJF displays long-term anti-COPD effect probably by system regulation of the lipid metabolism, inflammatory response pathways oxidative stress, and focal adhesion.
Collapse
|
44
|
A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. Int J Mol Sci 2017; 18:ijms18020403. [PMID: 28216579 PMCID: PMC5343937 DOI: 10.3390/ijms18020403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.
Collapse
|
45
|
Pneumologie. REPETITORIUM INTERNISTISCHE INTENSIVMEDIZIN 2017. [PMCID: PMC7422511 DOI: 10.1007/978-3-662-53182-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Die Pneumologie und Beatmungsmedizin gehört zur Basis der Intensivmedizin. Die Abklärung der Dyspnoe, das Management des Asthma bronchiale, der akuten COPD-Exazerbation und des akuten Lungenversagens (ARDS) bilden die Säulen dieses Kapitels. Im Rahmen der bettseitigen Abklärung der Dyspnoe gewinnt die Lungen- bzw. Thoraxsonographie zunehmend an Bedeutung.
Collapse
|
46
|
Yaghi A, Dolovich MB. Airway Epithelial Cell Cilia and Obstructive Lung Disease. Cells 2016; 5:cells5040040. [PMID: 27845721 PMCID: PMC5187524 DOI: 10.3390/cells5040040] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.
Collapse
Affiliation(s)
- Asma Yaghi
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, Fontbonne Bldg. Room F132, Hamilton, ON L8N 4A6, Canada.
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
- St. Joseph's Healthcare, Firestone Institute for Respiratory Health, 50 Charlton Ave East, FIRH Room T2135, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
47
|
The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice. Mediators Inflamm 2016; 2016:5346574. [PMID: 27528793 PMCID: PMC4978849 DOI: 10.1155/2016/5346574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022] Open
Abstract
Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.
Collapse
|
48
|
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2415-2427. [PMID: 27381067 DOI: 10.1016/j.nano.2016.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI.
| | - Taehong Min
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD; Genentech, 1 DNA Way, San Francisco, CA
| | - Manish Bodas
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI
| | - Aakruti Gorde
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Indrajit Roy
- Department of Chemistry, State University of New York, Buffalo, NY
| |
Collapse
|
49
|
TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-κB signaling pathway. Biochem Biophys Res Commun 2016; 472:508-15. [DOI: 10.1016/j.bbrc.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022]
|
50
|
Zhao P, Yang L, Li J, Li Y, Tian Y, Li S. Combining systems pharmacology, transcriptomics, proteomics, and metabolomics to dissect the therapeutic mechanism of Chinese herbal Bufei Jianpi formula for application to COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:553-66. [PMID: 27042044 PMCID: PMC4801132 DOI: 10.2147/copd.s100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bufei Jianpi formula (BJF) has long been used as a therapeutic agent in the treatment of COPD. Systems pharmacology identified 145 active compounds and 175 potential targets of BJF in a previous study. Additionally, BJF was previously shown to effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production, in vivo. However, the system-level mechanism of BJF for the treatment of COPD is still unclear. The aim of this study was to gain insight into its system-level mechanisms by integrating transcriptomics, proteomics, and metabolomics together with systems pharmacology datasets. Using molecular function, pathway, and network analyses, the genes and proteins regulated in COPD rats and BJF-treated rats could be mainly attributed to oxidoreductase activity, antioxidant activity, focal adhesion, tight junction, or adherens junction. Furthermore, a comprehensive analysis of systems pharmacology, transcript, protein, and metabolite datasets is performed. The results showed that a number of genes, proteins, metabolites regulated in BJF-treated rats and potential target proteins of BJF were involved in lipid metabolism, cell junction, oxidative stress, and inflammatory response, which might be the system-level therapeutic mechanism of BJF treatment.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| | - Liping Yang
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jiansheng Li
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| | - Ya Li
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| | - Yange Tian
- Key Laboratory of Chinese Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| | - Suyun Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China
| |
Collapse
|