1
|
Willems M, Hamaidia M, Fontaine A, Grégoire M, Halkin L, Vilanova Mañá L, Terres R, Jamakhani M, Deshayes S, Brostaux Y, Heinen V, Louis R, Duysinx B, Jean D, Wasielewski E, Scherpereel A, Blanquart C, Willems L. The impact of Charcot-Leyden Crystal protein on mesothelioma chemotherapy: targeting eosinophils for enhanced chemosensitivity. EBioMedicine 2024; 109:105418. [PMID: 39471751 DOI: 10.1016/j.ebiom.2024.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND In mesothelioma (MPM), clinical evidence indicates that the absolute eosinophil count negatively correlates with overall survival and response to standard chemotherapy. Since eosinophils poorly infiltrate MPM tumours, we hypothesised that endocrine rather than paracrine pathways mediate the therapeutic response. We thus studied the effect of eosinophil-associated factors on response to chemotherapy in mesothelioma. METHODS The culture supernatant conditioned by primary human eosinophils was added to mesothelioma cells in presence of the standard chemotherapeutic regimen. The effectiveness of an anti-eosinophil treatment was evaluated in a preclinical model of C57BL/6 mice transplanted with mesothelioma tumour cells. FINDINGS Supernatant of eosinophils differentiated from EOL1 cells or directly isolated from peripheral blood inhibited apoptosis induced by cisplatin and pemetrexed in 2D cultures and in spheroids. Transcriptomic analysis indicated that the anti-apoptotic effect mediated by eosinophils involved molecular interactions with the Charcot-Leyden Crystal protein or Galectin-10 (CLC-P/Gal10). The functional relevance of CLC-P/Gal10 was demonstrated by antibody-mediated depletion. Recombinant human CLC-P/Gal10 mimicked the anti-apoptotic activity of eosinophil-derived supernatants. In the mouse model, eosinophilia did not significantly affect tumour growth but altered the response to chemotherapy. Finally, pretreatment of eosinophilia with the anti-Siglec-F antibody before chemotherapy restored the effectiveness of the treatment. INTERPRETATION This study provides a mechanistic rationale to clinical evidence correlating the poor outcome of patients with mesothelioma and with eosinophil-derived CLC-P/Gal10, opening new prospects for intervention in this fatal solid tumour. FUNDING Belgian Foundation against Cancer, Fonds National de la Recherche Scientifique (FNRS), Télévie, Foundation Léon Fredericq, ULiège.
Collapse
Affiliation(s)
- Mégane Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Malik Hamaidia
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Alexis Fontaine
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Mélanie Grégoire
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Louise Halkin
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Lea Vilanova Mañá
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Roxane Terres
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium
| | - Sophie Deshayes
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Yves Brostaux
- Modelisation and development, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Vincent Heinen
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Renaud Louis
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Bernard Duysinx
- Department of Pneumology (University Hospital of Liege), Liege, Belgium
| | - Didier Jean
- Centre de Recherche des Cordeliers (INSERM), Sorbonne Université (Université de Paris), Functional Genomics of Solid Tumors, Paris, France
| | - Eric Wasielewski
- Department of Pneumology and Thoracic Oncology (CHU Lille) and INSERM U1189 (ONCOTHAI), Lille, France
| | - Arnaud Scherpereel
- Department of Pneumology and Thoracic Oncology (CHU Lille) and INSERM U1189 (ONCOTHAI), Lille, France
| | - Christophe Blanquart
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege & Gembloux, Belgium.
| |
Collapse
|
2
|
Klotz LV, Weigert A, Eichhorn F, Allgäuer M, Muley T, Shah R, Savai R, Eichhorn ME, Winter H. Impact of T Cell Ratios on Survival in Pleural Mesothelioma: Insights from Tumor Microenvironment Analysis. Cancers (Basel) 2024; 16:3418. [PMID: 39410037 PMCID: PMC11476058 DOI: 10.3390/cancers16193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Immunotherapy has significantly improved overall survival in patients with pleural mesothelioma, yet this benefit does not extend to those with the epithelioid subtype. Tumor growth is believed to be influenced by the immune response. This study aimed to analyze the tumor microenvironment to gain a better understanding of its influence on tumor growth. Methods: The tumor immune cell infiltration of 188 patients with pleural mesothelioma was characterized by multiplex immunofluorescence staining for CD3+ cells (CD3+), CD4+ cells (CD3+/CD4+), CD8+ cells (CD3+/CD8+), Treg (CD3+/CD4+/CD8-/CD163-/Foxp3+), PD1 cells (PD1+), and T helper cells (CD3+/CD4+/CD8-/CD163-/FoxP3-). The distribution of specific immune cells was correlated with clinical parameters. Results: A total of 188 patients with pleural mesothelioma (135 epithelioid, 9 sarcomatoid, 44 biphasic subtypes) were analyzed. The median age was 64.8 years. Overall survival was significantly longer in the epithelioid subtype than in the non-epithelioid subtype (p = 0.016). The presence of PD-L1 expression had a negative effect on overall survival (p = 0.041). A high ratio of CD4+ cells to regulatory T cells was associated with a significantly longer overall survival of more than 12 months (p = 0.015). The ratio of CD4+ cells to regulatory T cells retained its significant effect on overall survival in the multivariate analysis. Conclusions: Distinct differences in the T cell immune infiltrates in mesothelioma are strongly associated with overall survival. The tumor microenvironment could therefore serve as a source of prognostic biomarkers.
Collapse
Affiliation(s)
- Laura V. Klotz
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Michael Allgäuer
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany;
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany;
| | - Rajiv Shah
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Röntgenstraße 1, 69126 Heidelberg, Germany;
| | - Rajkumar Savai
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health, Justus Liebig University, 35392 Giessen, Germany;
| | - Martin E. Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Röntgenstraße 1, 69126 Heidelberg, Germany; (F.E.); (M.E.E.); (H.W.)
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Liu YT, Wu HL, Su YD, Wang Y, Li Y. Development in the Study of Natural Killer Cells for Malignant Peritoneal Mesothelioma Treatment. Cancer Biother Radiopharm 2024; 39:551-561. [PMID: 39093850 DOI: 10.1089/cbr.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.
Collapse
Affiliation(s)
- Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Wang D, Pei W, Liu Y, Mo R, Li X, Gu W, Su Y, Ye J, Xu J, Zhao D. Leucine rich α2 glycoprotein 1 derived from malignant pleural mesothelioma cells facilitates macrophage M2 phenotypes. Exp Lung Res 2024; 50:136-145. [PMID: 39033404 DOI: 10.1080/01902148.2024.2380988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-β receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-β and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-β receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-β receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-β receptor/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yanfei Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rongliang Mo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinru Li
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenhui Gu
- Dental School, Anhui Medical University, Hefei, China
| | - Yi Su
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Blyth KG, Adusumilli PS, Astoul P, Darlison L, Lee YCG, Mansfield AS, Marciniak SJ, Maskell N, Panou V, Peikert T, Rahman NM, Zauderer MG, Sterman D, Fennell DA. Leveraging the pleural space for anticancer therapies in pleural mesothelioma. THE LANCET. RESPIRATORY MEDICINE 2024; 12:476-483. [PMID: 38740045 DOI: 10.1016/s2213-2600(24)00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Most patients with pleural mesothelioma (PM) present with symptomatic pleural effusion. In some patients, PM is only detectable on the pleural surfaces, providing a strong rationale for intrapleural anticancer therapy. In modern prospective studies involving expert radiological staging and specialist multidisciplinary teams, the population incidence of stage I PM (an approximate surrogate of pleura-only PM) is higher than in historical retrospective series. In this Viewpoint, we advocate for the expansion of intrapleural trials to serve these patients, given the paucity of data supporting licensed systemic therapies in this setting and the uncertainties involved in surgical therapy. We begin by reviewing the unique anatomical and physiological features of the PM-bearing pleural space, before critically appraising the evidence for systemic therapies in stage I PM and previous intrapleural PM trials. We conclude with a summary of key challenges and potential solutions, including optimal trial designs, repurposing of indwelling pleural catheters, and new technologies.
Collapse
Affiliation(s)
- Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Queen Elizabeth University Hospital, Glasgow, UK; Cancer Research UK Scotland Centre, Glasgow, UK.
| | - Prasad S Adusumilli
- Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philippe Astoul
- Thoracic Oncology Department, Hôpital NORD, Aix-Marseille University, Marseille, France
| | | | - Y C Gary Lee
- University of Western Australia, Perth, WA, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK; Department of Respiratory Medicine, Southmead Hospital, Bristol, UK
| | - Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit, University of Southern Denmark, Odense, Denmark; Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marjorie G Zauderer
- Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Sterman
- New York University School of Medicine, New York, NY, USA
| | - Dean A Fennell
- University of Leicester, Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
6
|
Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M, Huang PH, Carragher NO, Munro AF, Murphy DJ, Veselkov K, Seckl MJ, Moffatt MF, Cookson WOC, Pardo OE. Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis 2023; 14:725. [PMID: 37938546 PMCID: PMC10632403 DOI: 10.1038/s41419-023-06240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.
Collapse
Affiliation(s)
| | - Rajat Roy
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guadalupe Gonzalez
- Department of Computing, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer Doig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lukas Krasny
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ella F Rimmer
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Anne E Willis
- MRC Toxicology Unit, Tennis Ct Rd, Cambridge, CB2 1QR, UK
| | | | - Paul H Huang
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alison F Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kirill Veselkov
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Michael J Seckl
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK.
| | - Olivier E Pardo
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
Ferguson K, Neilson M, Mercer R, King J, Marshall K, Welch H, Tsim S, Maskell NA, Rahman NM, Evison M, Blyth KG. Results of the Meso-ORIGINS feasibility study regarding collection of matched benign-mesothelioma tissue pairs by longitudinal surveillance. BMJ Open 2023; 13:e067780. [PMID: 37553196 PMCID: PMC10414089 DOI: 10.1136/bmjopen-2022-067780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/13/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVES To assess key elements of the design for Meso-ORIGINS (Mesothelioma Observational study of RIsk prediction and Generation of paired benign-meso tissue samples, Including a Nested MRI Substudy), an ambitious, UK-wide, prospective study that will collect ≥63 matched benign-mesothelioma tissue pairs through longitudinal surveillance and repeat biopsy of patients with asbestos-associated pleural inflammation (AAPI). DESIGN A multicentre, mixed-methods feasibility study, comprising a prospective observational element, evaluating recruitment feasibility, technical feasibility of repeat local anaesthetic thoracoscopy (LAT) and patient acceptability, and a retrospective cohort study focused on AAPI-mesothelioma evolution rate, informing sample size. SETTING 4 UK pleural disease centres (February 2019-January 2020). PARTICIPANTS Patients with AAPI (history or typical imaging plus appropriate pleural histology) were eligible for both elements. In August 2019, eligibility for the prospective element was broadened, including addition of radiological AAPI for technical feasibility and patient acceptability endpoints only. Retrospective cases required ≥2 years follow-up. OUTCOME MEASURES A prospective recruitment target was set a priori at 27 histological AAPI cases (or 14 in any 6 months). Technical feasibility and patient acceptability were determined at 6-month follow-up by thoracic ultrasound surrogates and questionnaires, respectively. Retrospective malignant pleural mesothelioma evolution rate was defined by proportion (95% CI). Baseline predictors of evolution were identified using logistic regression. RESULTS 296 patients with AAPI (39 prospective, 257 retrospective) were recruited/selected. 21/39 prospective recruits were histologically diagnosed (target n=27). Repeat LAT was technically feasible and acceptable in 13/28 (46%) and 24/36 (67%) cases with complete follow-up data. Mesothelioma evolution was confirmed histologically in 36/257 retrospective cases (14% (95% CI 10.3% to 18.8%)) and associated with malignant CT features (OR 4.78 (95% CI 2.36 to 9.86)) and age (OR 1.06 (95% CI 1.02 to 1.12)). CONCLUSIONS Our initial eligibility criteria were too narrow. Meso-ORIGINS will recruit a broader cohort, including prevalent cases, any biopsy type and patients with malignant CT features. A range of rebiopsy techniques will be allowed, accounting for technical and patient factors. The sample size has been reduced to 500. TRIAL REGISTRATION NUMBER ISRCTN12840870.
Collapse
Affiliation(s)
- Katie Ferguson
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital Campus, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Rachel Mercer
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK
| | - Jenny King
- Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, UK
| | - Kelly Marshall
- Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, UK
| | - Hugh Welch
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Selina Tsim
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital Campus, Glasgow, UK
| | - Nick A Maskell
- University of Bristol Academic Respiratory Unit, Westbury on Trym, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK
| | - Matthew Evison
- Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, UK
| | - Kevin G Blyth
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital Campus, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Benvenuto M, Angiolini V, Focaccetti C, Nardozi D, Palumbo C, Carrano R, Rufini A, Bei R, Miele MT, Mancini P, Barillari G, Cirone M, Ferretti E, Tundo GR, Mutti L, Masuelli L, Bei R. Antitumoral effects of Bortezomib in malignant mesothelioma: evidence of mild endoplasmic reticulum stress in vitro and activation of T cell response in vivo. Biol Direct 2023; 18:17. [PMID: 37069690 PMCID: PMC10111665 DOI: 10.1186/s13062-023-00374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a rare tumor with a dismal prognosis. The low efficacy of current treatment options highlights the urge to identify more effective therapies aimed at improving MM patients' survival. Bortezomib (Bor) is a specific and reversible inhibitor of the chymotrypsin-like activity of the 20S core of the proteasome, currently approved for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, Bor appears to have limited clinical effects on solid tumors, because of its low penetration and accumulation into tumor tissues following intravenous administration. These limitations could be overcome in MM through intracavitary delivery, with the advantage of increasing local drug concentration and decreasing systemic toxicity. METHODS In this study, we investigated the effects of Bor on cell survival, cell cycle distribution and modulation of apoptotic and pro-survival pathways in human MM cell lines of different histotypes cultured in vitro. Further, using a mouse MM cell line that reproducibly forms ascites when intraperitoneally injected in syngeneic C57BL/6 mice, we investigated the effects of intraperitoneal Bor administration in vivo on both tumor growth and the modulation of the tumor immune microenvironment. RESULTS We demonstrate that Bor inhibited MM cell growth and induced apoptosis. Further, Bor activated the Unfolded Protein Response, which however appeared to participate in lowering cells' sensitivity to the drug's cytotoxic effects. Bor also affected the expression of EGFR and ErbB2 and the activation of downstream pro-survival signaling effectors, including ERK1/2 and AKT. In vivo, Bor was able to suppress MM growth and extend mice survival. The Bor-mediated delay of tumor progression was sustained by increased activation of T lymphocytes recruited to the tumor microenvironment. CONCLUSIONS The results presented herein support the use of Bor in MM and advocate future studies aimed at defining the therapeutic potential of Bor and Bor-based combination regimens for this treatment-resistant, aggressive tumor.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Rufini
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Riccardo Bei
- Medical School, University of Rome "Tor Vergata", Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
9
|
Zhang Y, Li J, Zhang S. Prognostic significance of inflammation-related and electrolyte laboratory variables in patients with malignant pleural mesothelioma. Front Med (Lausanne) 2023; 10:1099685. [PMID: 37089600 PMCID: PMC10114925 DOI: 10.3389/fmed.2023.1099685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveMalignant pleural mesothelioma (MPM) is a kind of pleural cancer characterized by low incidence but high invasiveness. There is heterogeneity in survival among patients with MPM. Inflammation-related and electrolyte laboratory variables were previously reported as potential predictors of survival. We evaluated the relationship between overall survival and pre-treatment biomarkers.Materials and methodsPatients diagnosed with MPM in Beijing Chaoyang Hospital for more than 10 years were screened for this study. All basic, clinical, radiologic and laboratory variables were collected. The COX univariable and multivariable analysis were used to explore prognostic related risk factors.ResultsNinety patients with MPM were included. The median follow-up of all patients was 57 months [interquartile range (IQR): 27–100 months]. The median survival time was 24 months (IQR: 12–52 months). Univariate survival analyses indicated that age, Eastern Cooperative Oncology Group Performance Status, treatment, erythrocyte sedimentation rate, calcium, lymphocyte, hemoglobin, platelet-to-lymphocyte ratio (PLR), and monocyte-to-white blood cell ratio (MWR) were significantly related to survival. Multivariable analysis demonstrated that age [hazard ratio (HR), 2.548; 95% confidence interval (CI) 1.145–5.666; p = 0.022], calcium (HR, 0.480; 95% CI 0.270–0.855; p = 0.013), PLR (HR, 2.152; 95% CI 1.163–3.981; p = 0.015), and MWR (HR, 3.360; 95% CI 1.830–6.170; p < 0.001) might have a significant impact on the prognosis.ConclusionCalcium, MWR, and PLR might be related to the prognosis of MPM patients. Analyzing the relationship between the results of inflammation-related and electrolyte laboratory variables in peripheral blood and prognosis could help clinicians evaluate the situation of patients.
Collapse
Affiliation(s)
| | - Jie Li
- *Correspondence: Shu Zhang, ; Jie Li,
| | - Shu Zhang
- *Correspondence: Shu Zhang, ; Jie Li,
| |
Collapse
|
10
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Clinical, Laboratory, Histological, Radiological, and Metabolic Features and Prognosis of Malignant Pleural Mesothelioma. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121874. [PMID: 36557076 PMCID: PMC9785569 DOI: 10.3390/medicina58121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Background: Malignant pleural mesothelioma (MPM) is an aggressive and rare malignant pleural tumor. Methods: MPM patients diagnosed in Beijing Chaoyang Hospital and Beijing Tongren Hospital were the focus of this study. We collected and analyzed the histological, radiological, and metabolic features of MPM patients. At the same time, Cox univariable and multivariable analyses were used to explore the laboratory risk factors affecting the prognosis of MPM patients. Results: A total of 129 MPM patients were included in this study. MPM includes three main histological subtypes: epithelioid, sarcomatoid and biphasic. Among them, epithelial subtypes accounted for the highest proportion. Calretinin, Wilms' tumor gene (WT1), cytokeratin 5/6 (CK5/6), and D2-40 were the most useful mesothelial markers to support a MPM diagnosis. The imaging features of MPM patients are pleural thickening and pleural effusion. In PET-CT, the affected pleura showed obvious high uptake of tracer, and the degree was related to the specific subtype. The median follow-up time was 55.0 (30.0, 94.0) months. A total of 92 (71.3%) patients died during follow-up. The median survival time of patients was 21.0 (9.0, 48.0) months. The Cox multivariable analysis showed that age [hazard ratio (HR), 1.824; 95% confidence interval (CI) 1.159-2.872; p = 0.009; uncorrected], ESR (HR, 2.197; 95% CI 1.318-3.664; p = 0.003; with Bonferroni correction), lymphocytes (HR, 0.436; 95% CI 0.258-0.737; p = 0.002; with Bonferroni correction), platelets (HR, 1.802; 95% CI 1.084-2.997; p = 0.023; uncorrected) and total protein (HR, 0.625; 95% CI 0.394-0.990; p = 0.045; uncorrected) were independent risk factors for prognosis, after adjusting for confounding factors. Conclusions: Age, ESR, lymphocytes, platelets and total protein may be related to the prognosis of MPM patients. Summarizing the histological, radiological, and metabolic features of MPM patients in the two centers can increase clinicians' understanding of this rare tumor.
Collapse
|
12
|
Zucali PA, De Vincenzo F, Perrino M, Digiacomo N, Cordua N, D'Antonio F, Borea F, Fazio R, Pirozzi A, Santoro A. Advances in Drug Treatments for Mesothelioma. Expert Opin Pharmacother 2022; 23:929-946. [PMID: 35508368 DOI: 10.1080/14656566.2022.2072211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The paucity of the therapeutic armamentarium currently available for patients with malignant mesothelioma clearly represents a huge unmet need. Over the last years, based on new advances in understanding the biology of mesothelioma, new therapeutic approaches have been investigated. AREAS COVERED In this manuscript, the literature data regarding the advances in drug treatment for patients with mesothelioma are critically reviewed, focusing particularly on immunotherapy and targeted therapy. EXPERT OPINION The latest findings on immunotherapy and targeted therapy are changing the therapeutic armamentarium for mesothelioma. However, mesothelioma comprises of genomically different subtypes and the phenotypic diversity combined with the rarity of this disease represents a major criticality in developing new effective therapies. Although the first clinical data are encouraging, the treatment's stratification by molecular characteristics for mesothelioma is only at the beginning. Luckily, the rapid improvement of understanding the biology of mesothelioma is producing new opportunities in discovering new therapeutic targets to test in pre-clinical settings and to transfer in the clinical setting. In this evolving scenario, the future perspectives for mesothelioma patients seem really promising.
Collapse
Affiliation(s)
- Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Fabio De Vincenzo
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Matteo Perrino
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Nunzio Digiacomo
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Nadia Cordua
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Angelo Pirozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
13
|
HDAC Inhibition with Valproate Improves Direct Cytotoxicity of Monocytes against Mesothelioma Tumor Cells. Cancers (Basel) 2022; 14:cancers14092164. [PMID: 35565292 PMCID: PMC9100202 DOI: 10.3390/cancers14092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor-associated macrophages and monocyte myeloid-derived immunosuppressive cells are associated with bad prognosis in malignant pleural mesothelioma (MPM). This study shows that peripheral blood monocytes can, nevertheless, be cytotoxic for MPM tumor cells. This cytotoxic activity that involves direct cell-to-cell contact can be improved with a lysine deacetylase inhibitor (VPA), opening new prospects for further improvement of still unsatisfactory MPM therapies. Abstract The composition of the tumor microenvironment (TME) mediates the outcome of chemo- and immunotherapies in malignant pleural mesothelioma (MPM). Tumor-associated macrophages (TAMs) and monocyte myeloid-derived immunosuppressive cells (M-MDSCs) constitute a major fraction of the TME. As central cells of the innate immune system, monocytes exert well-characterized functions of phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). The objective of this study was to evaluate the ability of monocytes to exert a direct cytotoxicity by cell-to-cell contact with MPM cells. The experimental model is based on cocultures between human blood-derived monocytes sorted by negative selection and mesothelioma cell lines. Data show (i) that blood-derived human monocytes induce tumor cell death by direct cell-to-cell contact, (ii) that VPA is a pharmacological enhancer of this cytotoxic activity, (iii) that VPA increases monocyte migration and their aggregation with MPM cells, and (iv) that the molecular mechanisms behind VPA modulation of monocytes involve a downregulation of the membrane receptors associated with the M2 phenotype, i.e., CD163, CD206, and CD209. These conclusions, thus, broaden our understanding about the molecular mechanisms involved in immunosurveillance of the tumor microenvironment and open new prospects for further improvement of still unsatisfactory MPM therapies
Collapse
|
14
|
Cantini L, Laniado I, Murthy V, Sterman D, Aerts JGJV. Immunotherapy for mesothelioma: Moving beyond single immune check point inhibition. Lung Cancer 2022; 165:91-101. [PMID: 35114509 DOI: 10.1016/j.lungcan.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with low survival rates. Platinum-based chemotherapy has represented the cornerstone of treatment for over a decade, prompting the investigation of new therapeutic strategies both in the early stage of the disease and in the advanced setting. The advent of immune check-point inhibitors (ICIs) has recently revamped the enthusiasm for using immunotherapy also in MPM. However, results from first clinical trials using single immune check-point inhibition have been conflicting, and this may be mainly attributed to the lack of specific biomarkers as well as to intra- and inter- patient heterogeneity. The phase III Checkmate743 firstly demonstrated the superiority of an ICI combination (nivolumab plus ipilimumab) over chemotherapy in the first-line treatment of unresectable MPM, leading to FDA approval of this regimen and showing that moving beyond single immune check point inhibition might be a successful strategy to overcome resistance in the majority of MPM patients. In this review, we describe the emerging immunotherapy strategies for the treatment of MPM. We also discuss how refining the approach in pre-clinical studies towards a more holistic perspective (which takes into account not only genetic but also pathophysiological vulnerabilities) and strengthening multi-institutional collaboration in clinical trials is finally helping the clinical development of immunotherapy in MPM.
Collapse
Affiliation(s)
- Luca Cantini
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Clinical Oncology, Università Politecnica Delle Marche, AOU Ospedali Riuniti Ancona, Italy
| | - Isaac Laniado
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Vivek Murthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Daniel Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Prognostic Bone Metastasis-Associated Immune-Related Genes Regulated by Transcription Factors in Mesothelioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9940566. [PMID: 35127947 PMCID: PMC8813231 DOI: 10.1155/2022/9940566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Mesothelioma (MESO) is a mesothelial originate neoplasm with high morbidity and mortality. Despite advancement in technology, early diagnosis still lacks effectivity and is full of pitfalls. Approaches of cancer diagnosis and therapy utilizing immune biomarkers and transcription factors (TFs) have attracted more and more attention. But the molecular mechanism of these features in MESO bone metastasis has not been thoroughly studied. Utilizing high-throughput genome sequencing data and lists of specific gene subsets, we performed several data mining algorithm. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to identify downstream immune cells. Potential pathways involved in MESO bone metastasis were identified using Gene Oncology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Cox regression analysis. Ultimately, a model to help early diagnosis and to predict prognosis was constructed based on differentially expressed immune-related genes between bone metastatic and nonmetastatic MESO groups. In conclusion, immune-related gene SDC2, regulated by TFs TCF7L1 and POLR3D, had an important role on immune cell function and infiltration, providing novel biomarkers and therapeutic targets for metastatic MESO.
Collapse
|
16
|
Yang H, Berezowska S, Dorn P, Zens P, Chen P, Peng RW, Marti TM, Kocher GJ, Schmid RA, Hall SR. Tumor-infiltrating lymphocytes are functionally inactivated by CD90+ stromal cells and reactivated by combined Ibrutinib and Rapamycin in human pleural mesothelioma. Am J Cancer Res 2022; 12:167-185. [PMID: 34987640 PMCID: PMC8690914 DOI: 10.7150/thno.61209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Despite evidence suggesting that the tumor microenvironment (TME) in malignant pleural mesothelioma (MPM) is linked with poor prognosis, there is a lack of studies that functionally characterize stromal cells and tumor-infiltrating lymphocytes (TILs). Here, we aim to characterize the stromal subsets within MPM, investigate their relationship to TILs, and explore the potential therapeutic targets. Methods: We curated a core set of genes defining stromal/immune signatures expressed by mesenchymal cells within the TME using molecular analysis of The Cancer Genome Atlas (TCGA) MPM cohort. Stromal and immune profiles were molecularly characterized using flow cytometry, immunohistochemistry, microarray, and functionally evaluated using T cell-activation/expansion, coculture assays and drug compounds treatment, based on samples from an independent MPM cohort. Results: We found that a high extracellular matrix (ECM)/stromal gene signature, a high ECM score, or the ratio of ECM to an immune activation gene signature are significantly associated with poor survival in the MPM cohort in TCGA. Analysis of an independent MPM cohort (n = 12) revealed that CD8+ and CD4+ TILs were characterized by PD1 overexpression and concomitant downregulation in degranulation and CD127. This coincided with an increase in CD90+ cells that overexpressed PD-L1 and were enriched for ECM/stromal genes, activated PI3K-mTOR signaling and suppressed T cells. Protein array data demonstrated that MPM samples with high PD-L1 expression were most associated with activation of the mTOR pathway. Further, to reactivate functionally indolent TILs, we reprogrammed ex vivo TILs with Ibrutinib plus Rapamycin to block interleukin-2-inducible kinase (ITK) and mTOR pathways, respectively. The combination treatment shifted effector memory (TEM) CD8+ and CD4+ TILs towards T cells that re-expressed CD45RA (TEMRA) while concomitantly downregulating exhaustion markers. Gene expression analysis confirmed that Ibrutinib plus Rapamycin downregulated coinhibitory and T cell signature pathways while upregulating pathways involved in DNA damage and repair and immune cell adhesion and migration. Conclusions: Our results suggest that targeting the TME may represent a novel strategy to redirect the fate of endogenous TILs with the goal of restoring anti-tumor immunity and control of tumor growth in MPM.
Collapse
|
17
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
18
|
Obacz J, Yung H, Shamseddin M, Linnane E, Liu X, Azad AA, Rassl DM, Fairen-Jimenez D, Rintoul RC, Nikolić MZ, Marciniak SJ. Biological basis for novel mesothelioma therapies. Br J Cancer 2021; 125:1039-1055. [PMID: 34226685 PMCID: PMC8505556 DOI: 10.1038/s41416-021-01462-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Obacz
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Henry Yung
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Saffron Walden, UK
| | - Emily Linnane
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiewen Liu
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Arsalan A Azad
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Doris M Rassl
- Department of Histopathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
19
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
20
|
Désage AL, Karpathiou G, Peoc’h M, Froudarakis ME. The Immune Microenvironment of Malignant Pleural Mesothelioma: A Literature Review. Cancers (Basel) 2021; 13:3205. [PMID: 34206956 PMCID: PMC8269097 DOI: 10.3390/cancers13133205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumour with a poor prognosis, associated with asbestos exposure. Nowadays, treatment is based on chemotherapy with a median overall survival of less than two years. This review highlights the main characteristics of the immune microenvironment in MPM with special emphasis on recent biological advances. The MPM microenvironment is highly infiltrated by tumour-associated macrophages, mainly M2-macrophages. In line with infiltration by M2-macrophages, which contribute to immune suppression, other effectors of innate immune response are deficient in MPM, such as dendritic cells or natural killer cells. On the other hand, tumour infiltrating lymphocytes (TILs) are also found in MPM, but CD4+ and CD8+ TILs might have decreased cytotoxic effects through T-regulators and high expression of immune checkpoints. Taken together, the immune microenvironment is particularly heterogeneous and can be considered as mainly immunotolerant or immunosuppressive. Therefore, identifying molecular vulnerabilities is particularly relevant to the improvement of patient outcomes and the assessment of promising treatment approaches.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Georgia Karpathiou
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Michel Peoc’h
- Pathology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (G.K.); (M.P.)
| | - Marios E. Froudarakis
- Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
21
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
22
|
Napoli F, Listì A, Zambelli V, Witel G, Bironzo P, Papotti M, Volante M, Scagliotti G, Righi L. Pathological Characterization of Tumor Immune Microenvironment (TIME) in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2564. [PMID: 34073720 PMCID: PMC8197227 DOI: 10.3390/cancers13112564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that arises from pleural mesothelial cells, characterized by a median survival of approximately 13-15 months after diagnosis. The primary cause of this disease is asbestos exposure and the main issues associated with it are late diagnosis and lack of effective therapies. Asbestos-induced cellular damage is associated with the generation of an inflammatory microenvironment that influences and supports tumor growth, possibly in association with patients' genetic predisposition and tumor genomic profile. The chronic inflammatory response to asbestos fibers leads to a unique tumor immune microenvironment (TIME) composed of a heterogeneous mixture of stromal, endothelial, and immune cells, and relative composition and interaction among them is suggested to bear prognostic and therapeutic implications. TIME in MPM is known to be constituted by immunosuppressive cells, such as type 2 tumor-associated macrophages and T regulatory lymphocytes, plus the expression of several immunosuppressive factors, such as tumor-associated PD-L1. Several studies in recent years have contributed to achieve a greater understanding of the pathogenetic mechanisms in tumor development and pathobiology of TIME, that opens the way to new therapeutic strategies. The study of TIME is fundamental in identifying appropriate prognostic and predictive tissue biomarkers. In the present review, we summarize the current knowledge about the pathological characterization of TIME in MPM.
Collapse
Affiliation(s)
- Francesca Napoli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Angela Listì
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Vanessa Zambelli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Gianluca Witel
- Department of Medical Sciences, University of Turin, City of Health and Science, 10126 Torino, Italy;
| | - Paolo Bironzo
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Mauro Papotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Pathology Unit, City of Health and Science, 10126 Torino, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Luisella Righi
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| |
Collapse
|
23
|
Evaluation of the Preclinical Efficacy of Lurbinectedin in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:cancers13102332. [PMID: 34066159 PMCID: PMC8151304 DOI: 10.3390/cancers13102332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The marine drug lurbinectedin revealed an unprecedented efficacy against patient-derived malignant pleural mesothelioma cells, regardless of the histological type and the BAP1 mutation status. By inducing strong DNA damages, it dramatically arrested cell cycle progression and induced apoptosis. These results may be translated into the use of lurbinectedin as an effective agent for malignant pleural mesothelioma patients. Abstract Background: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. Methods: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. Results: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. Conclusion: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.
Collapse
|
24
|
Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, Le Tourneau C, Subbiah V, Tsai F, Kao S, Cassier PA, Khasraw M, Kindler HL, Fang H, Fan F, Allaire K, Patel M, Ye S, Chao DT, Henner WR, Hayflick JS, McDevitt MA, Fong L. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J Immunother Cancer 2021; 9:jitc-2020-002015. [PMID: 33608377 PMCID: PMC7898862 DOI: 10.1136/jitc-2020-002015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND CD40 agonist immunotherapy can potentially license antigen-presenting cells to promote antitumor T-cell activation and re-educate macrophages to destroy tumor stroma. Systemic administration of CD40 agonists has historically been associated with considerable toxicity, providing the rationale for development of tumor-targeted immunomodulators to improve clinical safety and efficacy. This phase I study assessed the safety, tolerability, preliminary antitumor activity, and preliminary biomarkers of ABBV-428, a first-in-class, mesothelin-targeted, bispecific antibody designed for tumor microenvironment-dependent CD40 activation with limited systemic toxicity. METHODS ABBV-428 was administered intravenously every 2 weeks to patients with advanced solid tumors. An accelerated titration (starting at a 0.01 mg/kg dose) and a 3+3 dose escalation scheme were used, followed by recommended phase II dose cohort expansions in ovarian cancer and mesothelioma, tumor types associated with high mesothelin expression. RESULTS Fifty-nine patients were treated at doses between 0.01 and 3.6 mg/kg. The maximum tolerated dose was not reached, and 3.6 mg/kg was selected as the recommended phase II dose. Seven patients (12%) reported infusion-related reactions. Treatment-related grade ≥3 treatment-emergent adverse events were pericardial effusion, colitis, infusion-related reaction, and pleural effusion (n=1 each, 2%), with no cytokine release syndrome reported. The pharmacokinetic profile demonstrated roughly dose-proportional increases in exposure from 0.4 to 3.6 mg/kg. Best response was stable disease in 9/25 patients (36%) treated at the recommended phase II dose. CD40 receptor occupancy >90% was observed on peripheral B-cells starting from 0.8 mg/kg; however, no consistent changes from baseline in intratumoral CD8+ T-cells, programmed death ligand-1 (PD-L1+) cells, or immune-related gene expression were detected post-ABBV-428 treatment (cycle 2, day 1). Mesothelin membrane staining showed greater correlation with progression-free survival in ovarian cancer and mesothelioma than in the broader dose escalation population. CONCLUSIONS ABBV-428 monotherapy exhibited dose-proportional pharmacokinetics and an acceptable safety profile, particularly for toxicities characteristic of CD40 agonism, illustrating that utilization of a tumor-targeted, bispecific antibody can improve the safety of CD40 agonism as a therapeutic approach. ABBV-428 monotherapy had minimal clinical activity in dose escalation and in a small expansion cohort of patients with advanced mesothelioma or ovarian cancer. TRIAL REGISTRATION NUMBER NCT02955251.
Collapse
Affiliation(s)
- Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fabrice Barlesi
- Multidisciplinary Oncology & Therapeutic Innovations Department, Aix-Marseille University, Assistance Publique Hôpitaux de Marseille, CNRS, INSERM, CRCM, CEPCM CLIP2, Marseille, France
| | - Ki Chung
- Hematology and Oncology, PRISMA Health System, Greenville, South Carolina, USA
| | | | - Karen Kelly
- UC Davis Comprehensive Cancer Center, University of California, Sacramento, California, USA
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Curie Institute, Paris and Saint-Cloud, France.,INSERM U900 Research Unit, Saint-Cloud, France.,Paris-Saclay University, Paris, France
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank Tsai
- Hematology/Oncology, HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Steven Kao
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | | | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Hedy L Kindler
- Section of Hematology/Oncology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Hua Fang
- Precision Medicine, AbbVie Inc, Redwood City, California, USA
| | - Frances Fan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kathryn Allaire
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Maulik Patel
- Clinical Pharmacology, AbbVie Inc, Redwood City, California, USA
| | - Shiming Ye
- Oncology Discovery, AbbVie Inc, Redwood City, California, USA
| | - Debra T Chao
- Search & Evaluation, Oncology, AbbVie Inc, Redwood City, California, USA
| | | | - Joel S Hayflick
- Oncology Early Development, AbbVie Inc, Redwood City, California, USA
| | | | - Lawrence Fong
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Biomarkers for Malignant Pleural Mesothelioma-A Novel View on Inflammation. Cancers (Basel) 2021; 13:cancers13040658. [PMID: 33562138 PMCID: PMC7916017 DOI: 10.3390/cancers13040658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowledged as main risk factors. Since immune therapy evolved as a promising novel treatment modality, we want to reevaluate and summarize the role of the inflammatory system in MPM. This review focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers, and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and consequently improves patient's outcome in this rare disease. Additionally, a better understanding of the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis and progression, might also reveal possible new targets for MPM treatment. After reviewing the currently available literature and according to our own research, it is concluded that the suppression of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM aggressiveness translating to poor patient outcome.
Collapse
|
26
|
Viscardi G, Di Natale D, Fasano M, Brambilla M, Lobefaro R, De Toma A, Galli G. Circulating biomarkers in malignant pleural mesothelioma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:434-451. [PMID: 36046389 PMCID: PMC9400735 DOI: 10.37349/etat.2020.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor strictly connected to asbestos exposure. Prognosis is dismal as diagnosis commonly occurs in advanced stage. Radiological screenings have not proven to be effective and also pathological diagnosis may be challenging. In the era of precision oncology, validation of robust non-invasive biomarkers for screening of asbestos-exposed individuals, assessment of prognosis and prediction of response to treatments remains an important unmet clinical need. This review provides an overview on current understanding and possible applications of liquid biopsy in MPM, mostly focused on the utility as diagnostic and prognostic test.
Collapse
Affiliation(s)
- Giuseppe Viscardi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy 2Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Davide Di Natale
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Morena Fasano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Marta Brambilla
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| |
Collapse
|
27
|
Chen R, Lee WC, Fujimoto J, Li J, Hu X, Mehran R, Rice D, Swisher SG, Sepesi B, Tran HT, Chow CW, Little LD, Gumbs C, Haymaker C, Heymach JV, Wistuba II, Lee JJ, Futreal PA, Zhang J, Reuben A, Tsao AS, Zhang J. Evolution of Genomic and T-cell Repertoire Heterogeneity of Malignant Pleural Mesothelioma Under Dasatinib Treatment. Clin Cancer Res 2020; 26:5477-5486. [PMID: 32816946 PMCID: PMC7709879 DOI: 10.1158/1078-0432.ccr-20-1767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is considered an orphan disease with few treatment options. Despite multimodality therapy, the majority of MPMs recur and eventually become refractory to any systemic treatment. One potential mechanism underlying therapeutic resistance may be intratumor heterogeneity (ITH), making MPM challenging to eradicate. However, the ITH architecture of MPM and its clinical impact have not been well studied. EXPERIMENTAL DESIGN We delineated the immunogenomic ITH by multiregion whole-exome sequencing and T-cell receptor (TCR) sequencing of 69 longitudinal MPM specimens from nine patients with resectable MPM, who were treated with dasatinib. RESULTS The median total mutation burden before dasatinib treatment was 0.65/Mb, similar with that of post-dasatinib treatment (0.62/Mb). The median proportion of mutations shared by any given pair of two tumor regions within the same tumors was 80% prior to and 83% post-dasatinib treatment indicating a relatively homogenous genomic landscape. T-cell clonality, a parameter indicating T-cell expansion and reactivity, was significantly increased in tumors after dasatinib treatment. Furthermore, on average, 82% of T-cell clones were restricted to individual tumor regions, with merely 6% of T-cell clones shared by all regions from the same tumors indicating profound TCR heterogeneity. Interestingly, patients with higher T-cell clonality and higher portion of T cells present across all tumor regions in post-dasatinib-treated tumors had significantly longer survival. CONCLUSIONS Despite the homogeneous genomic landscape, the TCR repertoire is extremely heterogeneous in MPM. Dasatinib may potentially induce T-cell response leading to improved survival.
Collapse
MESH Headings
- Adult
- Aged
- Clonal Evolution/genetics
- Dasatinib/administration & dosage
- Dasatinib/adverse effects
- Evolution, Molecular
- Female
- Genetic Heterogeneity
- Genome, Human/drug effects
- Genomics
- Humans
- Male
- Mesothelioma, Malignant/drug therapy
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Middle Aged
- Mutation/genetics
- Neoplasm Proteins/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Progression-Free Survival
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/drug effects
- T-Lymphocytes/pathology
- Exome Sequencing
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Won-Chul Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Latasha D Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Kohno M, Murakami J, Wu L, Chan ML, Yun Z, Cho BCJ, de Perrot M. Foxp3 + Regulatory T Cell Depletion after Nonablative Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. THE JOURNAL OF IMMUNOLOGY 2020; 205:2519-2531. [PMID: 32948683 DOI: 10.4049/jimmunol.2000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022]
Abstract
Increasing evidence indicates that local hypofractionated radiotherapy (LRT) can elicit both immunogenic and immunosuppressive local and systemic immune responses. We thus hypothesized that blockade of LRT-induced immunosuppressive responses could augment the antitumor effects and induce an abscopal response. In this study, we found that the upregulation of Foxp3+ regulatory T cells (Tregs) in the mesothelioma tumor microenvironment after nonablative oligofractionated irradiation significantly limited the success of irradiation. Using DEREG mice, which allow conditional and efficient depletion of Foxp3+ Tregs by diphtheria toxin injection, we observed that transient Foxp3+ Treg depletion immediately after nonablative oligofractionated irradiation provided synergistic local control and biased the T cell repertoire toward central and effector memory T cells, resulting in long-term cure. Furthermore, this combination therapy showed significant abscopal effect on the nonirradiated tumors in a concomitant model of mesothelioma through systemic activation of cytotoxic T cells and enhanced production of IFN-γ and granzyme B. Although local control was preserved with one fraction of nonablative irradiation, three fractions were required to generate the abscopal effect. PD-1 and CTLA-4 were upregulated on tumor-infiltrating CD4+ and CD8+ T cells in irradiated and nonirradiated tumors, suggesting that immune checkpoint inhibitors could be beneficial after LRT and Foxp3+ Treg depletion. Our findings are applicable to the strategy of immuno-radiotherapy for generating optimal antitumor immune responses in the clinical setting. Targeting Tregs immediately after a short course of irradiation could have a major impact on the local response to irradiation and its abscopal effect.
Collapse
Affiliation(s)
- Mikihiro Kohno
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Junichi Murakami
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Mei-Lin Chan
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Zhihong Yun
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada; .,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario M5G 2C4, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
29
|
Fuchs TL, Chou A, Sioson L, Sheen A, Gill AJ. Stromal tumour-infiltrating lymphocytes (TILs) assessed using the ITWG system do not predict overall survival in a cohort of 337 cases of mesothelioma. Histopathology 2020; 76:1095-1101. [PMID: 32215942 DOI: 10.1111/his.14106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Talia L Fuchs
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Amy Sheen
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Clinical feature of diagnostic challenging cases for pleural biopsy in patient with malignant pleural mesothelioma. Gen Thorac Cardiovasc Surg 2020; 68:820-827. [PMID: 31981139 DOI: 10.1007/s11748-020-01295-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Pleural biopsy through video-assisted thoracic surgery (VATS pleural biopsy) is the most reliable diagnostic procedure for malignant pleural mesothelioma (MPM). However, definitive diagnosis of MPM is occasionally difficult to establish. This study aims to investigate clinicopathological features of MPM patients who failed diagnosis by the first VATS pleural biopsy. METHODS Four hundred consecutive patients with suspected MPM who received VATS pleural biopsy between March 2004 and July 2017 were enrolled in this retrospective study. Patients, whose histological diagnoses were not definitive in the first VATS pleural biopsy, were followed up as atypical mesothelial proliferation (AMP) or non-specific pleuritis (NSP). Re-examination was performed in cases strongly suspected of having MPM. RESULTS Of the 400 patients, 267 (66.8%) were pathologically diagnosed with MPM, 25 with metastatic carcinoma and 6 with benign pleural disease by the first VATS pleural biopsy. Of the remaining 102 patients diagnosed with AMP or NSP, 10 patients (9.8%) were subsequently diagnosed with MPM. Analysis of the clinical course revealed that only insufficient tissue for diagnosis was obtained via VATS pleural biopsy in all cases and that it was caused by very early stage without visible tumour in 4 patients, intrathoracic inflammation in 4 and desmoplastic MPM in 2. CONCLUSIONS In our review, 9.8% of patients diagnosed with AMP or NSP in first VATS pleural biopsy were subsequently diagnosed with MPM due to insufficient tissue for diagnosis. Definitive diagnosis via VATS pleural biopsy is sometimes challenging in following situation; very early stage, intrathoracic inflammation and desmoplastic MPM.
Collapse
|
31
|
Kishimoto T, Fujimoto N, Ebara T, Omori T, Oguri T, Niimi A, Yokoyama T, Kato M, Usami I, Nishio M, Yoshikawa K, Tokuyama T, Tamura M, Yokoyama Y, Tsuboi K, Matsuo Y, Xu J, Takahashi S, Abdelgied M, Alexander WT, Alexander DB, Tsuda H. Serum levels of the chemokine CCL2 are elevated in malignant pleural mesothelioma patients. BMC Cancer 2019; 19:1204. [PMID: 31823764 PMCID: PMC6905076 DOI: 10.1186/s12885-019-6419-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a debilitating disease of the pleural cavity. It is primarily associated with previous inhalation of asbestos fibers. These fibers initiate an oxidant coupled inflammatory response. Repeated exposure to asbestos fibers results in a prolonged inflammatory response and cycles of tissue damage and repair. The inflammation-associated cycles of tissue damage and repair are intimately involved in the development of asbestos-associated cancers. Macrophages are a key component of asbestos-associated inflammation and play essential roles in the etiology of a variety of cancers. Macrophages are also a source of C-C motif chemokine ligand 2 (CCL2), and a variety of tumor-types express CCL2. High levels of CCL2 are present in the pleural effusions of mesothelioma patients, however, CCL2 has not been examined in the serum of mesothelioma patients. METHODS The present study was carried out with 50 MPM patients and 356 subjects who were possibly exposed to asbestos but did not have disease symptoms and 41 healthy volunteers without a history of exposure to asbestos. The levels of CCL2 in the serum of the study participants was determined using ELISA. RESULTS Levels of CCL2 were significantly elevated in the serum of patients with advanced MPM. CONCLUSIONS Our findings are consistent with the premise that the CCL2/CCR2 axis and myeloid-derived cells play an important role in MPM and disease progression. Therapies are being developed that target CCL2/CCR2 and tumor resident myeloid cells, and clinical trials are being pursued that use these therapies as part of the treatment regimen. The results of trials with patients with a similar serum CCL2 pattern as MPM patients will have important implications for the treatment of MPM.
Collapse
Affiliation(s)
- Takumi Kishimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Nobukazu Fujimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toyonori Omori
- Department of Healthcare Policy and Management, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takako Yokoyama
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Munehiro Kato
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Ikuji Usami
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Masayuki Nishio
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Kosho Yoshikawa
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Takeshi Tokuyama
- Department of Internal Medicine, Saiseikai Chuwa Hospital, Sakurai, Nara, Japan
| | - Mouka Tamura
- Department of Internal Medicine, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Yoshifumi Yokoyama
- Department of Medicine and Physical Medicine and Rehabilitation, Nagoya City Koseiin Medical Welfare Center, Nagoya, Japan
| | - Ken Tsuboi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jiegou Xu
- Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed Abdelgied
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - William T Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - David B Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Hiroyuki Tsuda
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
32
|
Chu GJ, van Zandwijk N, Rasko JEJ. The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy. Front Oncol 2019; 9:1366. [PMID: 31867277 PMCID: PMC6908501 DOI: 10.3389/fonc.2019.01366] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Although mesothelioma is the consequence of a protracted immune response to asbestos fibers and characterized by a clear immune infiltrate, novel immunotherapy approaches show less convincing results as compared to those seen in melanoma and non-small cell lung cancer. The immune suppressive microenvironment in mesothelioma is likely contributing to this therapy resistance. Therefore, it is important to explore the characteristics of the tumor microenvironment for explanations for this recalcitrant behavior. This review describes the stromal, cytokine, metabolic, and cellular milieu of mesothelioma, and attempts to make connection with the outcome of immunotherapy trials.
Collapse
Affiliation(s)
- Gerard J. Chu
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nico van Zandwijk
- Sydney Medical School, Sydney Local Health District (Concord Repatriation General Hospital), University of Sydney, Sydney, NSW, Australia
| | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Stockhammer P, Ploenes T, Theegarten D, Schuler M, Maier S, Aigner C, Hegedus B. Detection of TGF-β in pleural effusions for diagnosis and prognostic stratification of malignant pleural mesothelioma. Lung Cancer 2019; 139:124-132. [PMID: 31778960 DOI: 10.1016/j.lungcan.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is an aggressive malignancy with dismal prognosis but variable course of disease. To support diagnosis and to risk stratify patients, more reliable biomarkers are warranted. Emerging evidence underlines a functional role of transforming growth factor-beta (TGF-β) in MPM tumorigenesis though its utility as a clinical biomarker remains unexplored. MATERIALS AND METHODS Corresponding pleural effusions and serum samples taken at primary diagnosis were analyzed for TGF-β by ELISA, and for mesothelin (SMRP) by chemiluminescence enzyme immunoassay. Tumor load was quantified in MPM patients by volumetric analysis of chest CT scans. All findings were correlated with clinicopathological characteristics. RESULTS In total 48 MPM patients, 24 patients with non-malignant pleural disease (NMPD) and 30 patients with stage IV lung cancer were enrolled in this study. Pleural effusions from MPM patients had significantly higher TGF-β levels than from NMPD or lung cancer patients (p < 0.0001; AUC for MPM vs NMPD: 0.78, p = 0.0001). Both epithelioid and non-epithelioid MPM were associated with higher TGF-β levels (epithelioid: p < 0.05; non-epithelioid: p < 0.0001) and levels of TGF-β correlated with disease stage (p = 0.003) and with tumor volume (p = 0.002). Interestingly, high TGF-β levels in pleural effusion, but not in serum, was significantly associated with inferior overall survival (TGF-beta ≥14.36 ng/mL: HR 3.45, p = 0.0001). This correlation was confirmed by multivariate analysis. In contrast, effusion SMRP levels were exclusively high in epithelioid MPM, negatively correlated with effusion TGF-β levels and did not provide prognostic information. CONCLUSION TGF-β levels determined in pleural effusion may be a promising biomarker for diagnosis and prognostic stratification of MPM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Sandra Maier
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany.
| |
Collapse
|
34
|
Hamaidia M, Gazon H, Hoyos C, Hoffmann GB, Louis R, Duysinx B, Willems L. Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism. JCI Insight 2019; 4:128474. [PMID: 31534051 DOI: 10.1172/jci.insight.128474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022] Open
Abstract
The roles of macrophages in orchestrating innate immunity through phagocytosis and T lymphocyte activation have been extensively investigated. Much less understood is the unexpected role of macrophages in direct tumor regression. Tumoricidal macrophages can indeed manifest cancer immunoediting activity in the absence of adaptive immunity. We investigated direct macrophage cytotoxicity in malignant pleural mesothelioma, a lethal cancer that develops from mesothelial cells of the pleural cavity after occupational asbestos exposure. In particular, we analyzed the cytotoxic activity of mouse RAW264.7 macrophages upon cell-cell contact with autologous AB1/AB12 mesothelioma cells. We show that macrophages killed mesothelioma cells by oxeiptosis via a mechanism involving enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27-specific (H3K27-specific) methyltransferase of the polycomb repressive complex 2 (PRC2). A selective inhibitor of EZH2 indeed impaired RAW264.7-directed cytotoxicity and concomitantly stimulated the PD-1 immune checkpoint. In the immunocompetent BALB/c model, RAW264.7 macrophages pretreated with the EZH2 inhibitor failed to control tumor growth of AB1 and AB12 mesothelioma cells. Blockade of PD-1 engagement restored macrophage-dependent antitumor activity. We conclude that macrophages can be directly cytotoxic for mesothelioma cells independent of phagocytosis. Inhibition of the PRC2 EZH2 methyltransferase reduces this activity because of PD-1 overexpression. Combination of PD-1 blockade and EZH2 inhibition restores macrophage cytotoxicity.
Collapse
Affiliation(s)
- Malik Hamaidia
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Hélène Gazon
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium
| | - Clotilde Hoyos
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Gabriela Brunsting Hoffmann
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Renaud Louis
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Bernard Duysinx
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| |
Collapse
|
35
|
de Boer NL, van Kooten JP, Burger JWA, Verhoef C, Aerts JGJV, Madsen EVE. Adjuvant dendritic cell based immunotherapy (DCBI) after cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal mesothelioma, a phase II single centre open-label clinical trial: rationale and design of the MESOPEC trial. BMJ Open 2019; 9:e026779. [PMID: 31092657 PMCID: PMC6530331 DOI: 10.1136/bmjopen-2018-026779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Malignant peritoneal mesothelioma (MPM) is an uncommon but aggressive neoplasm and has a strong association with asbestos exposure. MPM has low survival rates of approximately 1 year even after (palliative) surgery and/or systemic chemotherapy. Recent advances in treatment strategies focusing on cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have resulted in improved median survival of 53 months and a 5 year survival of 47%. However, recurrence rates are high. Current systemic chemotherapy in the adjuvant setting is of limited efficacy, while immunotherapy with dendritic cell based immunotherapy (DCBI) has yielded promising results in murine models with peritoneal mesothelioma and in patients with pleural mesothelioma. METHODS AND ANALYSIS The MESOPEC trial is an open-label single centre phase II study. The study population are adult patients with histological/cytological confirmed diagnosis of epithelioid malignant peritoneal mesothelioma. INTERVENTION 4 to 6 weeks before CRS-HIPEC a leukapheresis is performed of which the monocytes are used for differentiation to dendritic cells (DCs). Autologous DCs pulsed with allogeneic tumour associated antigens (MesoPher) are re-injected 8 to 10 weeks after surgery, three times biweekly. Additional booster vaccinations are given at 3 and 6 months.Primary objective is to determine the feasibility of administering DCBI after CRS-HIPEC in patients with malignant peritoneal mesothelioma. Secondary objectives are to assess safety of DCBI in patients with peritoneal mesothelioma and determine whether a specific immunological response against the tumour occurs as a result of this adjuvant immunotherapy. ETHICS AND DISSEMINATION Permission to carry out this study protocol has been granted by the Central Committee on Research Involving Human Subjects (CCMO in Dutch) and the Research Ethics Committee (METC in Dutch). The results of this trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NTR7060. EudraCT: 2017-000897-12; Pre-Results.
Collapse
Affiliation(s)
- Nadine L de Boer
- Surgical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Job P van Kooten
- Surgical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Cornelis Verhoef
- Surgical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Eva V E Madsen
- Surgical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
36
|
Sottile R, Tannazi M, Johansson MH, Cristiani CM, Calabró L, Ventura V, Cutaia O, Chiarucci C, Covre A, Garofalo C, Pontén V, Tallerico R, Frumento P, Micke P, Maio M, Kärre K, Carbone E. NK- and T-cell subsets in malignant mesothelioma patients: Baseline pattern and changes in the context of anti-CTLA-4 therapy. Int J Cancer 2019; 145:2238-2248. [PMID: 31018250 DOI: 10.1002/ijc.32363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Malignant mesothelioma (MM) is a highly aggressive form of cancer with limited treatment options. Although the role of NK cells has been studied in many solid tumors, the pattern of NK-cell subsets and their recognition of mesothelioma cells remain to be explored. We used RNA expression data of MM biopsies derived from the cancer genome atlas to evaluate the immune cell infiltrates. We characterized the phenotype of circulating NK and T cells of 27 MM patients before and after treatment with an anti-CTLA-4 antibody (tremelimumab). These immune cell profiles were compared to healthy controls. The RNA expression data of the MM biopsies indicated the presence of NK cells in a subgroup of patients. We demonstrated that NK cells recognize MM cell lines and that IL-15 stimulation improved NK cell-mediated lysis in vitro. Using multivariate projection models, we found that MM patients had a perturbed ratio of CD56bright and CD56dim NK subsets and increased serum concentrations of the cytokines IL-10, IL-8 and TNF-α. After tremelimumab treatment, the ratio between the CD56bright and CD56dim subsets shifted back towards physiological levels. Furthermore, the improved overall survival was correlated with low TIM-3+ CD8+ T-cell frequency, high DNAM-1+ CD56dim NK-cell frequency and high expression levels of NKp46 on the CD56dim NK cells before and after immune checkpoint blockade. Together, our observations suggest that NK cells infiltrate MM and that they can recognize and kill mesothelioma cells. The disease is associated with distinct lymphocytes patterns, some of which correlate with prognosis or are affected by treatment with tremelimumab.
Collapse
Affiliation(s)
- Rosa Sottile
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Milad Tannazi
- Department of Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Costanza Maria Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Calabró
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Valeria Ventura
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paolo Frumento
- Institute of Environmental Medicine, Unit of Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ennio Carbone
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
37
|
Salaroglio IC, Kopecka J, Napoli F, Pradotto M, Maletta F, Costardi L, Gagliasso M, Milosevic V, Ananthanarayanan P, Bironzo P, Tabbò F, Cartia CF, Passone E, Comunanza V, Ardissone F, Ruffini E, Bussolino F, Righi L, Novello S, Di Maio M, Papotti M, Scagliotti GV, Riganti C. Potential Diagnostic and Prognostic Role of Microenvironment in Malignant Pleural Mesothelioma. J Thorac Oncol 2019; 14:1458-1471. [PMID: 31078776 DOI: 10.1016/j.jtho.2019.03.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A comprehensive analysis of the immune cell infiltrate collected from pleural fluid and from biopsy specimens of malignant pleural mesothelioma (MPM) may contribute to understanding the immune-evasion mechanisms related to tumor progression, aiding in differential diagnosis and potential prognostic stratification. Until now such approach has not routinely been verified. METHODS We enrolled 275 patients with an initial clinical diagnosis of pleural effusion. Specimens of pleural fluids and pleural biopsy samples used for the pathologic diagnosis and the immune phenotype analyses were blindly investigated by multiparametric flow cytometry. The results were analyzed using the Kruskal-Wallis test. The Kaplan-Meier and log-rank tests were used to correlate immune phenotype data with patients' outcome. RESULTS The cutoffs of intratumor T-regulatory (>1.1%) cells, M2-macrophages (>36%), granulocytic and monocytic myeloid-derived suppressor cells (MDSC; >5.1% and 4.2%, respectively), CD4 molecule-positive (CD4+) programmed death 1-positive (PD-1+) (>5.2%) and CD8+PD-1+ (6.4%) cells, CD4+ lymphocyte activating 3-positive (LAG-3+) (>2.8% ) and CD8+LAG-3+ (>2.8%) cells, CD4+ T cell immunoglobulin and mucin domain 3-positive (TIM-3+) (>2.5%), and CD8+TIM-3+ (>2.6%) cells discriminated MPM from pleuritis with 100% sensitivity and 89% specificity. The presence of intratumor MDSC contributed to the anergy of tumor-infiltrating lymphocytes. The immune phenotype of pleural fluid cells had no prognostic significance. By contrast, the intratumor T-regulatory and MDSC levels significantly correlated with progression-free and overall survival, the PD-1+/LAG-3+/TIM-3+ CD4+ tumor-infiltrating lymphocytes correlated with overall survival. CONCLUSIONS A clear immune signature of pleural fluids and tissues of MPM patients may contribute to better predict patients' outcome.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Monica Pradotto
- Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Francesca Maletta
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Lorena Costardi
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Matteo Gagliasso
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | | | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Carlotta F Cartia
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Erika Passone
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Francesco Ardissone
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Enrico Ruffini
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Torino, Torino, Italy; Medical Oncology Division, Department of Oncology at AOU Ordine Mauriziano di Torino, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy; Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy.
| |
Collapse
|
38
|
Ahmadzada T, Lee K, Clarke C, Cooper WA, Linton A, McCaughan B, Asher R, Clarke S, Reid G, Kao S. High BIN1 expression has a favorable prognosis in malignant pleural mesothelioma and is associated with tumor infiltrating lymphocytes. Lung Cancer 2019; 130:35-41. [PMID: 30885349 DOI: 10.1016/j.lungcan.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES A number of key immune regulators show prognostic value in malignant pleural mesothelioma (MPM), but the association between Bridging integrator 1 (BIN1), indoleamine 2,3 dioxygenase 1 (IDO1) and patient outcome has not been investigated. We aimed to determine the expression of BIN1 and IDO1, their association with other markers and impact on overall survival (OS) in MPM. MATERIALS AND METHODS The expression of BIN1, IDO1, CD3, CD20 and CD68 were evaluated by immunohistochemistry in 67 patients who underwent pleurectomy/decortication. Survival analyses were performed using the Kaplan Meier method and significant biomarkers were entered into a Cox Regression multivariate model, accounting for known prognostic factors such as age, gender, histological subtype, PD-L1 expression and neutrophil-to-lymphocyte ratio. RESULTS Immune markers were variably expressed in tumor cells, ranging from 0% to 100% for BIN1 (median: 89%), and 0% to 77.5% for IDO1 (median: 0%). Expression of markers of tumor-infiltrating lymphocytes (TILs) and macrophages ranged from 0% to more than 50%. BIN1 expression was high in 35 patients (51%) and was associated with increased OS (median: 12 vs 6 months for high and low BIN1 respectively,p = 0.03). Multivariate analysis showed BIN1 remained an independent prognostic indicator (HR 0.39; 95% CI: 0.18-0.82, p = 0.01). The majority of patients had immune inflamed tumors (77%) and there was a significant association between TILs and BIN1 (p = 0 < 0.01), PD-L1 (p=0.04) and CD68+ macrophages in the tumor (p < 0.01). There were no significant associations between PD-L1 and BIN1 or IDO1. CONCLUSION High BIN1 expression is a favorable prognostic biomarker and is associated with TILs in MPM.
Collapse
Affiliation(s)
| | - Kenneth Lee
- Sydney Medical School, The University of Sydney, Australia; Department of Anatomical Pathology, Concord Repatriation General Hospital, Australia
| | - Candice Clarke
- Department of Anatomical Pathology, Concord Repatriation General Hospital, Australia
| | - Wendy A Cooper
- Sydney Medical School, The University of Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Anthony Linton
- Sydney Medical School, The University of Sydney, Australia; Department of Medical Oncology, Concord Repatriation General Hospital, Australia
| | | | - Rebecca Asher
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Stephen Clarke
- Sydney Medical School, The University of Sydney, Australia; Department of Medical Oncology, Royal North Shore Hospital, Australia
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Australia; Asbestos Diseases Research Institute, Sydney, NSW, Australia; Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Australia; Asbestos Diseases Research Institute, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| |
Collapse
|
39
|
Ye L, Ma S, Robinson BW, Creaney J. Immunotherapy strategies for mesothelioma - the role of tumor specific neoantigens in a new era of precision medicine. Expert Rev Respir Med 2018; 13:181-192. [PMID: 30596292 DOI: 10.1080/17476348.2019.1563488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy has long been considered a potential therapy for malignant mesothelioma and is currently being pursued as such. Some of the early phase clinical trials involving immunomodulators have demonstrated encouraging results and numerous clinical trials are underway to further investigate this treatment approach in various treatment settings and larger patient cohorts. Areas covered: This review summarizes the current and emerging clinical evidence for checkpoint blockade and other immunotherapeutic strategies in mesothelioma. The mesothelioma tumor immune microenvironment and mutational landscape are also discussed, including their impact on treatment strategies. We also provide an evaluation of the current evidence for neoantigen targeted personalized immunotherapy. Expert opinion: Immune checkpoint inhibitors work by unleashing the host immune response against probable neoantigens. Despite impressive activity in a small subset of patients and the potential for prolonged responses, most patients experience treatment failure. Neoantigen vaccines provide a potential complementary therapeutic strategy by increasing the immunogenic antigen load, which can lead to an increased tumor specific immune response. Further research is needed explore this treatment option in mesothelioma and technological advances are required to translate this concept into clinical practice.
Collapse
Affiliation(s)
- Linda Ye
- a Department of Medical Oncology , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Shaokang Ma
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia
| | - Bruce W Robinson
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Jenette Creaney
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia.,d Institute of Respiratory Health , University of Western Australia , Nedlands , Australia
| |
Collapse
|
40
|
Complex Immune Contextures Characterise Malignant Peritoneal Mesothelioma: Loss of Adaptive Immunological Signature in the More Aggressive Histological Types. J Immunol Res 2018; 2018:5804230. [PMID: 30510965 PMCID: PMC6231377 DOI: 10.1155/2018/5804230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 01/01/2023] Open
Abstract
Malignant peritoneal mesothelioma (MpM), arising in the setting of local inflammation, is a rare aggressive tumour with a poor prognosis and limited therapeutic options. The three major MpM histological variants, epithelioid (E-MpMs), biphasic, and sarcomatoid MpMs (S-MpMs), are characterised by an increased aggressiveness and enhanced levels of EZH2 expression. To investigate the MpM immune contexture along the spectrum of MpM histotypes, an extended in situ analysis was performed on a series of 14 cases. Tumour-infiltrating immune cells and their functionality were assessed by immunohistochemistry, immunofluorescence, qRT-PCR, and flow cytometry analysis. MpMs are featured by a complex immune landscape modulated along the spectrum of MpM variants. Tumour-infiltrating T cells and evidence for pre-existing antitumour immunity are mainly confined to E-MpMs. However, Th1-related immunological features are progressively impaired in the more aggressive forms of E-MpMs and completely lost in S-MpM. Concomitantly, E-MpMs show also signs of active immune suppression, such as the occurrence of Tregs and Bregs and the expression of the immune checkpoint inhibitory molecules PD1 and PDL1. This study enriches the rising rationale for immunotherapy in MpM and points to the E-MpMs as the most immune-sensitive MpM histotypes, but it also suggests that synergistic interventions aimed at modifying the tumour microenvironment (TME) should be considered to make immunotherapy beneficial for these patients.
Collapse
|
41
|
Noordam L, Kaijen MEH, Bezemer K, Cornelissen R, Maat LAPWM, Hoogsteden HC, Aerts JGJV, Hendriks RW, Hegmans JPJJ, Vroman H. Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy. Oncoimmunology 2018; 7:e1474318. [PMID: 30524884 PMCID: PMC6279421 DOI: 10.1080/2162402x.2018.1474318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Rationale: Regulatory T cells (Treg) play a pivotal role in the immunosuppressive tumor micro-environment in cancer, including mesothelioma. Recently, the combination of autologous tumor lysate-pulsed dendritic cells (DC) and metronomic cyclophosphamide (mCTX) was reported as a feasible and well-tolerated treatment in malignant pleural mesothelioma patients and further as a method to reduce circulating Tregs. Objectives: The aim of this study was to establish the immunological effects of mCTX alone and in combination with DC-based immunotherapy on circulating Treg and other T cell subsets in mesothelioma patients. Methods: Ten patients received mCTX and DC-based immunotherapy after chemotherapy (n = 5) or chemotherapy and debulking surgery (n = 5). Peripheral blood mononuclear cells before, during and after treatment were analyzed for various Treg and other lymphocyte subsets by flow cytometry. Results: After one week treatment with mCTX, both activated FoxP3hi and naïve CD45RA+ Tregs were effectively decreased in all patients. In addition, a shift from naïve and central memory towards effector memory and effector T cells was observed. Survival analysis showed that overall Treg levels before treatment were not correlated with survival, however, nTreg levels before treatment were positively correlated with survival. After completion of mCTX and DC-based immunotherapy treatment, all cell subsets returned to baseline levels, except for the proportions of proliferating EM CD8 T cells, which increased. Conclusions: mCTX treatment effectively reduced the proportions of circulating Tregs, both aTregs and nTregs, thereby favoring EM T cell subsets in mesothelioma patients. Interestingly, baseline levels of nTregs were positively correlated to overall survival upon complete treatment.
Collapse
Affiliation(s)
- Lisanne Noordam
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Margaretha E H Kaijen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lex A P W M Maat
- Department of Cardio-Thoracic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Henk C Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joost P J J Hegmans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Fear VS, Tilsed C, Chee J, Forbes CA, Casey T, Solin JN, Lansley SM, Lesterhuis WJ, Dick IM, Nowak AK, Robinson BW, Lake RA, Fisher SA. Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncoimmunology 2018; 7:e1494111. [PMID: 30288361 DOI: 10.1080/2162402x.2018.1494111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is an aggressive asbestos induced cancer with extremely poor prognosis and limited treatment options. Immune checkpoint blockade (ICPB) has demonstrated effective therapy in melanoma and is now being applied to other cancers, including mesothelioma. However, the efficacy of ICPB and which immune checkpoint combinations constitute the best therapeutic option for mesothelioma have yet to be fully elucidated. Here, we used our well characterised mesothelioma tumour model to investigate the efficacy of different ICBP treatments to generate effective therapy for mesothelioma. We show that tumour resident regulatory T cell co-express high levels of CTLA-4, OX40 and GITR relative to T effector subsets and that these receptors are co-expressed on a large proportion of cells. Targeting any of CTLA-4, OX40 or GITR individually generated effective responses against mesothelioma. Furthermore, the combination of αCTLA-4 and αOX40 was synergistic, with an increase in complete tumour regressions from 20% to 80%. Other combinations did not synergise to enhance treatment outcomes. Finally, an early pattern in T cell response was predictive of response, with activation status and ICP receptor expression profile of T effector cells harvested from tumour and dLN correlating with response to immunotherapy. Taken together, these data demonstrate that combination ICPB can work synergistically to induce strong, durable immunity against mesothelioma in an animal model.
Collapse
Affiliation(s)
- Vanessa S Fear
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Caitlin Tilsed
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Catherine A Forbes
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Thomas Casey
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia
| | - Sally M Lansley
- Centre for Respiratory Health, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - William Joost Lesterhuis
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Ian M Dick
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
43
|
Bibby AC, Walker S, Maskell NA. Are intra-pleural bacterial products associated with longer survival in adults with malignant pleural effusions? A systematic review. Lung Cancer 2018; 122:249-256. [PMID: 30032840 DOI: 10.1016/j.lungcan.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intra-pleural bacteria are effective pleurodesis agents in malignant pleural effusions. However, their relationship with survival is unclear. OBJECTIVES We undertook a comprehensive, structured evaluation of survival outcomes in adults with malignant pleural effusions treated with intra-pleural bacterial products. DATA SOURCES Medline, Embase, Cochrane library, Clinical Trials Registers and Open Grey. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS Randomised controlled trials and non-randomised comparative studies were included, if the population included adults with malignant pleural effusions. Interventions of interest were any intra-pleural bacterial product, compared with placebo, alternative intra-pleural drug, or no treatment. Survival outcomes were collected. STUDY APPRAISAL AND SYNTHESIS METHODS Two reviewers independently screened studies for eligibility, assessed papers for risk of bias and extracted data. Narrative synthesis was performed as high heterogeneity between studies precluded meta-analysis. RESULTS 631 studies were identified, of which 14 were included. All were at high or unclear risk of bias in at least one domain. Six studies reported a survival benefit associated with intra-pleural bacterial products, whilst 8 reported no difference. Non-randomised studies and studies published prior to 2000 were more likely to report survival benefits. LIMITATIONS There was high heterogeneity between studies, which limited the generalisability of findings. Publication bias may have affected the review as five full-text papers were unobtainable, and survival outcomes were missing in a further five. CONCLUSIONS There is a lack of high quality evidence regarding the relationship between intra-pleural bacterial products and survival. Implications of key findings: Well-designed, prospective randomised trials are needed, to determine whether intra-pleural bacterial products can improve survival in pleural malignancy. PROSPERO REGISTRATION NUMBER CRD42017058067.
Collapse
Affiliation(s)
- Anna C Bibby
- Academic Respiratory Unit, Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK; North Bristol NHS Trust, Bristol, UK.
| | - Steven Walker
- Academic Respiratory Unit, Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK; North Bristol NHS Trust, Bristol, UK
| | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, UK; North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
44
|
Calabrò L, Morra A, Giannarelli D, Amato G, D'Incecco A, Covre A, Lewis A, Rebelatto MC, Danielli R, Altomonte M, Di Giacomo AM, Maio M. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. THE LANCET RESPIRATORY MEDICINE 2018; 6:451-460. [DOI: 10.1016/s2213-2600(18)30151-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
45
|
Minnema-Luiting J, Vroman H, Aerts J, Cornelissen R. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma. Int J Mol Sci 2018; 19:ijms19041041. [PMID: 29601534 PMCID: PMC5979422 DOI: 10.3390/ijms19041041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.
Collapse
Affiliation(s)
- Jorien Minnema-Luiting
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Heleen Vroman
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Joachim Aerts
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Robin Cornelissen
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Heterogeneous Contributing Factors in MPM Disease Development and Progression: Biological Advances and Clinical Implications. Int J Mol Sci 2018; 19:ijms19010238. [PMID: 29342862 PMCID: PMC5796186 DOI: 10.3390/ijms19010238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) tumors are remarkably aggressive and most patients only survive for 5–12 months; irrespective of stage; after primary symptoms appear. Compounding matters is that MPM remains unresponsive to conventional standards of care; including radiation and chemotherapy. Currently; instead of relying on molecular signatures and histological typing; MPM treatment options are guided by clinical stage and patient characteristics because the mechanism of carcinogenesis has not been fully elucidated; although about 80% of cases can be linked to asbestos exposure. Several molecular pathways have been implicated in the MPM tumor microenvironment; such as angiogenesis; apoptosis; cell-cycle regulation and several growth factor-related pathways predicted to be amenable to therapeutic intervention. Furthermore, the availability of genomic data has improved our understanding of the pathobiology of MPM. The MPM genomic landscape is dominated by inactivating mutations in several tumor suppressor genes; such as CDKN2A; BAP1 and NF2. Given the complex heterogeneity of the tumor microenvironment in MPM; a better understanding of the interplay between stromal; endothelial and immune cells at the molecular level is required; to chaperone the development of improved personalized therapeutics. Many recent advances at the molecular level have been reported and several exciting new treatment options are under investigation. Here; we review the challenges and the most up-to-date biological advances in MPM pertaining to the molecular pathways implicated; progress at the genomic level; immunological progression of this fatal disease; and its link with developmental cell pathways; with an emphasis on prognostic and therapeutic treatment strategies.
Collapse
|
47
|
Riganti C, Lingua MF, Salaroglio IC, Falcomatà C, Righi L, Morena D, Picca F, Oddo D, Kopecka J, Pradotto M, Libener R, Orecchia S, Bironzo P, Comunanza V, Bussolino F, Novello S, Scagliotti GV, Di Nicolantonio F, Taulli R. Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology 2017; 7:e1398874. [PMID: 29399399 DOI: 10.1080/2162402x.2017.1398874] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Systemic treatment of malignant pleural mesothelioma (MPM) is moderately active for the intrinsic pharmacological resistance of MPM cell and its ability to induce an immune suppressive environment. Here we showed that the expression of bromodomain (BRD) proteins BRD2, BRD4 and BRD9 was significantly higher in human primary MPM cells compared to normal mesothelial cells (HMC). Nanomolar concentrations of bromodomain inhibitors (BBIs) JQ1 or OTX015 impaired patient-derived MPM cell proliferation and induced cell-cycle arrest without affecting apoptosis. Importantly, BBIs primed MPM cells for immunogenic cell death, by increasing extracellular release of ATP and HMGB1, and by promoting membrane exposure of calreticulin and ERp57. Accordingly, BBIs activated dendritic cell (DC)-mediated phagocytosis and expansion of CD8+ T-lymphocyte clones endorsed with antitumor cytotoxic activity. BBIs reduced the expression of the immune checkpoint ligand PD-L1 in MPM cells; while both CD8+ and CD4+ T-lymphocytes co-cultured with JQ1-treated MPM cells decreased PD-1 expression, suggesting a disruption of the immune-suppressive PD-L1/PD-1 axis. Additionally, BBIs reduced the expansion of myeloid-derived suppressor cells (MDSC) induced by MPM cells. Finally, a preclinical model of MPM confirmed that the anti-tumor efficacy of JQ1 was largely due to its ability to restore an immune-active environment, by increasing intra-tumor DC and CD8+ T-lymphocytes, and decreasing MDSC. Thereby, we propose that, among novel drugs, BBIs should be investigated for MPM treatment for their combined activity on both tumor cells and surrounding immune-environment.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Chiara Falcomatà
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Daniele Oddo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Monica Pradotto
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio Vittorio Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | | |
Collapse
|
48
|
Klampatsa A, Haas AR, Moon EK, Albelda SM. Chimeric Antigen Receptor (CAR) T Cell Therapy for Malignant Pleural Mesothelioma (MPM). Cancers (Basel) 2017; 9:cancers9090115. [PMID: 28862644 PMCID: PMC5615330 DOI: 10.3390/cancers9090115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapy has now become a recognized approach to treating cancers. In addition to checkpoint blockade, adoptive T cell transfer (ACT) using chimeric antigen receptors (CARs) has shown impressive clinical outcomes in leukemias and is now being explored in solid tumors. CARs are engineered receptors, stably or transiently transduced into T cells, that aim to enhance T cell effector function by recognizing and binding to a specific tumor-associated antigen. In this review, we provide a summary of CAR T cell preclinical studies and clinical trials for malignant pleural mesothelioma (MPM), a rare, locally invasive pleural cancer with poor prognosis. We list other attractive potential targets for CAR T cell therapy for MPM, and discuss augmentation strategies of CAR T cell therapy with other forms of immunotherapy in this disease.
Collapse
Affiliation(s)
- Astero Klampatsa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew R Haas
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Zeltsman M, Dozier J, McGee E, Ngai D, Adusumilli PS. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl Res 2017; 187:1-10. [PMID: 28502785 PMCID: PMC5581988 DOI: 10.1016/j.trsl.2017.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Immunotherapy is a promising field that harnesses the power of the immune system as a therapeutic agent for cancer treatment. Beneficial outcomes shown in patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM) with relatively higher tumor-infiltrating T cells, combined with impressive responses obtained in a cohort of patients with NSCLC following checkpoint blockade therapy, lays a strong foundation to promote effector immune responses in these patients. One such approach being investigated is administration of tumor antigen-targeted T cells with transduction of a chimeric antigen receptor (CAR). CARs are synthetic receptors that enhance T-cell antitumor effector function and have gained momentum to investigate in solid tumors based on recent successes of clinical trials treating patients with B-cell hematologic malignancies. This review summarizes target antigens for CAR T-cell therapy that are being investigated in preclinical studies and clinical trials for both NSCLC and MPM patients. We discuss the rationale for combination immunotherapies for NSCLC and MPM patients. Additionally, we have highlighted the challenges and strategies for overcoming the obstacles facing translation of CAR T-cell therapy to solid tumors.
Collapse
Affiliation(s)
- Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jordan Dozier
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Erin McGee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Ngai
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
50
|
Guazzelli A, Bakker E, Krstic-Demonacos M, Lisanti MP, Sotgia F, Mutti L. Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy 2017; 9:273-280. [PMID: 28231719 DOI: 10.2217/imt-2016-0123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy is an emerging therapeutic strategy with a promising clinical outcome in some solid tumors, particularly metastatic melanoma. One approach to immunotherapy is immune checkpoint inhibitors, such as blockage of CTLA-4 and PD-1/PD-L1. This special report aims to describe the state of clinical trials of tremelimumab in patients with unresectable malignant mesothelioma (MM) in particular with regard to the clinical efficacy, safety and tolerability. Criticism and perspective of this treatment are also discussed. Biological and clinical considerations rule out the use of tremelimumab as single agent for MM and, more generally, the use of immune checkpoint inhibitors for MM is still largely questionable and not supported by evidences.
Collapse
Affiliation(s)
- Alice Guazzelli
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Emyr Bakker
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Michael P Lisanti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Federica Sotgia
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Luciano Mutti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| |
Collapse
|