1
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Page C, Cazzola M. Bifunctional Drugs for the Treatment of Respiratory Diseases. Handb Exp Pharmacol 2017; 237:197-212. [PMID: 27787715 DOI: 10.1007/164_2016_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, there has been a steady increase in the use of fixed dose combinations for the treatment of a range of diseases, including cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed dose combinations, including combinations of a long-acting β2-agonist (LABA) and an inhaled corticosteroid (ICS), and combinations of LABAs and long-acting muscarinic receptor antagonists (LAMAs). There are now also "triple inhaler" fixed dose combinations (containing a LABA, LAMA and ICS) under development and already being made available in clinical practice, with the first such triple combination having been approved in India. The use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule that we have called "bifunctional drugs". In this review we have discussed the state of the art of bifunctional drugs that can be categorized as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs, bifunctional anti-inflammatory drugs and bifunctional mucolytic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Mario Cazzola
- Division of Respiratory Medicine and Research Unit of Respiratory Clinical Pharmacology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Abstract
Theophylline is an orally acting xanthine that has been used since 1937 for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, in most treatment guidelines, xanthines have now been consigned to third-line therapy because of their narrow therapeutic window and propensity for drug-drug interactions. However, lower than conventional doses of theophylline considered to be bronchodilator are now known to have anti-inflammatory actions of relevance to the treatment of respiratory disease. The molecular mechanism(s) of action of theophylline are not well understood, but several potential targets have been suggested including non-selective inhibition of phosphodiesterases (PDE), inhibition of phosphoinositide 3-kinase, adenosine receptor antagonism and increased activity of certain histone deacetylases. Although theophylline has a narrow therapeutic window, other xanthines are in clinical use that are claimed to have a better tolerability such as doxofylline and bamifylline. Nonetheless, xanthines still play an important role in the treatment of asthma and COPD as they can show clinical benefit in patients who are refractory to glucocorticosteroid therapy, and withdrawal of xanthines from patients causes worsening of disease, even in patients taking concomitant glucocorticosteroids.More recently the orally active selective PDE4 inhibitor, roflumilast, has been introduced into clinical practice for the treatment of severe COPD on top of gold standard treatment. This drug has been shown to improve lung function in patients with severe COPD and to reduce exacerbations, but is dose limited by a range side effect, particularly gastrointestinal side effects.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - C P Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|
4
|
Singh D, Leaker B, Boyce M, Nandeuil MA, Collarini S, Mariotti F, Santoro D, Barnes PJ. A novel inhaled phosphodiesterase 4 inhibitor (CHF6001) reduces the allergen challenge response in asthmatic patients. Pulm Pharmacol Ther 2016; 40:1-6. [PMID: 27373438 DOI: 10.1016/j.pupt.2016.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
CHF6001 is an inhaled phosphodiesterase 4 (PDE4) inhibitor in development for the treatment of obstructive lung diseases. The efficacy and safety of CHF6001 were investigated in a double blind, placebo controlled, 3-way cross-over study using the allergen challenge model. Thirty-six atopic asthmatics who were not taking inhaled corticosteroids and who demonstrated a late asthmatic response (LAR) to inhaled allergen at screening were randomised to receive CHF6001 400 μg or 1200 μg or placebo administered once a day using a dry powder inhaler. The three treatment periods were 9 days; allergen challenges were performed on day 9 and induced sputum was obtained after 10 h from challenge. Washout periods between treatments were up to 5 weeks. Both CHF6001 doses significantly attenuated the LAR; the primary endpoint analysis showed that CHF6001 400 μg and 1200 μg caused reductions of 19.7% (p = 0.015) and 28.2% (p < 0.001) respectively of the weighted FEV1 AUC4-10h compared with placebo. The difference between the CHF6001 doses was not statistically significant (p = 0.223). Compared with placebo, CHF6001 caused greater reduction in sputum eosinophil counts, although these changes were not statistically significant. CHF6001 was well tolerated, with similar numbers of adverse events in each treatment period. This inhaled PDE4 inhibitor has the potential to provide clinical benefits in patients with atopic asthma.
Collapse
Affiliation(s)
- D Singh
- University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester, M23 9QZ, United Kingdom.
| | - B Leaker
- Respiratory Clinical Trials Ltd, 18-22 Queen Anne St, London, W1G 8HU, United Kingdom
| | - M Boyce
- Hammersmith Medicines Research, Cumberland Avenue, London, NW10 7EW, United Kingdom
| | - M A Nandeuil
- Chiesi S.A., 11 Avenue Dubonnet, 92400, Courbevoie, France
| | - S Collarini
- Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43122, Parma, Italy
| | - F Mariotti
- Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43122, Parma, Italy
| | - D Santoro
- Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43122, Parma, Italy
| | - P J Barnes
- National Heart & Lung Institute, Imperial College, London, SW3 6LY, United Kingdom
| |
Collapse
|
5
|
Leaker BR, Barnes PJ, O'Connor BJ, Ali FY, Tam P, Neville J, Mackenzie LF, MacRury T. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin Exp Allergy 2015; 44:1146-53. [PMID: 25040039 DOI: 10.1111/cea.12370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND SH2-containing inositol-5'-phosphatase 1 (SHIP1) is an endogenous inhibitor of the phosphoinositide-3-kinase pathway that is involved in the activation and chemotaxis of inflammatory cells. AQX-1125 is a first-in-class, oral SHIP1 activator with a novel anti-inflammatory mode of action. OBJECTIVE To evaluate the effects of AQX-1125 on airway responses to allergen challenge in mild-to-moderate asthmatic patients. METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was performed in 22 steroid-naïve mild-to-moderate asthmatics with a documented late-phase response to inhaled allergen (LAR). AQX-1125 (450 mg daily) or placebo was administered orally for 7 days. Allergen challenge was performed on day 6 (2 h postdose), followed by methacholine challenge (day 7), and induced sputum collection and fractional exhaled nitric oxide (FeNO). RESULTS AQX-1125 significantly attenuated the late-phase response compared with placebo (FEV1 4-10 h: mean difference 150 mL, 20%; P = 0.027) and significantly increased the minimum FEV1 during LAR (mean difference 180 mL; P = 0.014). AQX-1125 had no effect on the early-phase response. AQX-1125 showed a trend in reduction of sputum eosinophils, neutrophils and macrophages although this did not achieve significance as there were only 11 paired samples for analysis. There was no effect on methacholine responsiveness or FeNO. Pharmacokinetic data showed AQX-1125 was rapidly absorbed with geometric mean Cmax and AUC0-24 h values of 1417 ng/mL and 16 727 h ng/mL, respectively. AQX-1125 was well tolerated, but mild GI side-effects (dyspepsia, nausea and abdominal pain) were described in 4/22 subjects on active treatment. These side-effects were mild self-limiting, required no further treatment and did not lead to discontinuation of therapy. CONCLUSION AND CLINICAL RELEVANCE AQX-1125, a novel oral SHIP1 activator, significantly reduces the late response to allergen challenge, with a trend to reduce airway inflammation. AQX-1125 was safe and well tolerated and merits further investigation in inflammatory disorders.
Collapse
Affiliation(s)
- B R Leaker
- Respiratory Clinical Trials Ltd., London, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Page CP. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2014; 165:152-64. [PMID: 25532037 DOI: 10.1159/000368800] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Xanthines like theophylline have long been recognised as being effective drugs for the treatment of asthma and chronic obstructive pulmonary disease (COPD). They are of interest as they possess both anti-inflammatory and bronchodilator activity in the same molecule. Since the discovery of phosphodiesterases (PDEs) in the late 1950s, it has been suggested that xanthines work, in part, by acting as non-selective PDE inhibitors. However, it has also been suggested that the ability of xanthines to non-selectively inhibit PDEs contributes to their many unwanted side effects, thus limiting their use since the arrival of inhaled drugs with more favourable safety profiles. As our understanding of PDEs has improved over the last 30 years, and with the recognition that the distribution of different PDEs varies across different cell types, this family of enzymes has been widely investigated as targets for novel drugs. In particular, PDE3 in airway smooth muscle and PDE4 and PDE7 in inflammatory cells have been targeted to provide new bronchodilators and anti-inflammatory agents, respectively. This review discusses the progress made in this field over the last decade in the development of selective PDE inhibitors to treat COPD and asthma.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
7
|
Leaker BR, Singh D, Ali FY, Barnes PJ, O'Connor B. The effect of the novel phosphodiesterase-4 inhibitor MEM 1414 on the allergen induced responses in mild asthma. BMC Pulm Med 2014; 14:166. [PMID: 25351474 PMCID: PMC4228152 DOI: 10.1186/1471-2466-14-166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022] Open
Abstract
Background Inhaled allergen challenge is a standard method to study airway responses to inflammatory provocation and evaluate the therapeutic potential of novel anti-inflammatory compounds in asthma. MEM 1414 is a novel oral PDE4 inhibitor with high affinity and selectivity creating the potential for an improved side effect profile vs non-selective PDE inhibitors. We evaluated the tolerability and effect of MEM 1414 on airway responses in mild asthmatics. Methods A randomised double blind placebo controlled cross over study in two centres, in which sixteen steroid naïve atopic asthmatics were challenged with inhaled allergen. Subjects were dosed with MEM 1414 (600 mg) or placebo, twice daily orally for 7 days. Allergen challenge was performed on day 6 (2 hours post-dose), and methacholine responsiveness was measured 24 hours post allergen (day 7). Biomarkers of drug effects using ex vivo LPS stimulation of whole blood production of interleukin (IL)-6 and leukotriene (LT)-B4 and fractional exhaled nitric oxide (FeNO) were measured on day 6 (0, 2 and 8 hours post-dose). Plasma pharmacokinetics were measured on days 1, 6 and 7. The primary endpoint was the effect on late asthmatic response to allergen. Results Treatment with MEM 1414 abrogated the late phase response with a mean difference in FEV1 (LAR 3–10 hours) of 104 ml (25%) vs placebo (p < 0.005), with no effect on the early response. Biomarker responses were also attenuated with MEM 1414 treatment with reductions in LPS-stimulated whole blood assays for TNFα at 8 hours (p < 0.03) and LTB4 at 24 hours (p = 0.0808) with no change in the IL-6 response. The MEM 1414 treatment phase was associated with higher incidence of nausea (6/16 MEM 1414 vs 2/16 placebo) and vomiting (3/16 vs 0/16 placebo). Conclusions Oral MEM 1414, a novel PDE4 inhibitor, significantly reduces the late response following inhaled allergen challenge. MEM 1414 also inhibited whole blood assays of cytokine production from inflammatory cells. MEM 1414 was associated with a typical adverse event profile of PDE4 inhibitors, namely nausea and vomiting although these were mild side effects. Trial registration number Current controlled trials ISRCTN48047493.
Collapse
Affiliation(s)
- Brian R Leaker
- Respiratory Clinical Trials Ltd, 20 Queen Anne Street, London W1G 8HU, UK.
| | | | | | | | | |
Collapse
|
8
|
Franciosi LG, Diamant Z, Banner KH, Zuiker R, Morelli N, Kamerling IMC, de Kam ML, Burggraaf J, Cohen AF, Cazzola M, Calzetta L, Singh D, Spina D, Walker MJA, Page CP. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. THE LANCET RESPIRATORY MEDICINE 2013; 1:714-27. [PMID: 24429275 DOI: 10.1016/s2213-2600(13)70187-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many patients with asthma or chronic obstructive pulmonary disease (COPD) routinely receive a combination of an inhaled bronchodilator and anti-inflammatory glucocorticosteroid, but those with severe disease often respond poorly to these classes of drug. We assessed the efficacy and safety of a novel inhaled dual phosphodiesterase 3 (PDE3) and PDE4 inhibitor, RPL554 for its ability to act as a bronchodilator and anti-inflammatory drug. METHODS Between February, 2009, and January, 2013, we undertook four proof-of-concept clinical trials in the Netherlands, Italy, and the UK. Nebulised RPL554 was examined in study 1 for safety in 18 healthy men who were randomly assigned (1:1:1) to receive an inhaled dose of RPL554 (0·003 mg/kg or 0·009 mg/kg) or placebo by a computer-generated randomisation table. Subsequently, six non-smoking men with mild allergic asthma received single doses of RPL554 (three received 0·009 mg/kg and three received 0·018 mg/kg) in an open-label, adaptive study, and then ten men with mild allergic asthma were randomly assigned to receive placebo or RPL554 (0·018 mg/kg) by a computer-generated randomisation table for an assessment of safety, bronchodilation, and bronchoprotection. Study 2 examined the reproducibility of the bronchodilator response to a daily dose of nebulised RPL554 (0·018 mg/kg) for 6 consecutive days in a single-blind (patients masked), placebo-controlled study in 12 men with clinically stable asthma. The safety and bronchodilator effect of RPL554 (0·018 mg/kg) was assessed in study 3, an open-label, placebo-controlled crossover trial, in 12 men with mild-to-moderate COPD. In study 4, a placebo-controlled crossover trial, the effect of RPL554 (0·018 mg/kg) on lipopolysaccharide-induced inflammatory cell infiltration in induced sputum was investigated in 21 healthy men. In studies 3 and 4, randomisation was done by computer-generated permutation with a block size of two for study 3 and four for study 4. Unless otherwise stated, participants and clinicians were masked to treatment assignment. Analyses were by intention to treat. All trials were registered with EudraCT, numbers 2008-005048-17, 2011-001698-22, 2010-023573-18, and 2012-000742-34. FINDINGS Safety was a primary endpoint of studies 1 and 3 and a secondary endpoint of studies 2 and 4. Overall, RPL554 was well tolerated, and adverse events were generally mild and of equal frequency between placebo and active treatment groups. Efficacy was a primary endpoint of study 2 and a secondary endpoint of studies 1 and 3. Study 1 measured change in forced expiratory volume in 1 s (FEV1) and provocative concentration of methacholine causing a 20% fall in FEV1 (PC20MCh) in participants with asthma. RPL554 produced rapid bronchodilation in patients with asthma with an FEV1 increase at 1 h of 520 mL (95% CI 320-720; p<0·0001), which was a 14% increase from placebo, and increased the PC20MCh by 1·5 doubling doses (95% CI 0·63-2·28; p=0·004) compared with placebo. The primary endpoint of study 2 was maximum FEV1 reached during 6 h after dosing with RPL554 in patients with asthma. RPL554 produced a similar maximum mean increase in FEV1 from placebo on day 1 (555 mL, 95% CI 442-668), day 3 (505 mL, 392-618), and day 6 (485 mL, 371-598; overall p<0·0001). A secondary endpoint of study 3 (patients with COPD) was the increase from baseline in FEV1. RPL554 produced bronchodilation with a mean maximum FEV1 increase of 17·2% (SE 5·2). In healthy individuals (study 4), the primary endpoint was percentage change in neutrophil counts in induced sputum 6 h after lipopolysaccharide challenge. RPL554 (0·018 mg/kg) did not significantly reduce the percentage of neutrophils in sputum (80·3% in the RPL554 group vs 84·2% in the placebo group; difference -3·9%, 95% CI -9·4 to 1·6, p=0·15), since RPL554 significantly reduced neutrophils (p=0·002) and total cells (p=0·002) to a similar degree. INTERPRETATION In four exploratory studies, inhaled RPL554 is an effective and well tolerated bronchodilator, bronchoprotector, and anti-inflammatory drug and further studies will establish the full potential of this new drug for the treatment of patients with COPD or asthma. FUNDING Verona Pharma.
Collapse
Affiliation(s)
- Lui G Franciosi
- Verona Pharma, London, UK; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Zuzana Diamant
- Centre for Human Drug Research, Leiden, Netherlands; Skane University, Department of Respiratory Diseases and Allergology, Lund, Sweden; University Medical Centre Groningen, Department of General Practice, Groningen, Netherlands
| | | | - Rob Zuiker
- Centre for Human Drug Research, Leiden, Netherlands
| | | | | | | | | | - Adam F Cohen
- Centre for Human Drug Research, Leiden, Netherlands
| | - Mario Cazzola
- Unit of Respiratory Clinical Pharmacology, Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Respiratory Rehabilitation, San Raffaele Pisana Hospital, IRCCS, Rome, Italy
| | - Dave Singh
- University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester Foundations Trust, Manchester, UK
| | - Domenico Spina
- Verona Pharma, London, UK; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Michael J A Walker
- Verona Pharma, London, UK; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Clive P Page
- Verona Pharma, London, UK; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
9
|
Beghè B, Rabe KF, Fabbri LM. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med 2013; 188:271-8. [PMID: 23656508 DOI: 10.1164/rccm.201301-0021pp] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that catalyze the breakdown of cAMP and/or cyclic guanosine monophosphate (GMP) to their inactive form. PDE4 is the main selective cAMP-metabolizing enzyme in inflammatory and immune cells. Because PDE4 is highly expressed in leukocytes and other inflammatory cells involved in the pathogenesis of inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), inhibition of PDE4 has been predicted to have an antiinflammatory effect and thus therapeutic efficacy. The limited and inconsistent efficacy and side effects of the early compounds made their further development less desirable in asthma, given the excellent efficacy/tolerability ratio of inhaled steroids. The lack of effective antiinflammatory drug treatment for COPD has thus shifted the interest in development toward COPD. Roflumilast, the only PDE4 inhibitor that has reached the market because of the good efficacy/tolerability ratio, is recommended for patients with COPD with severe airflow limitation, symptoms of chronic bronchitis, and a history of exacerbations, whose disease is not adequately controlled by long-acting bronchodilators. Albeit safe, it maintains significant side effects (diarrhea, nausea, weight loss) that make it intolerable in some patients. Future developments of PDE4 inhibitors include extended indications of roflumilast (1) in patients with COPD, and (2) in other respiratory (e.g., asthma) and nonrespiratory chronic inflammatory/metabolic conditions (e.g., diabetes), as well as (3) the development of new molecules with PDE4 inhibitory properties with an improved efficacy/tolerability profile.
Collapse
Affiliation(s)
- Bianca Beghè
- Section of Respiratory Diseases, Department of Oncology, Haematology, and Respiratory Diseases, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | | | | |
Collapse
|
10
|
Townsend EA, Emala CW. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am J Physiol Lung Cell Mol Physiol 2013; 305:L396-403. [PMID: 23873842 DOI: 10.1152/ajplung.00125.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists.
Collapse
|
11
|
Can we find better bronchodilators to relieve asthma symptoms? J Allergy (Cairo) 2012; 2012:321949. [PMID: 23091500 PMCID: PMC3467860 DOI: 10.1155/2012/321949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 01/27/2023] Open
Abstract
Bronchodilators are the first line therapy during acute asthmatic exacerbations to reverse airway obstruction primarily by relaxing airway smooth muscle. Only three categories of bronchodilators exist in clinical practice: β-adrenergic agonists, anticholinergics, and methylxanthines. Each of these categories have specific drugs dating back to the early 20th century, raising the question of whether or not we can find better bronchodilators. While caffeine, theophylline, atropine, and epinephrine were the first generations of therapeutics in each of these drug classes, there is no question that improvements have been made in the bronchodilators in each of these classes. In the following editorial, we will briefly describe new classes of potential bronchodilators including: novel PDE inhibitors, natural phytotherapeutics, bitter taste receptor ligands, and chloride channel modulators, which have the potential to be used alone or in combination with existing bronchodilators to reverse acute airway obstruction in the future.
Collapse
|
12
|
Siddiqui S, Redhu NS, Ojo OO, Liu B, Irechukwu N, Billington C, Janssen L, Moir LM. Emerging airway smooth muscle targets to treat asthma. Pulm Pharmacol Ther 2012; 26:132-44. [PMID: 22981423 DOI: 10.1016/j.pupt.2012.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/28/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.
Collapse
Affiliation(s)
- Sana Siddiqui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain, Montréal, Québec H2X 2P2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Discovery of a novel orally active PDE-4 inhibitor effective in an ovalbumin-induced asthma murine model. Eur J Pharmacol 2012; 685:141-8. [PMID: 22554769 DOI: 10.1016/j.ejphar.2012.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022]
Abstract
Phosphodiesterase-4 (PDE-4) is responsible for metabolizing adenosine 3',5'-cyclic monophosphate that reduces the activation of a wide range of inflammatory cells including eosinophils. PDE-4 inhibitors are under development for the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. Herein, we report a novel PDE-4 inhibitor, PDE-423 (3-[1-(3-cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid), which shows good in vitro and in vivo oral activities. PDE-423 exhibited in vitro IC(50)s of 140 nM and 550 nM in enzyme assay and cell-based assay, respectively. In vivo study using ovalbumin-induced asthmatic mice revealed that PDE-423 reduced methacholine-stimulated airway hyperreactivity in a dose-dependent manner by once daily oral administration (ED(50)=18.3 mg/kg), in parallel with decreased eosinophil peroxidase activity and improved lung histology. In addition, PDE-423 was effective in diminishing lipopolysaccharide-induced neutrophilia in vivo as well as in vitro. Oral administration of PDE-423 (100 mg/kg) had no effect on the duration of xylazine/ketamine-induced anesthesia and did not induce vomiting incidence in ferrets up to the dose of 1000 mg/kg. The present study indicates that a novel PDE-4 inhibitor, PDE-423, has good pharmacological profiles implicating this as a potential candidate for the development of a new anti-asthmatic drug.
Collapse
|
14
|
Page CP, Spina D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol 2012; 12:275-86. [PMID: 22497841 DOI: 10.1016/j.coph.2012.02.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Phosphodiesterases (PDEs) are a family of enzymes which catalyse the metabolism of the intracellular cyclic nucleotides, c-AMP and c-GMP that are expressed in a variety of cell types and in the context of respiratory diseases, It is now recognised that the use of PDE3, PDE4 and mixed PDE3/4 inhibitors can provide clinical benefit to patients with asthma or chronic obstructive pulmonary disease (COPD). The orally active PDE4 inhibitor Roflumilast-n-oxide has been approved for treatment of severe exacerbations of COPD as add-on therapy to standard drugs. This review discusses the involvement of PDEs in airway diseases and various strategies that are currently being pursued to improve efficacy and reduce side-effects of PDE4 inhibitors, including delivery via the inhaled route, mixed PDE inhibitors and/or antisense biologicals targeted towards PDE4.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Franklin Wilkins Building, King's College London, London SE1 9NH, UK.
| | | |
Collapse
|
15
|
Durrani K, Zakka FR, Ahmed M, Memon M, Siddique SS, Foster CS. Systemic Therapy With Conventional and Novel Immunomodulatory Agents for Ocular Inflammatory Disease. Surv Ophthalmol 2011; 56:474-510. [DOI: 10.1016/j.survophthal.2011.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 12/19/2022]
|
16
|
Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, Côté J, Duong M, Killian KJ, Milot J, Deschesnes F, Strinich T, Watson RM, Bredenbröker D, O'Byrne PM. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res 2011; 12:140. [PMID: 22029856 PMCID: PMC3219708 DOI: 10.1186/1465-9921-12-140] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022] Open
Abstract
Background Phosphodiesterase 4 (PDE4) inhibitors increase intracellular cyclic adenosine monophosphate (cAMP), leading to regulation of inflammatory cell functions. Roflumilast is a potent and targeted PDE4 inhibitor. The objective of this study was to evaluate the effects of roflumilast on bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation in mild asthmatic patients undergoing allergen inhalation challenge. Methods 25 subjects with mild allergic asthma were randomized to oral roflumilast 500 mcg or placebo, once daily for 14 days in a double-blind, placebo-controlled, crossover study. Allergen challenge was performed on Day 14, and FEV1 was measured until 7 h post challenge. Methacholine challenge was performed on Days 1 (pre-dose), 13 (24 h pre-allergen), and 15 (24 h post-allergen), and sputum induction was performed on Days 1, 13, 14 (7 h post-allergen), and 15. Results Roflumilast inhibited the allergen-induced late phase response compared to placebo; maximum % fall in FEV1 (p = 0.02) and the area under the curve (p = 0.01). Roflumilast had a more impressive effect inhibiting allergen-induced sputum eosinophils, neutrophils, and eosinophil cationic protein (ECP) at 7 h post-allergen (all p = 0.02), and sputum neutrophils (p = 0.04), ECP (p = 0.02), neutrophil elastase (p = 0.0001) and AHR (p = 0.004) at 24 h post-allergen. Conclusions This study demonstrates a protective effect of roflumilast on allergen-induced airway inflammation. The observed attenuation of sputum eosinophils and neutrophils demonstrates the anti-inflammatory properties of PDE4 inhibition and supports the roles of both cell types in the development of late phase bronchoconstriction and AHR. Trial Registration ClinicalTrials.gov: NCT01365533
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Page CP, Spina D. Phosphodiesterase inhibitors in the treatment of inflammatory diseases. Handb Exp Pharmacol 2011:391-414. [PMID: 21695650 DOI: 10.1007/978-3-642-17969-3_17] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphodiesterase 4 (PDE4) belongs to a family of enzymes which catalyzes the breakdown of 3, 5'-adenosine cyclic monophosphate (cAMP) and is ubiquitously expressed in inflammatory cells. There is little evidence that inflammatory diseases are caused by increased expression of this isoenzyme, although human inflammatory cell activity can be suppressed by selective PDE4 inhibitors. Consequently, there is intense interest in the development of selective PDE4 inhibitors for the treatment of a range of inflammatory diseases, including asthma, chronic obstructive pulmonary disease (COPD), inflammatory bowel disease, and psoriasis. Recent clinical trials with roflumilast in COPD have confirmed the therapeutic potential of targeting PDE4 and recently roflumilast has been approved for marketing in Europe and the USA, although side effects such as gastrointestinal disturbances, particularly nausea and emesis as well as headache and weight loss, may limit the use of this drug class, at least when administered by the oral route. However, a number of strategies are currently being pursued in attempts to improve clinical efficacy and reduce side effects of PDE4 inhibitors, including delivery via the inhaled route, development of nonemetic PDE4 inhibitors, mixed PDE inhibitors, and/or antisense biologicals targeted toward PDE4.
Collapse
Affiliation(s)
- C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, Franklin Wilkins Building, London SE1 9NH, UK.
| | | |
Collapse
|
18
|
Gozzard N, Hughes B, Warrellow G, Higgs G. Pharmacological characterization of the neonatally sensitized rabbit model and effects of a novel phosphodiesterase (PDE) 4 inhibitor. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1998.tb02269.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neil Gozzard
- Celltech Therapeutics, 216 Bath Road, Slough, Berkshire SL1 4EN
| | | | | | - Gerry Higgs
- Celltech Therapeutics, 216 Bath Road, Slough, Berkshire SL1 4EN
| |
Collapse
|
19
|
Diamant Z, Spina D. PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther 2011; 24:353-60. [PMID: 21255672 DOI: 10.1016/j.pupt.2010.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/05/2010] [Accepted: 12/24/2010] [Indexed: 01/21/2023]
Abstract
Roflumilast is a selective once daily, oral phosphodiesterase-4 inhibitor that has recently been registered in all European Union countries as novel targeted therapy for COPD, while FDA approval for the USA market is expected in 2011. In several phase III trials in patients with moderate to (very) severe COPD and in patients with symptoms of chronic bronchitis and recurrent exacerbations, roflumilast showed sustained clinical efficacy by improving lung function and by reducing exacerbation rates. These beneficial effects have also been demonstrated when added to long-acting bronchodilators (both LABA and LAMA), underscoring the anti-inflammatory activity of roflumilast in COPD. Pooled data analysis showed overall mild to moderate, mostly self-limiting adverse events, mainly consisting of nausea, diarrhea and weight loss. In this review we discuss the results of the 4 registration studies showing promising effects of roflumilast in COPD and provide an overview of the topics that still need to be addressed.
Collapse
Affiliation(s)
- Zuzana Diamant
- Erasmus Medical Center, Dept of Allergology, Rotterdam, The Netherlands.
| | | |
Collapse
|
20
|
Tenor H, Hatzelmann A, Beume R, Lahu G, Zech K, Bethke TD. Pharmacology, clinical efficacy, and tolerability of phosphodiesterase-4 inhibitors: impact of human pharmacokinetics. Handb Exp Pharmacol 2011:85-119. [PMID: 21695636 DOI: 10.1007/978-3-642-17969-3_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Since more than two decades anti-inflammatory effects of inhibitors of phosphodiesterase-4 have been described in numerous cellular and animal studies and were finally confirmed in clinical trials. The path from an early, pioneering study with Ro20-1724 showing reduction of psoriatric plaque size in 1979 to modern PDE4 inhibitors such as oral apremilast in development for psoriasis, the inhaled PDE4 inhibitor GSK256066 in development for asthma and COPD and finally roflumilast, the first PDE4 inhibitor approved and currently marketed as an oral, once-daily remedy for severe COPD was marked by large progress in chemical optimization based on improved understanding of PDE4 biology and drug-like properties determining the appropriate pharmacokinetic profile. In this chapter aspects of the pharmacology and clinical efficacy of PDE4 inhibitors, which have been in clinical development over the years are summarized with specific emphasis on their clinical pharmacokinetic properties.
Collapse
Affiliation(s)
- Hermann Tenor
- Nycomed GmbH, Byk Gulden Strasse 2, 78467 Konstanz, Germany,
| | | | | | | | | | | |
Collapse
|
21
|
Development of new drugs for the treatment of respiratory diseases: from concept to the clinic. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Adenosine receptor subtypes in airways responses of sensitized guinea-pigs to inhaled ovalbumin. Pulm Pharmacol Ther 2010; 23:355-64. [DOI: 10.1016/j.pupt.2010.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 03/05/2010] [Accepted: 03/30/2010] [Indexed: 11/23/2022]
|
23
|
Bhowmick B, Singh D. Novel anti-inflammatory treatments for asthma. Expert Rev Respir Med 2010; 2:617-29. [PMID: 20477297 DOI: 10.1586/17476348.2.5.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Inhaled corticosteroids do not suppress inflammation or control symptoms in all asthmatics. In particular, corticosteroid insensitivity exists in many patients and may potentially be reversible. There is a need to develop new anti-inflammatory therapies for this disease. This article critically reviews clinical trial data of novel anti-inflammatory drugs in asthma, encompassing specific anti-eosinophil therapies, including antisense chemokine receptor antagonists, anti-cytokine monoclonal antibodies and small-molecule approaches. We provide an insight into the possible future of asthma therapy by identifying drugs with the most promising therapeutic profile.
Collapse
Affiliation(s)
- Binita Bhowmick
- Medicines Evaluation Unit, The Langley Building, University Hospital of South Manchester NHS Trust, University of Manchester, Southmoor Road, Manchester M23 9QZ, UK.
| | | |
Collapse
|
24
|
Singh D, Petavy F, Macdonald AJ, Lazaar AL, O'Connor BJ. The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Respir Res 2010; 11:26. [PMID: 20193079 PMCID: PMC2841147 DOI: 10.1186/1465-9921-11-26] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 03/01/2010] [Indexed: 11/25/2022] Open
Abstract
GSK256066 is a selective phosphodiesterase 4 inhibitor that can be given by inhalation, minimising the potential for side effects. We evaluated the effects of GSK256066 on airway responses to allergen challenge in mild asthmatics. Methods In a randomised, double blind, cross-over study, 24 steroid naive atopic asthmatics with both early (EAR) and late (LAR) responses to inhaled allergen received inhaled GSK256066 87.5 mcg once per day and placebo for 7 days, followed by allergen challenge. Methacholine reactivity was measured 24 h post-allergen. Plasma pharmacokinetics were measured. The primary endpoint was the effect on LAR. Results GSK256066 significantly reduced the LAR, attenuating the fall in minimum and weighted mean FEV1 by 26.2% (p = 0.007) and 34.3% (p = 0.005) respectively compared to placebo. GSK256066 significantly reduced the EAR, inhibiting the fall in minimum and weighted mean FEV1 by 40.9% (p = 0.014) and 57.2% (p = 0.014) respectively compared to placebo. There was no effect on pre-allergen FEV1 or methacholine reactivity post allergen. GSK256066 was well tolerated, with low systemic exposure; plasma levels were not measurable after 4 hours in the majority of subjects. Conclusions GSK256066 demonstrated a protective effect on the EAR and LAR. This is the first inhaled PDE4 inhibitor to show therapeutic potential in asthma. Trial Registration This study is registered on clinicaltrials.gov NCT00380354
Collapse
Affiliation(s)
- Dave Singh
- The University of Manchester, Manchester Academic Health Science Centre, University Hospital Of South Manchester NHS Foundation Trust, Manchester M23 9LT, UK.
| | | | | | | | | |
Collapse
|
25
|
Hori M, Iwama T, Asakura Y, Kawanishi M, Kamon J, Hoshino A, Takahashi S, Takahashi K, Nakaike S, Tsuruzoe N. NT-702 (parogrelil hydrochloride, NM-702), a novel and potent phosphodiesterase 3 inhibitor, suppress the asthmatic response in guinea pigs, with both bronchodilating and anti-inflammatory effects. Eur J Pharmacol 2009; 618:63-9. [PMID: 19616537 DOI: 10.1016/j.ejphar.2009.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/26/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
Abstract
We evaluated the effects of NT-702 (parogrelil hydrochloride, NM-702, 4-bromo-6-[3-(4-chlorophenyl) propoxy]-5-[(pyridine-3-ylmethyl) amino] pyridazin-3(2H)-one hydrochloride), a selective phosphodiesterase 3 inhibitor, on the asthmatic response in guinea pigs. NT-702 at a concentration of 1 x 10(-7)M elevated the cyclic adenosine monophosphate content in prostaglandin E(2)-treated guinea pig tracheal smooth muscle cells. Leukotriene (LT) D(4)- and histamine-induced contraction of isolated guinea pig tracheal strips was inhibited by NT-702, with EC(50) values of 3.2 x 10(-7) and 2.5 x 10(-7)M, respectively. In an in vivo study, NT-702 suppressed LTD(4)-induced bronchoconstriction and the ovalbumin-induced immediate asthmatic response in guinea pigs through its bronchodilating effect. Furthermore, NT-702 also suppressed the ovalbumin-induced late asthmatic response, airway hyperresponsiveness, and the accumulation of inflammatory cells in the bronchoalveolar lavage fluid. These results suggest that NT-702 has an anti-inflammatory effect as well as a bronchodilating effect and might be useful as a novel potent therapeutic agent for the treatment of bronchial asthma, a new type of agent with both a bronchodilating and an anti-inflammatory effect.
Collapse
Affiliation(s)
- Miyuki Hori
- Department of Pharmacology, Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co Ltd, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Spina D. PDE4 inhibitors: current status. Br J Pharmacol 2008; 155:308-15. [PMID: 18660825 PMCID: PMC2567892 DOI: 10.1038/bjp.2008.307] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/08/2022] Open
Abstract
Phosphodiesterase4 inhibitors are currently under development for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease. The rationale for the development of this drug class stems from our understanding of the role of PDE4 in suppressing the function of a range of inflammatory and resident cells thought to contribute toward the pathogenesis of these diseases. Similarly, numerous preclinical in vivo studies have shown that PDE4 inhibitors suppress characteristic features of these diseases, namely, cell recruitment, activation of inflammatory cells and physiological changes in lung function in response to a range of insults to the airways. These potentially beneficial actions of PDE4 inhibitors have been successfully translated in phase II and III clinical trials with roflumilast and cilomilast. However, dose limiting side effects of nausea, diarrhoea and headache have tempered the enthusiasm of this drug class for the treatment of these respiratory diseases. A number of strategies are currently being pursued in attempts to improve clinical efficacy and reduce side effects, including delivery via the inhaled route, and/or development of non-emetic PDE4 inhibitors and mixed PDE inhibitors.
Collapse
Affiliation(s)
- D Spina
- King's College London School of Biomedical and Health Science, Pharmaceutical Science Research Division, Sackler Institute of Pulmonary Pharmacology, London, UK.
| |
Collapse
|
27
|
Giovannoni MP, Cesari N, Graziano A, Vergelli C, Biancalani C, Biagini P, Dal Piaz V. Synthesis of pyrrolo[2,3-d]pyridazinones as potent, subtype selective PDE4 inhibitors. J Enzyme Inhib Med Chem 2007; 22:309-18. [PMID: 17674813 DOI: 10.1080/14756360601114700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A series of pyrrolo [2,3-d]pyridazinones was synthesized and tested for their inhibitory activity on PDE4 subtypes A, B and D and selectivity toward Rolipram high affinity binding site (HARBS). New agents with interesting profile were reported; in particular compound 9e showed a good PDE4 subtype selectivity, being 8 times more potent (IC50 = 0.32 microM) for PDE4B (anti-inflammatory) than for PDE4D (IC50 = 2.5 microM), generally considered the subtype responsible for emesis. Moreover the ratio HARBS/PDE4B was particularly favourable for 9e (147), suggesting that the best arranged groups around the pyrrolopyridazinone core are an isopropyl at position-1, an ethoxycarbonyl at position-2, together with an ethyl group at position-6. For compounds 8 and 15a the ability to inhibit TNFalpha production in PBMC was evaluated and the results are consistent with their PDE4 inhibitory activity.
Collapse
Affiliation(s)
- Maria P Giovannoni
- Dipartimento di Scienze Farmaceutiche, Via U. Schiff 6, Sesto Fiorentino 50019, Firenze, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Phosphodiesterases are a diverse family of enzymes that hydrolyse cyclic nucleotides and thus play a key role in regulating intracellular levels of the second messengers cAMP and cGMP, and hence cell function. Theophylline and papaverine have historically been used therapeutically and are known to be weak inhibitors of PDE, but to what extent this contributed toward their clinical efficacy was poorly defined. However, the discovery of 11 isoenzyme families and our increased understanding of their function at the cell and molecular level provides an impetus for the development of isoenzyme selective inhibitors for the treatment of various diseases. This review focuses on the development of PDE3 inhibitors for congestive heart failure, PDE4 inhibitors for inflammatory airways disease and most successfully, PDE5 inhibitors for erectile dysfunction.
Collapse
Affiliation(s)
- Victoria Boswell-Smith
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London
- Sackler Institute of Pulmonary Pharmacology, Kings College London School of Biomedical Health and Life Sciences, 5th Floor, Hodgkin Building, Guys Campus, Kings College, London SE1 1UL, London. E-mail:
| |
Collapse
|
29
|
Smith N, Broadley KJ. Optimisation of the sensitisation conditions for an ovalbumin challenge model of asthma. Int Immunopharmacol 2006; 7:183-90. [PMID: 17178385 DOI: 10.1016/j.intimp.2006.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/24/2006] [Accepted: 09/14/2006] [Indexed: 11/21/2022]
Abstract
Antigen inhalation in patients with atopic asthma results in an early asthmatic response (EAR), accompanied by a late asthmatic response (LAR) in 60% of patients, airway hyperresponsiveness (AHR) and inflammatory cell infiltration to the lungs. An ideal animal model of asthma should, therefore, provide at least these 4 features consistently and reproducibly. The aim of this study was to optimise the ovalbumin (OA) sensitisation conditions, for achieving EAR, LAR, AHR and cell influx, in a guinea-pig model of asthma. Animals were sensitised with 10 micro g or 100 micro g OA, as either a single or booster (day 1 and day 5) injection. Airway responses to inhaled OA (10 micro g, 1 h) of actively sensitised, conscious guinea pigs were determined by whole body plethysmography as the change in specific airways conductance (sG(aw)) over a 12 h period and at 24 h. Bronchoconstriction by inhaled histamine (1 mM) was used to investigate AHR, and inflammatory cell influx was determined by bronchoalveolar lavage (BAL), both at 24 h post-challenge. A single sensitisation with 10 micro g OA did not reveal an EAR, LAR or AHR following exposure to OA. However, total and differential cell counts (eosinophils and macrophages) were significantly greater 24 h post-challenge, when compared to saline-challenged sensitised animals. The addition of a booster injection of 10 micro g revealed an EAR, but no LAR or AHR after ovalbumin inhalation. However, there was a significant cell influx. Sensitisation with 100 micro g OA (single and booster injections) revealed all four parameters of the asthmatic response (EAR, LAR, AHR and cell influx). The incorporation of the booster sensitisation injection resulted in a prolongation of the LAR, and the AHR was more pronounced and cell influx increased significantly, when compared to all other sensitisation protocols. Thus, sensitisation with 100 micro g OA (with a booster injection) can reveal an EAR, LAR, AHR and cell influx following inhalation exposure to OA (10 micro g). Cellular infiltration to the lung may be a poor marker of the asthmatic response, as a threshold level of cell influx (eosinophils) appears to be required in order to elicit the LAR and AHR. There was an association between the LAR and AHR.
Collapse
Affiliation(s)
- Nicola Smith
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cathays Park, Cardiff, UK
| | | |
Collapse
|
30
|
Ghavami A, Hirst WD, Novak TJ. Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit? Drugs R D 2006; 7:63-71. [PMID: 16542053 DOI: 10.2165/00126839-200607020-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphodiesterase-4 (PDE4) belongs to an important family of proteins that regulates the intracellular level of cyclic adenosine monophosphate (cAMP). Several lines of evidence indicate that targeting PDE4 with selective inhibitors may offer novel strategies in the treatment of age-related memory impairment and Alzheimer's disease. The rationale for such an approach stems from preclinical studies indicating that PDE4 inhibitors can counteract deficits in long-term memory caused by pharmacological agents, aging or overexpression of mutant forms of human amyloid precursor proteins. In addition to their pro-cognitive and pro-synaptic plasticity properties, PDE4 inhibitors are potent neuroprotective, neuroregenerative and anti-inflammatory agents. Based on the fact that Alzheimer's disease is a progressive neurodegenerative disorder that is characterised by cognitive impairment, and that neuroinflammation is now recognised as a prominent feature in Alzheimer's pathology, we have concluded that targeting PDE4 with selective inhibitors may offer a novel therapy aimed at slowing progression, prevention and, eventually, therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Afshin Ghavami
- Neuroscience Discovery Research, Wyeth Research, Monmouth Junction, New Jersey 08852-2718, USA.
| | | | | |
Collapse
|
31
|
Macdonald D, Mastracchio A, Perrier H, Dubé D, Gallant M, Lacombe P, Deschênes D, Roy B, Scheigetz J, Bateman K, Li C, Trimble LA, Day S, Chauret N, Nicoll-Griffith DA, Silva JM, Huang Z, Laliberté F, Liu S, Ethier D, Pon D, Muise E, Boulet L, Chan CC, Styhler A, Charleson S, Mancini J, Masson P, Claveau D, Nicholson D, Turner M, Young RN, Girard Y. Discovery of a substituted 8-arylquinoline series of PDE4 inhibitors: Structure–activity relationship, optimization, and identification of a highly potent, well tolerated, PDE4 inhibitor. Bioorg Med Chem Lett 2005; 15:5241-6. [PMID: 16168647 DOI: 10.1016/j.bmcl.2005.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The discovery and SAR of a new series of substituted 8-arylquinoline PDE4 inhibitors are herein described. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of emesis to efficacy in several animal models. Typical optimized compounds from this series are potent inhibitors of PDE4 (IC(50)<1nM) and also of LPS-induced TNF-alpha release in human whole blood (IC(50)<0.5microM). The same compounds are potent inhibitors of ovalbumin-induced bronchoconstriction in conscious guinea pigs (EC(50)<0.1mg/kg ip) but require a dose of about 10mg/kg po in the squirrel monkey to produce an emetic response. From this series of compounds, 23a (L-454,560) was identified as an optimized compound.
Collapse
Affiliation(s)
- Dwight Macdonald
- Merck Frosst Centre for Therapeutic Research, PO Box 1005, Pointe Claire-Dorval, Québec, Canada H9R 4P8.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barnes PJ. Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther 2005; 109:238-45. [PMID: 16171872 DOI: 10.1016/j.pharmthera.2005.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 11/29/2022]
Abstract
Multiple signal transduction pathways are involved in the inflammatory process in the airways of patients with asthma and chronic obstructive pulmonary disease (COPD), hence modulators of these pathways may result in novel anti-inflammatory treatments. The advantage of this approach is that these pathways are activated in many inflammatory and structural cells of the airways, hence a broad spectrum of anti-inflammatory effects may be possible. However, this also makes it more likely that side effects may be limiting, but this may not be a problem if the signal transduction pathway is selectively activated in disease and the therapeutic index may be increased by inhaled delivery. Phosphodiesterase-4 (PDE4) inhibitors are the most advanced treatment in this category as anti-inflammatory treatment for asthma and COPD, although side effects are dose limiting. Other promising approaches are inhibitors of p38 mitogen-activated protein (MAP) kinase, inhibitor of nuclear factor-kappaB kinase-2 (IKK2), and Syk kinase, all of which are in clinical development. Several other kinases and transcription factors are also targets for novel drug development. It is likely that modulators of signal transduction pathways may lead to the development of several novel anti-inflammatory treatments for asthma and COPD in the future.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
33
|
Epstein MM. Targeting memory Th2 cells for the treatment of allergic asthma. Pharmacol Ther 2005; 109:107-36. [PMID: 16081161 DOI: 10.1016/j.pharmthera.2005.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 12/19/2022]
Abstract
Th2 memory cells play an important role in the pathogenesis of allergic asthma. Evidence from patients and experimental models indicates that memory Th2 cells reside in the lungs during disease remission and, upon allergen exposure, become activated effectors involved in disease exacerbation. The inhibition of memory Th2 cells or their effector functions in allergic asthma influence disease progression, suggesting their importance as therapeutic targets. They are allergen specific and can potentially be suppressed or eliminated using this specificity. They have distinct activation, differentiation, cell surface phenotype, migration capacity, and effector functions that can be targeted singularly or in combination. Furthermore, memory Th2 cells residing in the lungs can be treated locally. Capitalizing on these unique attributes is important for drug development for allergic asthma. The aim of this review is to present an overview of therapeutic strategies targeting Th2 memory cells in allergic asthma, emphasizing Th2 generation, differentiation, activation, migration, effector function, and survival.
Collapse
Affiliation(s)
- Michelle M Epstein
- Medical University of Vienna, Department of Dermatology, Lazarettgasse 19, Vienna A-1090, Austria.
| |
Collapse
|
34
|
Dyke HJ, Montana JG. The therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 2005; 8:1301-25. [PMID: 15992151 DOI: 10.1517/13543784.8.9.1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phosphodiesterase enzymes are responsible for the inactivation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Phosphodiesterase 4 (PDE4) is a cAMP specific phosphodiesterase expressed in inflammatory cells such as eosinophils. Inhibition of PDE4 results in an elevation of cAMP in these cells, which in turn downregulates the inflammatory response. The anti-inflammatory effects of PDE4 inhibitors have been well documented both in vitro and in vivo in a variety of animal models. The potential use of PDE4 inhibitors as anti-inflammatory agents for the treatment of asthma and other inflammatory disorders has received considerable attention from the pharmaceutical industry, but to date, there are no selective PDE4 inhibitors on the market. Early PDE4 inhibitors, typified by rolipram, suffered from dose-limiting side effects, including nausea and emesis, which severely restricted their therapeutic utility. Second generation compounds, including CDP840 and SB207499 (Ariflo), have been identified with reduced side effect liability. Recent evidence suggests a correlation between side effects and the ability of compounds to bind at the so-called high affinity rolipram binding site (HPDE), whilst beneficial effects appear to correlate with binding at the catalytic site. A number of companies are actively pursuing compounds which exhibit improved affinity for the catalytic site and reduced affinity for the HPDE, in the expectation that this will provide compounds with an improved therapeutic index.
Collapse
Affiliation(s)
- H J Dyke
- Celltech Chiroscience, Cambridge Science Park, Milton Road, Cambridge, CB4 4WE, UK
| | | |
Collapse
|
35
|
Abstract
Racemic salbutamol (racemic albuterol) ameliorates symptoms of asthma by activating beta-adrenoceptors on nerve, smooth muscle and inflammatory cells within the airways. Racemic salbutamol comprises equal proportions of 2 isomers: (S)-salbutamol and (R)-salbutamol, with the latter being exclusively responsible for activation of beta-adrenoceptors. Accordingly, within racemic salbutamol it is (R)-salbutamol that efficiently relieves obstruction of asthmatic airways and affords highly effective protection from bronchoconstrictor stimuli, including allergens. During regular use of racemic salbutamol, there is a progressive decline of protective efficacy and a corresponding intensification of airway responsiveness. This decline is largely absent during regular use of (R)-salbutamol. Consequently, bronchodilator responses to sub-maximal doses of (R)-salbutamol exceed responses to the equivalent dose of (R)-salbutamol given as the racemate. For example, in asthmatics with baseline FEVs <or= 60%, 1.25 mg of nebulised (R)-salbutamol achieved a maximal 52% change in FEV while 2.5 mg of racemic salbutamol only achieved a 38% change in FEV. Since extrapulmonary effects (e.g., tremor, heart rate) of beta agonists are related to dose and limit the use of beta agonist therapy, (R)-salbutamol at 0.63 mg provides uncompromised efficacy with marked reduction of side-effects. In addition to quantitative differences, the constituent isomers of salbutamol also exhibit qualitative differences. Thus, (R)-salbutamol inhibits activation of human eosinophils in vitro whereas, under the same conditions and concentrations, (S)-salbutamol augments activation of these cells. This property of (S)-salbutamol may explain why eosinophilia in induced sputum from subjects with allergic asthma is increased by regular use of racemic salbutamol. Similarly, the capacity of (R)-salbutamol to suppress hyperresponsiveness of the airways can be contrasted with the capacity of (S)-salbutamol to intensify hyperresponsiveness. This action of (S)-salbutamol would explain why regular use of racemic salbutamol intensifies the bronchoconstrictor response to antigen in subjects with allergic asthma. Taken together, these findings imply that replacement of racemic salbutamol by (R)-salbutamol will diminish, or even eliminate, the anomalous actions that have curtailed the efficacy of racemic salbutamol. Pharmacokinetically, (R)-salbutamol exhibits near absolute conformational stability (i.e., no conversion to (S)-salbutamol). If in vitro anti-inflammatory actions of (R)-salbutamol are also manifest in asthmatic airways, (R)-salbutamol could provide a novel approach to asthma therapy which combines bronchodilation and bronchoprotection with anti-inflammatory efficacy.
Collapse
Affiliation(s)
- D A Handley
- Sepracor, Inc., 111 Locke Drive, Marlborough, MA 01752, USA
| | | | | |
Collapse
|
36
|
O'Shea PD, Chen CY, Chen W, Dagneau P, Frey LF, Grabowski EJJ, Marcantonio KM, Reamer RA, Tan L, Tillyer RD, Roy A, Wang X, Zhao D. Practical Asymmetric Synthesis of a Potent PDE4 Inhibitor via Stereoselective Enolate Alkylation of a Chiral Aryl−Heteroaryl Secondary Tosylate. J Org Chem 2005; 70:3021-30. [PMID: 15822960 DOI: 10.1021/jo048156v] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical, chromatography-free catalytic asymmetric synthesis of a potent and selective PDE4 inhibitor (L-869,298, 1) is described. Catalytic asymmetric hydrogenation of thiazole ketone 5a afforded the corresponding alcohol 3b in excellent enantioselectivity (up to 99.4% ee). Activation of alcohol 3b via formation of the corresponding p-toluenesulfonate followed by an unprecedented displacement with the lithium enolate of ethyl 3-pyridylacetate N-oxide 4a generated the required chiral trisubstituted methane. The displacement reaction proceeded with inversion of configuration and without loss of optical purity. Conversion of esters 2b to 1 was accomplished via a one-pot deprotection, saponification, and decarboxylation sequence in excellent overall yield.
Collapse
Affiliation(s)
- Paul D O'Shea
- Department of Process Research, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Québec H9R 4P8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
|
39
|
Bian H, Zhang J, Wu P, Varty LA, Jia Y, Mayhood T, Hey JA, Wang P. Differential type 4 cAMP-specific phosphodiesterase (PDE4) expression and functional sensitivity to PDE4 inhibitors among rats, monkeys and humans. Biochem Pharmacol 2004; 68:2229-36. [PMID: 15498513 DOI: 10.1016/j.bcp.2004.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
It has been suggested that the rat is relatively more susceptible to toxicity induced by inhibitors for type 4 cAMP-specific phosphodiesterase (PDE4). In this study designed to elucidate possible biochemical basis for the higher susceptibility, we compared PDE4 expression levels and their functional relevance among rats, monkeys and humans. In several toxicologically relevant tissues and blood leukocytes, the mRNA expression levels of PDEs 4A, 4B, 4C and 4D were significantly higher in rats than in humans. We confirmed that higher PDE4 expression levels were correlated with a higher enzyme activity level in rat leukocytes. The PDE4 enzyme activity level of leukocytes in monkeys fell between that of rats and humans. Functionally, the potencies of the PDE4 inhibitors rolipram, SB 207499 and SCH 351591 in inhibiting tumor necrosis factor production from leukocytes were in the following order: rat > monkey > human. In addition, rolipram was about 10-fold more potent in rats than in humans in inhibiting phenylephrine-induced contraction of renal artery. These inhibitors were confirmed to be highly selective for PDE4 in comparison to all other PDE families, and to inhibit rat and human PDE4s with identical potencies. Taken together, these results suggest that the higher susceptibility of rats to PDE4 inhibitor-induced toxicity might be due to their higher expression levels of PDE4, and that PDE4 inhibitors may be safer in humans than in monkeys and, particularly, rats.
Collapse
Affiliation(s)
- Hong Bian
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Asthma is a major and increasing global health problem and, despite major advances in therapy, many patients' symptoms are not adequately controlled. Treatment with combination inhalers, which contain a corticosteroid and long-acting beta(2) adrenoceptor agonist, is the most effective current therapy. There is therefore a search for new therapies, particularly safe and effective oral treatments and those that are more efficacious in severe asthma. New therapies in development include mediator antagonists and inhibitors of cytokines, although these therapies might be too specific to be very effective. New anti-inflammatory therapies include corticosteroids and inhibitors of phosphodiesterase-4, p38 mitogen-activated protein kinase and nuclear factor-kappaB. The prospects for a curative treatment are on the horizon.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College Faculty of Medicine, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
41
|
Bruno O, Brullo C, Arduino N, Schenone S, Ranise A, Bondavalli F, Ottonello L, Dapino P, Dallegri F. Synthesis and biological evaluation of neutrophilic inflammation inhibitors. ACTA ACUST UNITED AC 2004; 59:223-35. [PMID: 14987986 DOI: 10.1016/j.farmac.2003.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 08/01/2003] [Indexed: 11/22/2022]
Abstract
In several non-infectious human diseases, such as ulcerous colitis, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), the extravasal recruitment of neutrophils plays a crucial role in the development of tissue damage, which, when persistent, can lead to the irreversible organ dysfunction. The neutrophil activation is controlled by a number of intracellular pathways, particularly by a cAMP-dependent protein kinase A (PKA) which also acts on phosphodiesterase IV (PDE4) gene stimulating the synthesis of this enzyme, able to transform cAMP to inactive AMP. PDE4 inhibitors enhance intracellular cAMP and decrease inflammatory cell activation. Several 3-cyclopentyloxy-4-methoxybenzaldehyde and 3-cyclopentyloxy-4-methoxybenzoic acid derivatives were synthesized and studied by us to evaluate their ability to inhibit the superoxide anion production in human neutrophils. These compounds were found able to inhibit the neutrophil activation and some of them increased the cAMP level on tumor necrosis factor-alpha-stimulated neutrophils. Moreover, they also inhibited selectively the human PDE4 enzyme, although they are less potent than the reference compound Rolipram. We report here synthesis, biological studies and some SAR considerations concerning the above mentioned compounds.
Collapse
Affiliation(s)
- Olga Bruno
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV, Genova 3-16132, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Th2 cytokines play an important role in producing and maintaining airway inflammation in asthma. As a consequence, there is considerable interest in developing agents that modulate their effects. Therapeutic strategies include decreasing cytokine synthesis or release, blocking their effects by antibodies or soluble receptors, as well as administration of anti-inflammatory cytokines. Initial studies of three of these approaches have shown interesting results. The first is suplatast tosilate, a selective Th2-inhibitor that suppresses the synthesis of IL-4 and IL-5 in vitro. In a randomised double-blind placebo-controlled parallel study, suplatast, given orally TID, improved lung function and symptom control when added to inhaled beclomethasone for 4 weeks and prevented deterioration when the beclomethasone dose was decreased by 50% during a second 4 weeks. The second is CDP840, a second generation phosphodiesterase type 4 inhibitor, that may decrease the release of cytokines from eosinophils and Th2 lymphocytes. In a double-blind placebo-controlled crossover study, CDP840, given orally BID for 9 days, attenuated the late response to allergen by 30% when compared to placebo. The third is a recombinant human soluble IL-4 receptor (altrakincept) that neutralises endogenously produced IL-4. In inhaled steroid-dependent subjects, weekly nebulisation of altrakincept prevented lung function decline and asthma exacerbations after abrupt withdrawal of inhaled corticosteroids. In contrast, studies of anti-IL-5 monoclonal antibodies (mepolizumab and SCH55700) indicate that this strategy only partially depletes eosinophils from the bronchial mucosa and shows no benefit on clinical markers of asthma activity. Of these novel therapeutic approaches, inhibiting Th2 synthesis of IL-4 and IL-5 (suplatast) appears to offer the greatest potential and long-term studies of this approach should be undertaken.
Collapse
Affiliation(s)
- Leslie Hendeles
- Department of Pharmacy Practice, College of Pharmacy, the University of Florida, Gainesville, Florida 32610-0486, USA.
| | | | | |
Collapse
|
43
|
Abstract
Phosphodiesterases (PDE) belong to an important family of proteins that regulate the intracellular levels of cyclic nucleotide second messengers. Targeting PDE with selective inhibitors may offer novel therapeutic strategies in the treatment of various conditions, and in the context of respiratory disease these include asthma and chronic obstructive pulmonary disease (COPD). The rationale for such an approach stems, in part, from the clinical efficacy of theophylline, an orally active drug that is purportedly a nonselective PDE inhibitor. In addition, intracellular cyclic adenosine monophosphate (cAMP) levels regulate the function of many of the cells thought to contribute to the pathogenesis of respiratory diseases such as asthma and COPD, and these cells also selectively express PDE4. This has offered pharmaceutical companies the opportunity to selectively targeting these enzymes for the treatment of these diseases. Finally, the success of targeting PDE5 in the treatment of erectile dysfunction provides clinical proof of concept for the targeting of PDE in disease. Whether a 'Viagra' of the airways can be found for the treatment of asthma and COPD remains to be seen, but positive results from recent clinical studies examining the efficacy of selective PDE4 inhibitors such as cilomilast and roflumilast offer some optimism. However, one of the major issues to be resolved is the tolerability profile associated with this drug class that is a consequence of PDE4 inhibition. While cilomilast and roflumilast have low emetic potential they are not free from emesis and various strategies are being investigated in the hope of developing a PDE4 inhibitor without this adverse effect.
Collapse
Affiliation(s)
- Domenico Spina
- The Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Science, King's College London, London, UK.
| |
Collapse
|
44
|
Claveau D, Chen SL, O'Keefe S, Zaller DM, Styhler A, Liu S, Huang Z, Nicholson DW, Mancini JA. Preferential inhibition of T helper 1, but not T helper 2, cytokines in vitro by L-826,141 [4-[2-(3,4-Bisdifluromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]3-methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther 2004; 310:752-60. [PMID: 15082748 DOI: 10.1124/jpet.103.064691] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
L-826,141 [4-(2-(3,4-bis-difluromethoxyphenyl)-2-(4-(1,1,1, 3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl)-3-methylpyridine-1-oxide] is a selective and potent inhibitor of phosphodiesterase 4 (PDE4) with an IC(50) value of 0.26 to 2.4 nM for inhibition of the catalytic activity of PDE4A, B, C, and D. The cAMP elevation that can be maintained by PDE4 inhibitors attenuates the signaling cascades that lead to the production of certain cytokines. In cellular-based assays, L-826,141 transcriptionally down-regulates production of tumor necrosis factor (TNF)-alpha in peripheral blood mononuclear cell and whole blood assays with IC(50) values of 31 and 310 nM, respectively. Profiling the effect of this compound on various cytokines in the signaling cascade attenuated by cAMP elevation demonstrates that L-826,141 is also a potent inhibitor of interleukin (IL)-12, granulocyte macrophage-colony stimulating factor, and interferon (IFN)gamma (IC(50) values of 0.3-0.9 microM) as well as TNF-alpha formation. We have also shown that the PDE4 inhibitors rolipram and L-826,141 are potent inhibitors of CD3-plus CD28-stimulated IL-2 production in naive human T cells. To address the effect of PDE4 inhibitors on cytokine release from T helper (Th)1 and Th2 effector cells, we used a well characterized model in which T cells are derived from ovalbumin (323-339)-specific T cell receptor transgenic mice. L-826,141 inhibits Th0-mediated IL-2 production with an IC(35) value of 25 nM and Th1-mediated IFNgamma production with an IC(30) value of 46 nM. In contrast, L-826,141 had no significant inhibitory effect (IC(30) value > 2.5 microM) on Th2 cell-mediated IL-4 nor IL-13 production. Together, these data demonstrate that specific inhibition of PDE4 preferentially blocks the production of Th1 versus Th2 effector cytokines in vitro.
Collapse
Affiliation(s)
- D Claveau
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Quebec, Canada H9R 4P8
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gale DD, Hofer P, Spina D, Seeds EA, Banner KH, Harrison S, Douglas G, Matsumoto T, Page CP, Wong RH, Jordan S, Smith F, Banik N, Halushka PV, Cavalla D, Rotshteyn Y, Kyle DJ, Burch RM, Chasin M. Pharmacology of a new cyclic nucleotide phosphodiesterase type 4 inhibitor, V11294. Pulm Pharmacol Ther 2003; 16:97-104. [PMID: 12670778 DOI: 10.1016/s1094-5539(02)00175-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
V11294 is a new cyclic nucleotide phosphodiesterase type 4 (PDE4) inhibitor of the rolipram class. In this report we present the pharmacological profile of V11294. V11294 inhibited PDE4 isolated from human lung with IC(50) 405 nM, compared to 3700 nM for rolipram. In contrast, V11294 inhibition of human PDE3 and PDE5 occurred only at concentrations greater than 100,000 nM. Like rolipram, V11294 inhibited PDE4D more potently than other PDE4 subtypes. V11294, when incubated with human anticoagulated whole blood in vitro, or administered to mice, caused increased cAMP concentration, consistent with inhibition of PDE4. V11294 inhibited lectin-induced proliferation and lipopolysaccharide-induced TNFalpha synthesis by human adherent monocytes in vitro and inhibited lipopolysaccharide-induced TNFalpha synthesis in mice. V11294 caused relaxation of guinea pig isolated trachea and inhibited allergen-induced bronchoconstriction and eosinophilia in guinea pigs at doses of 1 and 3 mg/kg, p.o. In ferrets, V11294 was not emetogenic at doses up to 30 mg/kg, p.o., despite plasma concentration reaching 10-fold the IC(50) for PDE4. In contrast, rolipram induced severe retching and vomiting at 10 mg/kg, p.o. In conclusion, V11294 is an orally active PDE4 inhibitor that exhibits antiinflammatory activity in vitro, and in vivo at doses that are not emetogenic.
Collapse
Affiliation(s)
- Donna D Gale
- Purdue Research Center, 444 Sawmill River Road, Ardsley, NY 10502, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'connor B, Gresele P, Page CP. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 2003; 112:109-18. [PMID: 12847487 DOI: 10.1067/mai.2003.1514] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of platelets in inflammation is recognized but poorly characterized, and little is known of their interaction with leukocytes. However, platelet-leukocyte interactions have been demonstrated in cardiovascular disease, culminating in enhanced leukocyte recruitment. OBJECTIVES This study was undertaken to assess the possibility and potential role of similar phenomena occurring in asthmatic patients, a murine model of allergic inflammation, and in vitro adhesion studies. METHODS Asthmatic patients had blood taken at various time points to document the degree of leukocyte activation and the presence of platelet-leukocyte aggregates through FACS analysis before and after allergen exposure. Similar studies were carried out in mice exposed to allergen after previous sensitization, with some groups being selectively depleted of platelets through both an immunologic (antiplatelet antiserum) and nonimmunologic (busulfan) method. Additionally, lavage fluid and airway tissue were analyzed to assess the degree of pulmonary leukocyte recruitment. The importance of platelets on leukocyte adhesion to the endothelium was then assessed with in vitro incubation of radiolabeled leukocytes in the presence of activated platelets on cultured human vascular endothelial cells. RESULTS We have observed circulating platelet-leukocyte aggregates in the blood of allergic asthmatic patients during the allergen-induced late asthmatic response and in sensitized mice after allergen exposure. In platelet-depleted mice infiltration of leukocytes into airways after allergen challenge was significantly reduced and could be restored by means of infusion of platelets from allergic animals, indicating an essential role for platelets in leukocyte recruitment. CD11b expression on leukocytes involved in aggregates with platelets, although not on free leukocytes, was upregulated. Furthermore, the presence of autologous platelets augmented the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells, an effect that was found to be endothelial cell dependent and to involve platelet activation. CONCLUSION These results suggest that platelet participation in cell recruitment occurs at the level of the circulation and might involve the priming of leukocytes for subsequent adhesion and transmigration into tissues.
Collapse
Affiliation(s)
- Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, GKT School of Biomedical Sciences, King's College London, London
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Friesen RW, Ducharme Y, Ball RG, Blouin M, Boulet L, Côté B, Frenette R, Girard M, Guay D, Huang Z, Jones TR, Laliberté F, Lynch JJ, Mancini J, Martins E, Masson P, Muise E, Pon DJ, Siegl PKS, Styhler A, Tsou NN, Turner MJ, Young RN, Girard Y. Optimization of a tertiary alcohol series of phosphodiesterase-4 (PDE4) inhibitors: structure-activity relationship related to PDE4 inhibition and human ether-a-go-go related gene potassium channel binding affinity. J Med Chem 2003; 46:2413-26. [PMID: 12773045 DOI: 10.1021/jm0204542] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A SAR study on the tertiary alcohol series of phosphodiesterase-4 (PDE4) inhibitors related to 1 is described. In addition to inhibitory potency against PDE4 and the lipopolysaccharide-induced production of TNFalpha in human whole blood, the binding affinity of these compounds for the human ether-a-go-go related gene (hERG) potassium channel (an in vitro measure for the potential to cause QTc prolongation) was assessed. Four key structural moieties in the molecule were studied, and the impact of the resulting modifications in modulating these activities was evaluated. From these studies, (+)-3d (L-869,298) was identified as an optimized structure with respect to PDE4 inhibitory potency, lack of binding affinity to the hERG potassium channel, and pharmacokinetic behavior. (+)-3d exhibited good in vivo efficacy in several models of pulmonary function with a wide therapeutic index with respect to emesis and prolongation of the QTc interval.
Collapse
Affiliation(s)
- Richard W Friesen
- Department of Biology and Medicinal Chemistry, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe Claire-Dorval, Quebec, H9R 4P8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Over the past three decades, beta -adrenoceptor agonists and glucocorticosteroids have formed the mainstay of treatment for patients with asthma; during this time, only one new drug class, leukotriene receptor antagonists, have been introduced. Theophylline has also been used in the treatment of patients with asthma, although there is a perception that this drug does not offer the patient any advantages over conventional therapeutic strategies. However, a number of clinical studies have documented the efficacy of this orally active drug. The mechanism by which theophylline exerts its well recognized antiinflammatory activity remains to be established but, if explained, could lead to newer drug development with greater efficacy. The development of phosphodiesterase (PDE)4 inhibitors is one such approach, and recent studies have demonstrated the potential utility of this new drug class for the treatment of patients with asthma.(2)
Collapse
Affiliation(s)
- Domenico Spina
- The Sackler Institute of Pulmonary Pharmacology, Guy's, King's, and St. Thomas' School of Medicine, King's College London, England, UK.
| |
Collapse
|
49
|
Gale DD, Landells LJ, Spina D, Miller AJ, Smith K, Nichols T, Rotshteyn Y, Tonelli A, Lacouture P, Burch RM, Page CP, O'Connor BJ. Pharmacokinetic and pharmacodynamic profile following oral administration of the phosphodiesterase (PDE)4 inhibitor V11294A in healthy volunteers. Br J Clin Pharmacol 2002; 54:478-84. [PMID: 12445026 PMCID: PMC1874476 DOI: 10.1046/j.1365-2125.2002.01682.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2002] [Indexed: 11/20/2022] Open
Abstract
AIMS To assess the pharmacokinetic and pharmacodynamic profile of the novel PDE4 inhibitor V11294A (3-(3-cyclopentyloxy-4-methoxybenzyl)-6-ethylamino-8-isopropyl-3H purine hydrochloride) in healthy male volunteers. METHODS This was a double-blind, single dose, randomized crossover study in eight healthy volunteers who received a single oral, fasting dose of V11294A (300 mg) or placebo. Blood samples were taken before and 0.5, 1, 2, 2.5, 3, 4, 6, 9, 12, 18 and 24 h after oral dosing for determination of plasma concentrations of V11294A. Blood samples were also taken before and 3 and 24 h after dosing for the assessment of the effect of V11294A on mononuclear cell proliferation and tumour necrosis factor (TNF) release in whole blood. RESULTS Following a single oral dose of 300 mg V11294A, plasma concentrations of V11294A and its active metabolite V10332 reached Cmax (ng ml-1; mean +/- s.d.; 1398 +/- 298, 1000 +/- 400, respectively) after 2.63 +/- 0.79 and 5.9 +/- 2.3 h, respectively. For V11294A and V10332, t1/2 were 9.7 +/- 3.9 and 9.5 +/- 1.7 h, and AUC(0, infinity ) were 18100 +/- 6100 and 18600 +/- 8500 ng ml-1 h, respectively. At 3 h dosing, plasma concentrations of V11294A and V10332 (3-(3-cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl-3H-purin-6-ylamine) were 1300 +/- 330 and 860 +/- 300 ng ml-1, 7 and 3 times their in vitro IC50s for inhibition of TNF release and proliferation, respectively. Treatment with V11294A resulted in a significant reduction of lipopolysaccharide (LPS)-induced TNF release at 3 h (P < 0.001) and at 24 h (P < 0.05) post ingestion. The amount of TNF released (pmol ml-1) in response to a submaximal concentration of LPS (4 ng ml-1) was not significantly altered following placebo treatment (before 681 +/- 68 vs 3 h postdose 773 +/- 109, P = 0.27). In contrast, there was a significant reduction in the amount of TNF released following treatment with V11294A (before 778 +/- 87 vs 3 h postdose 566 +/- 72, P = 0.02). Phytohaemagluttinin (PHA) stimulated the incorporation of [3H]-thymidine in whole blood prior to drug administration. V11294A inhibited the PHA-induced proliferation at 3 h (P < 0.05). No adverse reactions were noted following single oral administration of V11294A. CONCLUSIONS A single oral 300 mg dose of V11294A administered to healthy volunteers results in plasma concentrations adequate to inhibit activation of inflammatory cells ex vivo, which persists for at least 24 h without any adverse reactions.
Collapse
|
50
|
Frenette R, Blouin M, Brideau C, Chauret N, Ducharme Y, Friesen RW, Hamel P, Jones TR, Laliberté F, Li C, Masson P, McAuliffe M, Girard Y. Substituted 4-(2,2-diphenylethyl)pyridine-N-oxides as phosphodiesterase-4 inhibitors: SAR study directed toward the improvement of pharmacokinetic parameters. Bioorg Med Chem Lett 2002; 12:3009-13. [PMID: 12270195 DOI: 10.1016/s0960-894x(02)00615-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed SAR study directed toward the optimization of pharmacokinetic parameters for analogues of L-791,943 is reported. The introduction of a soft metabolic site on this structure permitted the identification of L-826,141 as a potent phosphodiesterase type 4 (PDE4) inhibitor that is well absorbed and that presents a shorter half-life than L-791,943 in a variety of animal species. The efficacy of L-826,141 is also demonstrated in different in vivo models.
Collapse
Affiliation(s)
- Richard Frenette
- Merck Frosst Centre for Therapeutic Research, PO Box 1005, Pointe-Claire-Dorval, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|