1
|
Sun J, Jia Q, Lv W, Zhang S, Liu S, Wang D, Wang L, Tong X, Chen J, Chen X, Tang Y, Fan H. Mortality and exacerbations in bronchiectasis patients with carbapenem-resistant Pseudomonas aeruginosa isolation: a long-term retrospective cohort study. Ann Clin Microbiol Antimicrob 2025; 24:30. [PMID: 40329320 PMCID: PMC12057110 DOI: 10.1186/s12941-025-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Few studies have investigated the impact of carbapenem-resistant Pseudomonas aeruginosa (CRPA) on long-term outcomes in bronchiectasis. This study aimed to analyze acute exacerbations and mortality in bronchiectasis patients with CRPA isolation. METHODS This retrospective study included bronchiectasis patients with PA-positive cultures from January 1, 2014, to July 31, 2023, at West China Hospital of Sichuan University. PA was isolated from sputum or bronchoalveolar lavage fluid (BALF) and classified into CRPA and non-CRPA groups based on antimicrobial susceptibility testing. Multivariate logistic regression was used to assess risk factors for acute exacerbations, while multivariate Cox regression identified independent risk factors for all-cause and cause-specific mortality. RESULTS Among 564 patients with PA-positive isolates, 143 (25.36%) harbored CRPA strains. CRPA isolation was associated with an increased risk of acute exacerbations (adjusted odds ratio [aOR] 2.072, p = 0.001), while antibiotic treatment reduced the risk of exacerbations (aOR 0.439, p = 0.011). CRPA isolation was an independent risk factor for all-cause (adjusted hazard ratio [aHR] 1.488, p = 0.031) and cause-specific mortality (aHR 1.882, p = 0.010). The 1-, 3-, 5-, and 7-year cause-specific survival rates in the CRPA group were 88.6%, 79.8%, 73.2%, and 68.0%, respectively, versus 95.4%, 91.0%, 85.6%, and 81.8% in the non-CRPA group (p = 0.001). CONCLUSION CRPA isolation was significantly associated with an increasing risk of acute exacerbations, overall and cause-specific mortality. These findings underscored the urgent need to strengthen antibiotic stewardship to reduce the emergence of CRPA and to implement early detection and targeted management strategies to improve outcomes for patients with CRPA.
Collapse
Affiliation(s)
- Jibo Sun
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Qingqing Jia
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Wenting Lv
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Shijie Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Sitong Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Dongguang Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Lian Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Xiang Tong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Jiehao Chen
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Tang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China.
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhong NS, Qiu R, Cao J, Huang YM, Zhou H, Xu XX, Xu JF, Ye H, Yang ZR, Gao LY, Shen Y, Xiao ZK, Xie SG, Lin DJ, Zhao L, Xiong H, Zhang XM, Li FQ, Guan WJ, Chalmers JD. Effects of the DPP-1 inhibitor HSK31858 in adults with bronchiectasis in China (SAVE-BE): a phase 2, multicentre, double-blind, randomised, placebo-controlled trial. THE LANCET. RESPIRATORY MEDICINE 2025; 13:414-424. [PMID: 40154523 DOI: 10.1016/s2213-2600(25)00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Airway neutrophil inflammation with excessive neutrophil serine proteases is implicated in frequent exacerbations of bronchiectasis. HSK31858 is a novel reversible inhibitor of DPP-1. We aimed to assess the efficacy and safety of HSK31858 in decreasing the frequency of bronchiectasis exacerbations among adults with bronchiectasis. METHODS SAVE-BE was a phase 2, double-blind, randomised, placebo-controlled trial in 25 tertiary centres in China. Participants were aged 18 years or older with a physician diagnosis of bronchiectasis, according to chest high-resolution CT showing bronchial dilatation and compatible respiratory symptoms, and at least two exacerbations within 12 months before screening. Participants were randomly assigned (1:1:1) via a central interactive web-response system to receive 20 mg HSK31858, 40 mg HSK31858, or placebo, orally, once daily for 24 weeks. Randomisation was stratified by exacerbation frequency in the previous year (less than three vs three or more annually) and study investigators and participants were masked to group assignment for analysis of study outcomes. The primary endpoint was the annualised exacerbation frequency over 24 weeks, assessed in the full analysis set. Safety was monitored throughout the study. This trial is registered with ClinicalTrials.gov, NCT05601778. FINDINGS Between Dec 6, 2022, and March 31, 2024, 292 patients were screened, 226 of whom were enrolled and randomly assigned (75 to the 20 mg HSK31858 group, 76 to the 40 mg HSK31858 group, and 75 to the placebo group. 74 patients received 20 mg HSK31858, 75 received 40 mg HSK31858, and 75 received placebo and were included in the full analysis set. In the full analysis set, 136 (61%) participants were female and 88 (39%) were male. The mean annualised frequency of exacerbations was 1·00 per person-year (SD 1·44) in the 20 mg HSK31858 group, 0·75 per person-year (1·37) in the 40 mg HSK31858 group, and 1·88 per person-year (1·97) in the placebo group. The least-squares mean frequency of exacerbations was 1·05 per person-year (95% CI 0·73-1·51) in the 20 mg HSK31858 group, 0·83 per person-year (0·55-1·25) in the 40 mg HSK31858 group, and 2·01 per person-year (1·53-2·63) in the placebo group. The incidence rate ratio compared with placebo was 0·52 (95% CI 0·34-0·80; p=0·0031) for the 20 mg HSK31858 group and 0·41 (0·26-0·66; p=0·0002) for the 40 mg HSK31858 group. The incidence of adverse events was similar across the three groups. Neither HSK31858 dose was associated with an increased incidence of adverse events of special interest (eg, hyperkeratosis, gingivitis, or life-threatening infections). INTERPRETATION Both HSK31858 doses improved clinical outcomes in adults with bronchiectasis, significantly reducing the exacerbation frequency compared with placebo. The development of new drugs targeted at amelioration of neutrophilic inflammation (eg, via suppression of DPP-1 activity) might lead to new options for hindering the progression of bronchiectasis. FUNDING Haisco.
Collapse
Affiliation(s)
- Nan-Shan Zhong
- Department of Allergy and Clinical Immunology, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| | - Rong Qiu
- Suining Central Hospital, Suining, China
| | - Jie Cao
- Tianjin Medical University General Hopital, Tianjin, China
| | | | - Hua Zhou
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China; Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Huan Ye
- Wenzhou People's Hospital, Wenzhou, China
| | - Zhi-Ren Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling-Yun Gao
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Shen
- Shanghai Pudong Hospital, Shanghai, China
| | - Zu-Ke Xiao
- Jiangxi Province People's Hospital, Nanchang, China
| | - Shi-Guang Xie
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Li Zhao
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Xiong
- Yinbin Second People's Hospital, Yibin, China
| | - Xian-Ming Zhang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fang-Qiong Li
- Department of Clinical Medicine, Haisco, Chengdu, China
| | - Wei-Jie Guan
- Department of Allergy and Clinical Immunology, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| | - James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Chalmers JD, Metersky M, Aliberti S, Morgan L, Fucile S, Lauterio M, McDonald PP. Neutrophilic inflammation in bronchiectasis. Eur Respir Rev 2025; 34:240179. [PMID: 40174958 PMCID: PMC11962982 DOI: 10.1183/16000617.0179-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/11/2025] [Indexed: 04/04/2025] Open
Abstract
Noncystic fibrosis bronchiectasis, hereafter referred to as bronchiectasis, is a chronic, progressive lung disease that can affect people of all ages. Patients with clinically significant bronchiectasis have chronic cough and sputum production, as well as recurrent respiratory infections, fatigue and impaired health-related quality of life. The pathophysiology of bronchiectasis has been described as a vicious vortex of chronic inflammation, recurring airway infection, impaired mucociliary clearance and progressive lung damage that promotes the development and progression of the disease. This review describes the pivotal role of neutrophil-driven inflammation in the pathogenesis and progression of bronchiectasis. Delayed neutrophil apoptosis and increased necrosis enhance dysregulated inflammation in bronchiectasis and failure to resolve this contributes to chronic, sustained inflammation. The excessive release of neutrophil serine proteases, such as neutrophil elastase, cathepsin G and proteinase 3, promotes a protease-antiprotease imbalance that correlates with increased inflammation in bronchiectasis and contributes to disease progression. While there are currently no licensed therapies to treat bronchiectasis, this review will explore the evolving evidence for neutrophilic inflammation as a novel treatment target with meaningful clinical benefits.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Clinical School, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
4
|
Bouzada FM, Mestre B, Vaquer A, Tejada S, de la Rica R. Detecting Respiratory Pathogens for Diagnosing Lower Respiratory Tract Infections at the Point of Care: Challenges and Opportunities. BIOSENSORS 2025; 15:129. [PMID: 40136926 PMCID: PMC11940763 DOI: 10.3390/bios15030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide, claiming millions of lives each year and imposing significant healthcare costs. Accurate detection of respiratory pathogens is essential for the effective management of LRTIs. However, this process often relies on sputum analysis, which requires extensive pretreatment steps. The viscous nature and complex composition of sputum present additional challenges, especially in settings where a rapid diagnosis at the point of care is essential. In this review, we describe the main types of LRTI, highlighting different patient care pathway and points of care. We review current methods for liquefying sputum samples and provide an overview of current commercially available diagnostic tools used in hospitals for LRTI detection. Furthermore, we critically review recent advancements in the literature focused on detecting respiratory pathogens and mechanisms of antimicrobial resistance in sputum, including nucleic acid amplification tests, immunoassays and other innovative approaches. Throughout the paper, we highlight challenges and opportunities associated with developing new biosensor technologies tailored for detecting respiratory pathogens in lower respiratory specimens. By shedding light on these pressing issues, we aim to inspire scientific community to create innovative diagnostic tools to address the urgent healthcare burden of lung diseases.
Collapse
Affiliation(s)
- Francisco M. Bouzada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Bartomeu Mestre
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Sofía Tejada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- (CIBERINFEC)—Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Arbiv OA, Quon BS. Disarming the cavalry: targeting neutrophils to limit collateral damage in non-CF bronchiectasis. Eur Respir J 2025; 65:2401804. [PMID: 39746771 DOI: 10.1183/13993003.01804-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Omri A Arbiv
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Clinician-Investigator Program, University of British Columbia, Vancouver, BC, Canada
| | - Bradley S Quon
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
6
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
7
|
Im Y, Chalmers JD, Choi H. Disease Severity and Activity in Bronchiectasis: A Paradigm Shift in Bronchiectasis Management. Tuberc Respir Dis (Seoul) 2025; 88:109-119. [PMID: 39218441 PMCID: PMC11704736 DOI: 10.4046/trd.2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Bronchiectasis has an increasing prevalence and substantial clinical and economic burden. Therefore, physicians should identify patients with bronchiectasis at high risk of disease progression to ensure optimal management in advance. The heterogeneity of bronchiectasis means it is unlikely that any single parameter could identify highrisk patients; therefore, disease severity is usually assessed using validated composite tools, such as the Bronchiectasis Severity Index, FACED, and Bronchiectasis Aetiology Comorbidity Index, to predict long-term outcomes in bronchiectasis. Disease severity, however, implies an advanced process with lung destruction. Earlier intervention may prevent disease progression and improve outcomes. To identify patients at risk, rather than patients with established advanced disease, we need to shift our focus from disease severity to disease activity. Disease activity denotes the activation level of underlying pathophysiological processes and can be measured using clinical presentations and biomarkers. This review discusses a paradigm shift in bronchiectasis management, focusing on disease activity rather than severity, to prevent disease progression.
Collapse
Affiliation(s)
- Yunjoo Im
- Division of Pulmonology and Allergy, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Long MB, Chotirmall SH, Shteinberg M, Chalmers JD. Rethinking bronchiectasis as an inflammatory disease. THE LANCET. RESPIRATORY MEDICINE 2024; 12:901-914. [PMID: 38971168 DOI: 10.1016/s2213-2600(24)00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024]
Abstract
Bronchiectasis is understood to be the result of a complex interaction between infection, impaired mucociliary clearance, inflammation, and lung damage. Current therapeutic approaches to bronchiectasis are heavily focused on management of infection along with enhancing mucus clearance. Long-term antibiotics have had limited success in clinical trials, suggesting a need to re-evaluate the concept of bronchiectasis as an infective disorder. We invoke the example of asthma, for which treatment paradigms shifted away from targeting smooth muscle constriction, towards permanently suppressing airway inflammation, reducing risk and ultimately inducing remission with precision anti-inflammatory treatments. In this Review, we argue that bronchiectasis is primarily a chronic inflammatory disease, requiring early identification of at-risk individuals, and we introduce a novel concept of disease activity with important implications for clinical practice and future research. A new generation of novel anti-inflammatory treatments are under development and repurposing of anti-inflammatory agents from other diseases could revolutionise patient care.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; The Technion, Israel Institute of Technology, The B Rappaport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
9
|
Brown JS. The importance of airway IL-1β in patients with bronchiectasis. Eur Respir J 2024; 64:2400997. [PMID: 39147424 DOI: 10.1183/13993003.00997-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 08/17/2024]
|
10
|
De Angelis A, Johnson ED, Sutharsan S, Aliberti S. Exacerbations of bronchiectasis. Eur Respir Rev 2024; 33:240085. [PMID: 39048130 PMCID: PMC11267293 DOI: 10.1183/16000617.0085-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Bronchiectasis presents a significant challenge due to its rising prevalence, associated economic burden and clinical heterogeneity. This review synthesises contemporary understanding and literature of bronchiectasis exacerbations, addressing the transition from stable state to exacerbations, underlining the importance of early and precise recognition, rigorous severity assessment, prompt treatment, and prevention measures, as well as emphasising the need for strategies to assess and improve early and long-term patient outcomes. The review highlights the interplay between stable state phases and exacerbations in bronchiectasis, introducing the concept of "exogenous and endogenous changes in airways homeostasis" and the "adapted island model" with a particular focus on "frequent exacerbators", a group of patients associated with specific clinical characteristics and worse outcomes. The pathophysiology of exacerbations is explored through the lens of microbial and nonmicrobial triggers and the presence and the activity of comorbidities, elaborating on the impact of both exogenous insults, such as infections and pollution, and endogenous factors such as inflammatory endotypes. Finally, the review proposes a multidisciplinary approach to care, integrating advancements in precision medicine and biomarker research, paving the way for tailored treatments that challenge the traditional antibiotic paradigm.
Collapse
Affiliation(s)
- Alessandro De Angelis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Emma D Johnson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen -Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| |
Collapse
|
11
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
13
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
14
|
Raboso B, Pou C, Abril R, Erro M, Sánchez C, Manzano C, Zamarrón E, Suarez-Cuartin G, González J. Bronchiectasis. OPEN RESPIRATORY ARCHIVES 2024; 6:100339. [PMID: 39026515 PMCID: PMC11255363 DOI: 10.1016/j.opresp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Non-cystic fibrosis bronchiectasis, a condition that remains relatively underrecognized, has garnered increasing research focus in recent years. This scientific interest has catalyzed advancements in diagnostic methodologies, enabling comprehensive clinical and molecular profiling. Such progress facilitates the development of personalized treatment strategies, marking a significant step toward precision medicine for these patients. Bronchiectasis poses significant diagnostic challenges in both clinical settings and research studies. While computed tomography (CT) remains the gold standard for diagnosis, novel alternatives are emerging. These include artificial intelligence-powered algorithms, ultra-low dose chest CT, and magnetic resonance imaging (MRI) techniques, all of which are becoming recognized as feasible diagnostic tools. The precision medicine paradigm calls for refined characterization of bronchiectasis patients by analyzing their inflammatory and molecular profiles. Research into the underlying mechanisms of inflammation and the evaluation of biomarkers such as neutrophil elastase, mucins, and antimicrobial peptides have led to the identification of distinct patient endotypes. These endotypes present variable clinical outcomes, necessitating tailored therapeutic interventions. Among these, eosinophilic bronchiectasis is notable for its prevalence and specific prognostic factors, calling for careful consideration of treatable traits. A deeper understanding of the microbiome's influence on the pathogenesis and progression of bronchiectasis has inspired a holistic approach, which considers the multibiome as an interconnected microbial network rather than treating pathogens as solitary entities. Interactome analysis therefore becomes a vital tool for pinpointing alterations during both stable phases and exacerbations. This array of innovative approaches has revolutionized the personalization of treatments, incorporating therapies such as inhaled mannitol or ARINA-1, brensocatib for anti-inflammatory purposes, and inhaled corticosteroids specifically for patients with eosinophilic bronchiectasis.
Collapse
Affiliation(s)
| | | | - Rosa Abril
- University Hospital Complex Insular-Materno Infantil (CHUIMI) of Gran Canaria, Gran Canaria, Spain
| | - Marta Erro
- Puerta del Hierro University Hospital, Madrid, Spain
| | | | - Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | | | - Guillermo Suarez-Cuartin
- Hospital Universitari Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Choi H, McShane PJ, Aliberti S, Chalmers JD. Bronchiectasis management in adults: state of the art and future directions. Eur Respir J 2024; 63:2400518. [PMID: 38782469 PMCID: PMC11211698 DOI: 10.1183/13993003.00518-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Formerly regarded as a rare disease, bronchiectasis is increasingly recognised. A renewed interest in this disease has led to significant progress in bronchiectasis research. Randomised clinical trials (RCTs) have demonstrated the benefits of airway clearance techniques, inhaled antibiotics and long-term macrolide therapy in bronchiectasis patients. However, the heterogeneity of bronchiectasis remains one of the most challenging aspects of management. Phenotypes and endotypes of bronchiectasis have been identified to help find "treatable traits" and partially overcome disease complexity. The goals of therapy for bronchiectasis are to reduce the symptom burden, improve quality of life, reduce exacerbations and prevent disease progression. We review the pharmacological and non-pharmacological treatments that can improve mucociliary clearance, reduce airway inflammation and tackle airway infection, the key pathophysiological features of bronchiectasis. There are also promising treatments in development for the management of bronchiectasis, including novel anti-inflammatory therapies. This review provides a critical update on the management of bronchiectasis focusing on treatable traits and recent RCTs.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Pamela J McShane
- Division of Pulmonary and Critical Care, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
16
|
Polverino E, Dimakou K, Traversi L, Bossios A, Haworth CS, Loebinger MR, De Soyza A, Vendrell M, Burgel PR, Mertsch P, McDonnell M, Škrgat S, Maiz Carro L, Sibila O, van der Eerden M, Kauppi P, Hill AT, Wilson R, Milenkovic B, Menendez R, Murris M, Digalaki T, Crichton ML, Borecki S, Obradovic D, Nowinski A, Amorim A, Torres A, Lorent N, Welte T, Blasi F, Van Braeckel E, Altenburg J, Shoemark A, Shteinberg M, Boersma W, Elborn JS, Aliberti S, Ringshausen FC, Chalmers JD, Goeminne PC. Bronchiectasis and asthma: Data from the European Bronchiectasis Registry (EMBARC). J Allergy Clin Immunol 2024; 153:1553-1562. [PMID: 38401857 DOI: 10.1016/j.jaci.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Asthma is commonly reported in patients with a diagnosis of bronchiectasis. OBJECTIVE The aim of this study was to evaluate whether patients with bronchiectasis and asthma (BE+A) had a different clinical phenotype and different outcomes compared with patients with bronchiectasis without concomitant asthma. METHODS A prospective observational pan-European registry (European Multicentre Bronchiectasis Audit and Research Collaboration) enrolled patients across 28 countries. Adult patients with computed tomography-confirmed bronchiectasis were reviewed at baseline and annual follow-up visits using an electronic case report form. Asthma was diagnosed by the local investigator. Follow-up data were used to explore differences in exacerbation frequency between groups using a negative binomial regression model. Survival analysis used Cox proportional hazards regression. RESULTS Of 16,963 patients with bronchiectasis included for analysis, 5,267 (31.0%) had investigator-reported asthma. Patients with BE+A were younger, were more likely to be female and never smokers, and had a higher body mass index than patients with bronchiectasis without asthma. BE+A was associated with a higher prevalence of rhinosinusitis and nasal polyps as well as eosinophilia and Aspergillus sensitization. BE+A had similar microbiology but significantly lower severity of disease using the bronchiectasis severity index. Patients with BE+A were at increased risk of exacerbation after adjustment for disease severity and multiple confounders. Inhaled corticosteroid (ICS) use was associated with reduced mortality in patients with BE+A (adjusted hazard ratio 0.78, 95% CI 0.63-0.95) and reduced risk of hospitalization (rate ratio 0.67, 95% CI 0.67-0.86) compared with control subjects without asthma and not receiving ICSs. CONCLUSIONS BE+A was common and was associated with an increased risk of exacerbations and improved outcomes with ICS use. Unexpectedly we identified significantly lower mortality in patients with BE+A.
Collapse
Affiliation(s)
- Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, CIBERES, Barcelona, Spain
| | - Katerina Dimakou
- Fifth Respiratory Department and Bronchiectasis Unit, General Hospital for Chest Diseases "Sotiria," Athens, Greece
| | - Letizia Traversi
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, CIBERES, Barcelona, Spain
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Michael R Loebinger
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College London, London, United Kingdom
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University, Newcastle, United Kingdom; NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, United Kingdom
| | - Montserrat Vendrell
- Department of Pulmonology, Girona Biomedical Research Institute Dr Josep Trueta University Hospital (IDIBGI), University of Girona, Girona, Spain
| | - Pierre-Régis Burgel
- Department of Medicine V, University Hospital, LMU Munich, Munich, Germany; Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France; Institut Cochin, Université Paris Cité, INSERM U1016, Paris, France
| | - Pontus Mertsch
- Department of Medicine V, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Sabina Škrgat
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia; Pulmonary Department, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luis Maiz Carro
- Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain
| | - Oriol Sibila
- Servicio de Neumología, Instituto Clínico de Respiratorio, Hospital Clínic Barcelona, August Pi Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain; CIBERES, ISCIII, Madrid, Spain
| | | | - Paula Kauppi
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Adam T Hill
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Robert Wilson
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Branislava Milenkovic
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rosario Menendez
- Pneumology Department, Hospital Universitario y Politécnico La Fe-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marlene Murris
- Department of Respiratory Diseases, CHU de Toulouse, Toulouse, France
| | - Tonia Digalaki
- Fifth Respiratory Department and Bronchiectasis Unit, General Hospital for Chest Diseases "Sotiria," Athens, Greece
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Sermin Borecki
- Department of Pulmonology Diseases, Cerrahpasa Medical Faculty, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Dusanka Obradovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; Institute for Pulmonary Diseases, Put doktora Goldmana 4, Sremska Kamenica, Serbia
| | - Adam Nowinski
- Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adelina Amorim
- Pulmonology Department, Centro Hospitalar Universitário São João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Antoni Torres
- Department of Pulmonology, Hospital Clinic, University of Barcelona, CIBERES, IDIBAPS, ICREA, Barcelona, Spain
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage & Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Josje Altenburg
- Department of Pulmonary Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; B. Rappaport Faculty of Medicine, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, Northern Ireland
| | - Stefano Aliberti
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage & Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| |
Collapse
|
17
|
Tang RD, Yue JQ, Guan WJ. Sputum colour as a simplified effective biomarker for clinical assessment of bronchiectasis. Eur Respir J 2024; 63:2400152. [PMID: 38636972 DOI: 10.1183/13993003.00152-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Rui-di Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Jun-Qing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
| |
Collapse
|
18
|
Aliberti S, Ringshausen FC, Dhar R, Haworth CS, Loebinger MR, Dimakou K, Crichton ML, De Soyza A, Vendrell M, Burgel PR, McDonnell M, Skrgat S, Maiz Carro L, de Roux A, Sibila O, Bossios A, van der Eerden M, Kauppi P, Wilson R, Milenkovic B, Menendez R, Murris M, Borekci S, Munteanu O, Obradovic D, Nowinski A, Amorim A, Torres A, Lorent N, Van Braeckel E, Altenburg J, Shoemark A, Shteinberg M, Boersma W, Goeminne PC, Elborn JS, Hill AT, Welte T, Blasi F, Polverino E, Chalmers JD. Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J 2024; 63:2301554. [PMID: 38609095 PMCID: PMC11024393 DOI: 10.1183/13993003.01554-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND A validated 4-point sputum colour chart can be used to objectively evaluate the levels of airway inflammation in bronchiectasis patients. In the European Bronchiectasis Registry (EMBARC), we tested whether sputum colour would be associated with disease severity and clinical outcomes. METHODS We used a prospective, observational registry of adults with bronchiectasis conducted in 31 countries. Patients who did not produce spontaneous sputum were excluded from the analysis. The Murray sputum colour chart was used at baseline and at follow-up visits. Key outcomes were frequency of exacerbations, hospitalisations for severe exacerbations and mortality during up to 5-year follow-up. RESULTS 13 484 patients were included in the analysis. More purulent sputum was associated with lower forced expiratory volume in 1 s (FEV1), worse quality of life, greater bacterial infection and a higher bronchiectasis severity index. Sputum colour was strongly associated with the risk of future exacerbations during follow-up. Compared to patients with mucoid sputum (reference group), patients with mucopurulent sputum experienced significantly more exacerbations (incident rate ratio (IRR) 1.29, 95% CI 1.22-1.38; p<0.0001), while the rates were even higher for patients with purulent (IRR 1.55, 95% CI 1.44-1.67; p<0.0001) and severely purulent sputum (IRR 1.91, 95% CI 1.52-2.39; p<0.0001). Hospitalisations for severe exacerbations were also associated with increasing sputum colour with rate ratios, compared to patients with mucoid sputum, of 1.41 (95% CI 1.29-1.56; p<0.0001), 1.98 (95% CI 1.77-2.21; p<0.0001) and 3.05 (95% CI 2.25-4.14; p<0.0001) for mucopurulent, purulent and severely purulent sputum, respectively. Mortality was significantly increased with increasing sputum purulence, hazard ratio 1.12 (95% CI 1.01-1.24; p=0.027), for each increment in sputum purulence. CONCLUSION Sputum colour is a simple marker of disease severity and future risk of exacerbations, severe exacerbations and mortality in patients with bronchiectasis.
Collapse
Affiliation(s)
- Stefano Aliberti
- Respiratory Unit, IRCCS Humanitas Research Hospital, Pieve Emanuele, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Katerina Dimakou
- 5th Respiratory Department and Bronchiectasis Unit, "Sotiria" General Hospital of Chest Diseases Medical Practice, Athens, Greece
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, UK
| | - Montse Vendrell
- Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain
| | - Pierre-Regis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Sabina Skrgat
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Division of Internal Medicine, Pulmonary Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luis Maiz Carro
- Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain
| | - Andres de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Germany
| | - Oriol Sibila
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Robert Wilson
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Branislava Milenkovic
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rosario Menendez
- Pneumology Department, Hospital Universitario y Politécnico La Fe - Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marlene Murris
- Department of Respiratory Diseases, CHU Toulouse, Toulouse, France
| | - Sermin Borekci
- Department of Pulmonology Diseases, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Oxana Munteanu
- Pneumology/Allergology Division, University of Medicine and Pharmacy Nicolae Testemitanu, Chisinau, Moldova
| | - Dusanka Obradovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases, Sremska Kamenica, Serbia
| | - Adam Nowinski
- Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adelina Amorim
- Pulmonology Department, Centro Hospitalar Universitário S. João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Antoni Torres
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Josje Altenburg
- Department of Pulmonary Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, UK
| | - Adam T Hill
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
19
|
Lei C, Zeng Z, Chen F, Guo Y, Liu Y. Eosinophilic bronchiectasis increases length and cost of hospitalization: a retrospective analysis in a hospital of southern China from 2012 to 2020. BMC Pulm Med 2024; 24:98. [PMID: 38408986 PMCID: PMC10895853 DOI: 10.1186/s12890-024-02912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The concept of eosinophilic bronchiectasis has received clinical attention recently, but the association between blood eosinophil count (BEC) and hospital characteristics has rarely been reported yet. We aim to investigate the clinical impact of BEC on patients with acute bronchiectasis exacerbation. METHODS A total of 1332 adult patients diagnosed with acute exacerbation of bronchiectasis from January 2012 to December 2020 were included in this retrospective study. A propensity-matched analysis was performed by matching age, sex and comorbidities in patients with high eosinophil count (≥ 300 cell/µL) and low eosinophil count (< 300 cell/µL). Clinical characteristics, length of hospital stay (LOS), hospitalization cost and inflammatory markers were compared between the two groups. RESULTS Eosinophilic bronchiectasis occurred in approximately 11.7% of all patients. 156 propensity score-matched pairs were identified with and without high eosinophil count. Eosinophilic bronchiectasis presented with a longer LOS [9.0 (6.0-12.5) vs. 5.0 (4.0-6.0) days, p < 0.0001] and more hospitalization cost [15,011(9,753-27,404) vs. 9,109(6,402-12,287) RMB, p < 0.0001] compared to those in non-eosinophilic bronchiectasis. The median white blood cell (WBC), lymphocyte, platelet (PLT) and C-reactive protein (CRP) levels in eosinophilic bronchiectasis were significantly increased. Multivariate logistic regression analysis confirmed that the high levels of eosinophil count (OR = 13.95, p < 0.0001), worse FEV1% predicted (OR = 7.80, p = 0.0003) and PLT (OR = 1.01, p = 0.035) were independent prognostic factors for length of hospital (LOS) greater than 7 days. CONCLUSION Eosinophilic bronchiectasis patients had longer length of hospital stay and more hospitalization cost compared to those in non-eosinophilic bronchiectasis group, which might be associated with the stronger inflammatory reaction.
Collapse
Affiliation(s)
- Chengcheng Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Institute of Respiratory Diseases, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Institute of Respiratory Diseases, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Fengjia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
- Institute of Respiratory Diseases, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Institute of Respiratory Diseases, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - Yangli Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Institute of Respiratory Diseases, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
20
|
Martins M, Keir HR, Chalmers JD. Endotypes in bronchiectasis: moving towards precision medicine. A narrative review. Pulmonology 2023; 29:505-517. [PMID: 37030997 DOI: 10.1016/j.pulmoe.2023.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Bronchiectasis is a highly complex entity that can be very challenging to investigate and manage. Patients are diverse in their aetiology, symptoms, risk of complications and outcomes. "Endotypes"- subtypes of disease with distinct biological mechanisms, has been proposed as a means of better managing bronchiectasis. This review discusses the emerging field of endotyping in bronchiectasis. We searched PubMed and Google Scholar for randomized controlled trials (RCT), observational studies, systematic reviews and meta-analysis published from inception until October 2022, using the terms: "bronchiectasis", "endotypes", "biomarkers", "microbiome" and "inflammation". Exclusion criteria included commentaries and non-English language articles as well as case reports. Duplicate articles between databases were initially identified and appropriately excluded. Studies identified suggest that it is possible to classify bronchiectasis patients into multiple endotypes deriving from their co-morbidities or underlying causes to complex infective or inflammatory endotypes. Specific biomarkers closely related to a particular endotype might be used to determine response to treatment and prognosis. The most clearly defined examples of endotypes in bronchiectasis are the underlying causes such as immunodeficiency or allergic bronchopulmonary aspergillosis where the underlying causes are clearly related to a specific treatment. The heterogeneity of bronchiectasis extends, however, far beyond aetiology and it is now possible to identify subtypes of disease based on inflammatory mechanisms such airway neutrophil extracellular traps and eosinophilia. In future biomarkers of host response and infection, including the microbiome may be useful to guide treatments and to increase the success of randomized trials. Advances in the understanding the inflammatory pathways, microbiome, and genetics in bronchiectasis are key to move towards a personalized medicine in bronchiectasis.
Collapse
Affiliation(s)
- M Martins
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - H R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| | - J D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| |
Collapse
|
21
|
Cavalli CAM, Gabbiadini R, Dal Buono A, Quadarella A, De Marco A, Repici A, Bezzio C, Simonetta E, Aliberti S, Armuzzi A. Lung Involvement in Inflammatory Bowel Diseases: Shared Pathways and Unwanted Connections. J Clin Med 2023; 12:6419. [PMID: 37835065 PMCID: PMC10573999 DOI: 10.3390/jcm12196419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, relapsing inflammatory disorders of the gastrointestinal tract, frequently associated with extraintestinal manifestations (EIMs) that can severely affect IBD patients' quality of life, sometimes even becoming life-threatening. Respiratory diseases have always been considered a rare and subsequently neglected extraintestinal manifestations of IBD. However, increasing evidence has demonstrated that respiratory involvement is frequent in IBD patients, even in the absence of respiratory symptoms. Airway inflammation is the most common milieu of IBD-related involvement, with bronchiectasis being the most common manifestation. Furthermore, significant differences in prevalence and types of involvement are present between Crohn's disease and ulcerative colitis. The same embryological origin of respiratory and gastrointestinal tissue, in addition to exposure to common antigens and cytokine networks, may all play a potential role in the respiratory involvement. Furthermore, other causes such as drug-related toxicity and infections must always be considered. This article aims at reviewing the current evidence on the association between IBD and respiratory diseases. The purpose is to raise awareness of respiratory manifestation among IBD specialists and emphasize the need for identifying respiratory diseases in early stages to promptly treat these conditions, avoid worsening morbidity, and prevent lung damage.
Collapse
Affiliation(s)
- Carolina Aliai Micol Cavalli
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
| | - Alessandro Quadarella
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Alessandro De Marco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Edoardo Simonetta
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| |
Collapse
|
22
|
Abstract
Bronchiectasis is a final common pathway of a wide variety of underlying conditions including infectious, autoimmune, allergic, genetic and inflammatory conditions. Patients experience a chronic disease with variable clinical symptoms and course, but most experience cough, sputum production and recurrent exacerbations. Symptoms of bronchiectasis lead to poor quality of life and exacerbations are the major driver of morbidity and mortality. Patients are often chronically infected with bacteria with the most common being Pseudomonas aeruginosa and Haemophilus influenzae. Treatment of bronchiectasis includes standardised testing to identify the underlying cause with targeted treatment if immune deficiency, allergic bronchopulmonary aspergillosis or non-tuberculous mycobacterial infection, for example, are identified. Airway clearance is the mainstay of therapy for patients with symptoms of cough and sputum production. Frequently exacerbating patients may benefit from long term antibiotic or mucoactive therapies. Bronchiectasis is a heterogeneous disease and increasingly precision medicine approaches are advocated to target treatments most appropriately and to limit the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Miguel Barbosa
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| |
Collapse
|
23
|
Perea L, Faner R, Solarat B, Shoemark A, Aliberti S, Chalmers JD, Sibila O. Low Salivary Secretory Leukocyte Protease Inhibitor Levels Are Related to Airway Pseudomonas aeruginosa Infection in Bronchiectasis. Chest 2023; 164:323-326. [PMID: 36898430 DOI: 10.1016/j.chest.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Belen Solarat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Milan, Italy
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain; Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Chalmers JD, Elborn S, Greene CM. Basic, translational and clinical aspects of bronchiectasis in adults. Eur Respir Rev 2023; 32:230015. [PMID: 37286220 PMCID: PMC10245133 DOI: 10.1183/16000617.0015-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
Bronchiectasis is a common progressive respiratory disease with recognisable radiological abnormalities and a clinical syndrome of cough, sputum production and recurrent respiratory infections. Inflammatory cell infiltration into the lung, in particular neutrophils, is central to the pathophysiology of bronchiectasis. Herein we explore the roles and relationships between infection, inflammation and mucociliary clearance dysfunction in the establishment and progression of bronchiectasis. Microbial and host-mediated damage are important processes underpinning bronchiectasis and the relative contribution of proteases, cytokines and inflammatory mediators to the propagation of inflammation is presented. We also discuss the emerging concept of inflammatory endotypes, defined by the presence of neutrophilic and eosinophilic inflammation, and explore the role of inflammation as a treatable trait. Current treatment for bronchiectasis focuses on treatment of underlying causes, enhancing mucociliary clearance, controlling infection and preventing and treating complications. Data on airway clearance approaches via exercise and mucoactive drugs, pharmacotherapy with macrolides to decrease exacerbations and the usefulness of inhaled antibiotics and bronchodilators are discussed, finishing with a look to the future where new therapies targeting host-mediated immune dysfunction hold promise.
Collapse
Affiliation(s)
| | - Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, RCSI University of Medicine and Heath Sciences, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Chalmers JD, Aliberti S, Altenburg J, Blasi F, Clarke C, Chotirmall SH, Crichton ML, Dhar R, Goeminne P, Haworth C, Loebinger MR, Lorent N, Polverino E, Ringshausen FC, Shoemark A, Shteinberg M, Sibila O, Spinou A, Welte T. Transforming clinical research and science in bronchiectasis: EMBARC3, a European Respiratory Society Clinical Research Collaboration. Eur Respir J 2023; 61:2300769. [PMID: 37385653 DOI: 10.1183/13993003.00769-2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 07/01/2023]
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Josje Altenburg
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Clare Clarke
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Raja Dhar
- Department of Pulmonology, C K Birla Group of Hospitals, Kolkata, India
| | - Pieter Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Charles Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals, and National Heart and Lung Institute, Imperial College London, London, UK
| | - Natalie Lorent
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Polverino
- Pneumology Dept, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Ciber de Enfermedades Respiratorias CIBERES, Barcelona, Spain
| | - Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Royal Brompton and Harefield Hospitals, and National Heart and Lung Institute, Imperial College London, London, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | - Oriol Sibila
- Hospital Clinic of Barcelona, University of Barcelona, CIBERES, IDIBAPS, Barcelona, Spain
| | - Arietta Spinou
- Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
26
|
Zhang XX, Chen ZM, He ZF, Guan WJ. Advances in pharmacotherapy for bronchiectasis in adults. Expert Opin Pharmacother 2023; 24:1075-1089. [PMID: 37161410 DOI: 10.1080/14656566.2023.2210763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Bronchiectasis has become a growing concern of chronic airway disease because of the enormous socioeconomic burden. Four cardinal interdependent components - impaired airway defense, recurrent airway infections, inflammatory response, and airway damage, in conjunction with the underlying etiology, have collectively played a role in modulating the vicious vortex of the pathogenesis and progression of bronchiectasis. Current pharmacotherapy aims to target at these aspects to break the vicious vortex. AREAS COVERED The authors retrieve and review, in MEDLINE, Web of Science and ClinicalTrials.gov registry, the studies about pharmacotherapy for bronchiectasis from these aspects: antibiotics, mucoactive medications, bronchodilators, anti-inflammatory drug, and etiological treatment. EXPERT OPINION Future drug development and clinical trials of bronchiectasis need to pay more attention to the different phenotypes or endotypes of bronchiectasis. There is a need for the development of novel inhaled antibiotics that could reduce bacterial loads, improve quality-of-life, and decrease exacerbation risks. More efforts are needed to explore the next-generation neutrophil-targeted therapeutic drugs that are expected to ameliorate respiratory symptom burden, reduce exacerbation risks, and hinder airway destruction in bronchiectasis.
Collapse
Affiliation(s)
- Xiao-Xian Zhang
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Ming Chen
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Feng He
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory Centre, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
27
|
Chalmers JD, Gupta A, Chotirmall SH, Armstrong A, Eickholz P, Hasegawa N, McShane PJ, O'Donnell AE, Shteinberg M, Watz H, Eleftheraki A, Diefenbach C, Sauter W. A Phase 2 randomised study to establish efficacy, safety and dosing of a novel oral cathepsin C inhibitor, BI 1291583, in adults with bronchiectasis: Airleaf. ERJ Open Res 2023; 9:00633-2022. [PMID: 37465817 PMCID: PMC10351677 DOI: 10.1183/23120541.00633-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 07/20/2023] Open
Abstract
New therapies are needed to prevent exacerbations, improve quality of life and slow disease progression in bronchiectasis. Inhibition of cathepsin C (CatC) activity has the potential to decrease activation of neutrophil-derived serine proteases in patients with bronchiectasis, thereby reducing airway inflammation, improving symptoms, reducing exacerbations and preventing further airway damage. Here we present the design of a phase 2 trial (Airleaf™; NCT05238675) assessing the efficacy and safety of a novel CatC inhibitor, BI 1291583, in adult patients with bronchiectasis. This multinational, randomised, double-blind, placebo-controlled, parallel-group, dose-finding study has a screening period of at least 6 weeks, a treatment period of 24-48 weeks and a follow-up period of 4 weeks. ∼240 adults with bronchiectasis of multiple aetiologies will be randomised to placebo once daily, or BI 1291583 1 mg once daily, 2.5 mg once daily or 5 mg once daily in a 2:1:1:2 ratio, stratified by Pseudomonas aeruginosa infection and maintenance use of macrolides. The primary efficacy objective is to evaluate the dose-response relationship for the three oral doses of BI 1291583 versus placebo on time to first pulmonary exacerbation up to Week 48 (the primary end-point). Efficacy will be assessed using exacerbations, patient-reported outcomes, measures of symptoms, sputum neutrophil elastase activity and pulmonary function testing. Safety assessment will include adverse event reporting, physical examination, monitoring of vital signs, safety laboratory parameters, 12-lead electrocardiogram, and periodontal and dermatological assessments. If efficacy and safety are demonstrated, results will support further investigation of BI 1291583 in phase 3 trials.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Peter Eickholz
- Department of Periodontology, Goethe University Frankfurt, Frankfurt, Germany
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University, Tokyo, Japan
| | | | | | | | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | | | - Wiebke Sauter
- Boehringer Ingelheim International GmbH, Biberach, Germany
| |
Collapse
|
28
|
Milinic T, McElvaney OJ, Goss CH. Diagnosis and Management of Cystic Fibrosis Exacerbations. Semin Respir Crit Care Med 2023; 44:225-241. [PMID: 36746183 PMCID: PMC10131792 DOI: 10.1055/s-0042-1760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.
Collapse
Affiliation(s)
- Tijana Milinic
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Oliver J McElvaney
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
29
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
30
|
Solarat B, Perea L, Faner R, de La Rosa D, Martínez-García MÁ, Sibila O. Pathophysiology of Chronic Bronchial Infection in Bronchiectasis. Arch Bronconeumol 2023; 59:101-108. [PMID: 36180278 DOI: 10.1016/j.arbres.2022.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
Bronchiectasis is a complex and heterogeneous disease. Its pathophysiology is poorly understood, but chronic bronchial infection plays an important role in its natural history, and is associated with poor quality of life, more exacerbations and increased mortality. Pseudomonas aeruginosa, Haemophilus influenzae and Staphylococcus aureus are the most common bacteria related to chronic bronchial infection. Non-tuberculous mycobacteria, fungi and respiratory viruses are also present during clinical stability, and may increase the risk of acute exacerbation. Chronic inflammation is present in bronchiectasis, especially neutrophilic inflammation. However, macrophages and eosinophils also play a key role in the disease. Finally, airway epithelium has innate mechanisms such as mucociliary clearance and antibacterial molecules like mucins and antimicrobial peptides that protect the airways from pathogens. This review addresses how the persistence of microorganisms in the airways and the imbalance of the immune system contribute to the development of chronic bronchial infection in bronchiectasis.
Collapse
Affiliation(s)
- Belén Solarat
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, C. de Villaroel, 170, 08036 Barcelona, Spain
| | - Lidia Perea
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, C. de Villaroel, 170, 08036 Barcelona, Spain
| | - Rosa Faner
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, C. de Villaroel, 170, 08036 Barcelona, Spain
| | - David de La Rosa
- Respiratory Department, Hospital Sant Pau, C. Sant Quintí, 89, 08041 Barcelona, Spain
| | - Miguel Ángel Martínez-García
- Respiratory Department, Hospital La Fe, CIBERES, Avinguda de Fernando Abril Martorell, 106, 46026 València, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, C. de Villaroel, 170, 08036 Barcelona, Spain.
| |
Collapse
|
31
|
Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules 2022; 12:biom12101399. [PMID: 36291608 PMCID: PMC9599714 DOI: 10.3390/biom12101399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Most patients with bronchiectasis have a predominantly neutrophilic inflammatory profile, although other cells such as lymphocytes (as controllers of bronchial inflammation) and eosinophils also play a significant pathophysiological role. Easy-to-interpret blood biomarkers with a discriminative capacity for severity or prognosis are needed. The objective of this study was to assess whether the peripheral neutrophil-to-lymphocyte ratio (NLR) is associated with different outcomes of severity in bronchiectasis. A total of 1369 patients with bronchiectasis from the Spanish Registry of Bronchiectasis were included. To compare groups, the sample was divided into increasing quartiles of NLR ratio. Correlations between quantitative variables were established using Pearson's P test. A simple linear regression (with the value of exacerbations as a quantitative variable) was used to determine the independent relationship between the number and severity of exacerbations and the NLR ratio. The area under the curve (AUC)-ROC was used to determine the predictive capacity of the NLR for severe bronchiectasis, according to the different multidimensional scores. Mean age: 69 (15) years (66.3% of women). The mean NLR was 2.92 (2.03). A higher NLR was associated with more severe bronchiectasis (with an especially significant discriminative power for severe forms) according to the commonly used scores (FACED, E-FACED and BSI), as well as with poorer quality of life (SGRQ), more comorbidities (Charlson index), infection by pathogenic microorganisms, and greater application of treatment. Furthermore, the NLR correlated better with severity scores than other parameters of systemic inflammation. Finally, it was an independent predictor of the incident number and severity of exacerbations. In conclusion, the NLR is an inexpensive and easy-to-measure marker of systemic inflammation for determining severity and predicting exacerbations (especially the most severe) in patients with bronchiectasis.
Collapse
|
32
|
Chalmers JD, Usansky H, Rubino CM, Teper A, Fernandez C, Zou J, Mange KC. Pharmacokinetic/Pharmacodynamic Evaluation of the Dipeptidyl Peptidase 1 Inhibitor Brensocatib for Non-cystic Fibrosis Bronchiectasis. Clin Pharmacokinet 2022; 61:1457-1469. [PMID: 35976570 PMCID: PMC9553789 DOI: 10.1007/s40262-022-01147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
Background and Objective Brensocatib is an investigational, first-in-class, selective, and reversible dipeptidyl peptidase 1 inhibitor that blocks activation of neutrophil serine proteases (NSPs). The NSPs neutrophil elastase, cathepsin G, and proteinase 3 are believed to be central to the pathogenesis of several chronic inflammatory diseases, including bronchiectasis. In a phase II study, oral brensocatib 10 mg and 25 mg reduced sputum neutrophil elastase activity and prolonged the time to pulmonary exacerbation in patients with non-cystic fibrosis bronchiectasis (NCFBE). A population pharmacokinetic (PPK) model was developed to characterize brensocatib exposure, determine potential relationships between brensocatib exposure and efficacy and safety measures, and inform dose selection in clinical studies. Methods Pharmacokinetic (PK) data pooled from a phase I study of once-daily brensocatib (10, 25, and 40 mg) in healthy adults and a phase II study of once-daily brensocatib (10 mg and 25 mg) in adults with NCFBE were used to develop a PPK model and to evaluate potential covariate effects on brensocatib pharmacokinetics. PK–efficacy relationships for sputum neutrophil elastase below the level of quantification (BLQ) and reduction in pulmonary exacerbation and PK–safety relationships for adverse events of special interest (AESIs; periodontal disease, hyperkeratosis, and infections other than pulmonary infections) were evaluated based on model-predicted brensocatib exposure. A total of 1284 steady-state brensocatib concentrations from 225 individuals were included in the PPK data set; 241 patients with NCFBE from the phase II study were included in the pharmacodynamic (PD) population for the PK/PD analyses. Results The PPK model that best described the observed data consisted of two distributional compartments and linear clearance. Two significant covariates were found: age on volume of distribution and renal function on apparent oral clearance. PK–efficacy analysis revealed a threshold brensocatib exposure (area under the concentration–time curve) effect for attaining sputum neutrophil elastase BLQ and a strong relationship between sputum neutrophil elastase BLQ and reduction in pulmonary exacerbations. A PK–safety evaluation showed no noticeable trends between brensocatib exposure and the incidence of AESIs. Based on the predicted likelihood of clinical outcomes for sputum neutrophil elastase BLQ and pulmonary exacerbations, brensocatib doses of 10 mg and 25 mg once daily were selected for a phase III clinical trial in patients with NCFBE (ClinicalTrials.gov identifier: NCT04594369). Conclusions PPK results revealed that age and renal function have a moderate effect on brensocatib exposure. However, this finding does not warrant dose adjustments based on age or in those with mild or moderate renal impairment. The PK/PD evaluation demonstrated the clinically meaningful relationship between suppression of neutrophil elastase activity and reduction in exacerbations in brensocatib-treated patients with NCFBE, supporting further development of brensocatib for bronchiectasis. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01147-w.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | | | | | | | | - Jun Zou
- Insmed Incorporated, Bridgewater, NJ, USA
| | | |
Collapse
|
33
|
Shoemark A, Shteinberg M, De Soyza A, Haworth CS, Richardson H, Gao Y, Perea L, Dicker AJ, Goeminne PC, Cant E, Polverino E, Altenburg J, Keir HR, Loebinger MR, Blasi F, Welte T, Sibila O, Aliberti S, Chalmers JD. Characterization of Eosinophilic Bronchiectasis: A European Multicohort Study. Am J Respir Crit Care Med 2022; 205:894-902. [PMID: 35050830 DOI: 10.1164/rccm.202108-1889oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Bronchiectasis is classically considered a neutrophilic disorder, but eosinophilic subtypes have recently been described. Objectives: To use multiple datasets available through the European Multicentre Bronchiectasis Audit and Research Collaboration to characterize eosinophilic bronchiectasis as a clinical entity focusing on the impact of eosinophils on bronchiectasis exacerbations. Methods: Patients were included from five countries to examine the relationships between blood eosinophil counts and clinical phenotypes after excluding coexisting asthma. 16S rRNA sequencing was used to examine relationships between eosinophil counts and the sputum microbiome. A post hoc analysis of the PROMIS (Inhaled Promixin in the Treatment of Non-Cystic Fibrosis Bronchiectasis) phase 2 trial was used to examine the impact of blood eosinophil counts on exacerbations in patients with Pseudomonas aeruginosa infection. Measurements and Main Results: A relationship between sputum and blood eosinophil counts was demonstrated in two cohorts. In analysis of 1,007 patients from five countries, 22.6% of patients had blood eosinophil counts of ⩾300 cells/μl. Counts of <100 cells/μl were associated with higher bronchiectasis severity and increased mortality. There was no clear relationship with exacerbations. Blood eosinophil counts of ⩾300 cells/μl were associated with both Streptococcus- and Pseudomonas-dominated microbiome profiles. To investigate the relationship of eosinophil counts with exacerbations after controlling for the confounding effects of infection, 144 patients were studied in a clinical trial after treatment with antipseudomonal antibiotics. Compared with patients with blood eosinophil counts of <100 cells/μl (reference), elevated eosinophil counts of 100-299 cells/μl (hazard ratio, 2.38; 95% confidence interval, 1.33-4.25; P = 0.003) and ⩾300 cells/μl (hazard ratio, 3.99; 95% confidence interval, 2.20-7.85; P < 0.0001) were associated with shorter time to exacerbation. Conclusions: Eosinophilic bronchiectasis affects approximately 20% of patients. After accounting for infection status, raised blood eosinophil counts are associated with shortened time to exacerbation.
Collapse
Affiliation(s)
- Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.,Royal Brompton Hospital and Imperial College London, London, United Kingdom
| | - Michal Shteinberg
- Pulmonology Institute and Cystic Fibrosis Center, Carmel Medical Center, Haifa, Israel
| | - Anthony De Soyza
- Population and Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, United Kingdom
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lidia Perea
- Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Thorax Institute, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Josje Altenburg
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Tobias Welte
- Department of Pulmonary Medicine and Infectious Diseases, Hannover University School of Medicine, Hannover, Germany
| | - Oriol Sibila
- Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
34
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
35
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
36
|
Li S, Yu C, Jie H, Han X, Zou S, Tan Q, Luo S, Chen Y, Wang J. Neutrophil side fluorescence: a new indicator for predicting the severity of patients with bronchiectasis. BMC Pulm Med 2022; 22:107. [PMID: 35346147 PMCID: PMC8962496 DOI: 10.1186/s12890-022-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
Background Neutrophilic inflammation in the airway is a hallmark of bronchiectasis. Neutrophil extracellular traps (NETs) have been reported to play an important role in the occurrence and development of bronchiectasis. Neutrophil side fluorescence is one of the characteristics of neutrophils that can reflect the activation of neutrophils and the formation of NETs. Objective To explore the relationship between the values of neutrophil side fluorescence (NEUT-SFL) in the peripheral blood of bronchiectasis patients, and the severity of the disease. Methods 82 patients with bronchiectasis from the Department of Respiratory and Critical Medicine, at the Third Affiliated Hospital of Southern Medical University and were scored with Bronchiectasis Severity Index (BSI) (2019–2021). The clinical data such as the value of NEUT-SFL, neutrophil count, C-reactive protein, and procalcitonin levels were collected and retrospectively analyzed. NEUT-SFL values neutrophil count from 28 healthy subjects were also used to ascertain cut-off values. Results Based on the BSI scores, patients were divided into three categories as mild (32%), moderate (29%), and severe (39%). Our results showed that the values of NEUT-SFL were higher in bronchiectasis patients compared to healthy controls. The levels of NEUT-SFL positively correlated with the high BSI scores in patients (P = 0.037, r = 0.23) and negatively correlated with the lung function in these patients (r = − 0.35, P = 0.001). The area under the ROC curve was 0.813, the best cut-off was 42.145, indicating that NEUT-SFL values > 42.145 can potentially predict the severity of bronchiectasis. Conclusions The values of NEUT-SFL in the peripheral blood can be used for predicting the severity of bronchiectasis.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Yu
- Department of Gastroenterology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Hongyu Jie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinai Han
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shujing Zou
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Quanguang Tan
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shugeng Luo
- Department of Internal Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youming Chen
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jinhong Wang
- Department of Respiration, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
|
38
|
Pembridge T, Chalmers JD. Precision medicine in bronchiectasis. Breathe (Sheff) 2022; 17:210119. [PMID: 35035573 PMCID: PMC8753699 DOI: 10.1183/20734735.0119-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Bronchiectasis, due to its highly heterogenous nature, requires an individualised approach to therapy. Patients experience symptoms and exacerbations driven by a combination of impaired mucociliary clearance, airway inflammation and airway infection. Treatment of bronchiectasis aims to enhance airway clearance and to address the underlying causes of inflammation and infection susceptibility. Bronchiectasis has multiple causes and so the pathophysiology leading to individual symptoms and exacerbations are different between individuals. Standardised investigations are recommended by international guidelines to identify the underlying causes of bronchiectasis. The process of identifying the underlying biology within an individual is called “endotyping” and is an emerging concept across chronic diseases. Endotypes that have a specific treatment are referred to as “treatable traits” and a treatable traits approach to managing patients with bronchiectasis in a holistic and evidence-based manner is the key to improved outcomes. Bronchiectasis is an area of intense research. Endotyping allows identification of subsets of patients to allow medicines to be tested differently in the future where trials, rather than trying to achieve a “one size fits all” solution, can test efficacy in subsets of patients where the treatment is most likely to be efficacious. Bronchiectasis, due to its highly heterogenous nature, requires an individualised approach to therapy. Treatment targets symptoms and exacerbations by aiming to improve mucociliary clearance and to reduce airway inflammation and airway infection.https://bit.ly/3ite4B2
Collapse
Affiliation(s)
- Thomas Pembridge
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
39
|
Raj S, McCafferty D, Lubrasky G, Johnston S, Skillen KL, McLaughlin J. Point-of-Care Monitoring of Respiratory Diseases Using Lateral Flow Assay and CMOS Camera Reader. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:2800208. [PMID: 35992371 PMCID: PMC9384958 DOI: 10.1109/jtehm.2022.3193575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shasidran Raj
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| | | | - Gennady Lubrasky
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| | | | - Kerry-Louise Skillen
- Eastern Corridor Medical Engineering Centre, NIBEC, Ulster University, Belfast, U.K
| | - James McLaughlin
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| |
Collapse
|
40
|
Chalmers JD, Keir HR. Less is more? Antibiotic treatment duration for exacerbations of bronchiectasis. Eur Respir J 2021; 58:58/6/2101416. [PMID: 34916253 DOI: 10.1183/13993003.01416-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
41
|
Keir HR, Shoemark A, Huang JTJ, Chalmers JD. SPLUNC1 is a novel marker of disease severity and airway infection in bronchiectasis. Eur Respir J 2021; 58:13993003.01840-2021. [PMID: 34413156 DOI: 10.1183/13993003.01840-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.,Royal Brompton Hospital, Primary Ciliary Dyskinesia Centre, Paediatric Respiratory Medicine, London, UK
| | | | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
42
|
Voynow JA, Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11:biom11081065. [PMID: 34439732 PMCID: PMC8394930 DOI: 10.3390/biom11081065] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties.
Collapse
Affiliation(s)
- Judith A. Voynow
- Division of Pediatric Pulmonology, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Meagan Shinbashi
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
43
|
Abstract
Bronchiectasis is a complex, heterogeneous disorder defined by both a radiological abnormality of permanent bronchial dilatation and a clinical syndrome. There are multiple underlying causes including severe infections, mycobacterial disease, autoimmune conditions, hypersensitivity disorders, and genetic conditions. The pathophysiology of disease is understood in terms of interdependent concepts of chronic infection, inflammation, impaired mucociliary clearance, and structural lung damage. Neutrophilic inflammation is characteristic of the disease, with elevated levels of harmful proteases such as neutrophil elastase associated with worse outcomes. Recent data show that neutrophil extracellular trap formation may be the key mechanism leading to protease release and severe bronchiectasis. Despite the dominant of neutrophilic disease, eosinophilic subtypes are recognized and may require specific treatments. Neutrophilic inflammation is associated with elevated bacterial loads and chronic infection with organisms such as Pseudomonas aeruginosa. Loss of diversity of the normal lung microbiota and dominance of proteobacteria such as Pseudomonas and Haemophilus are features of severe bronchiectasis and link to poor outcomes. Ciliary dysfunction is also a key feature, exemplified by the rare genetic syndrome of primary ciliary dyskinesia. Mucus symptoms arise through goblet cell hyperplasia and metaplasia and reduced ciliary function through dyskinesia and loss of ciliated cells. The contribution of chronic inflammation, infection, and mucus obstruction leads to progressive structural lung damage. The heterogeneity of the disease is the most challenging aspect of management. An understanding of the pathophysiology of disease and their biomarkers can help to guide personalized medicine approaches utilizing the concept of "treatable traits."
Collapse
Affiliation(s)
- Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
44
|
Maselli DJ, Yen A, Wang W, Okajima Y, Dolliver WR, Mercugliano C, Anzueto A, Restrepo MI, Aksamit TR, Basavaraj A, Aliberti S, Young KA, Kinney GL, Wells JM, San José Estépar R, Lynch DA, Diaz AA. Small Airway Disease and Emphysema Are Associated with Future Exacerbations in Smokers with CT-derived Bronchiectasis and COPD: Results from the COPDGene Cohort. Radiology 2021; 300:706-714. [PMID: 34156303 DOI: 10.1148/radiol.2021204052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) and bronchiectasis can overlap and share pathologic features, such as small airway disease (SAD). Whether the presence of SAD and emphysema in smokers with CT-derived bronchiectasis is associated with exacerbations is unknown. Purpose To assess whether SAD and emphysema in smokers with CT-derived bronchiectasis are associated with future exacerbations. Materials and Methods SAD and emphysema were quantified using the parametric response map method in former and current heavy smokers with and without bronchiectasis at CT from the COPDGene Study (from July 2009 to July 2018). Exacerbations were prospectively assessed through biannual follow-up. An exacerbation was defined as an increase in or new onset of respiratory symptoms treated with antibiotics and/or corticosteroids. Severe exacerbations were defined as those that required hospitalization. The association of a high burden of SAD (≥15.6%) and high burden of emphysema (≥5%) at CT with exacerbations was assessed with generalized linear mixed models. Results Of 737 participants, 387 (median age, 64 years [interquartile range, 58-71 years]; 223 women) had CT-derived bronchiectasis. During a 9-year follow-up, after adjustment for age, sex, race, body mass index, current smoking status, pack-years, exacerbations before study entry, forced expiratory volume in 1 second, or FEV1, and bronchiectasis severity CT score, high burden of SAD and high burden of emphysema were associated with a higher number of exacerbations per year (relative risk [RR], 1.89 [95% CI: 1.54, 2.33] and 1.37 [95% CI: 1.13, 1.66], respectively; P ≤ .001 for both). Results were comparable among participants with bronchiectasis meeting criteria for COPD (n = 197) (RR, 1.67 [95% CI: 1.23, 2.27] for high burden of SAD and 1.51 [95% CI: 1.20, 1.91] for high burden of emphysema; P ≤ .001 for both). Conclusion In smokers with CT-derived bronchiectasis and chronic obstructive pulmonary disease, structural damage to lung parenchyma and small airways was associated with a higher number of exacerbations per year. Clinical trial registration no. NCT00608764 © RSNA, 2021.
Collapse
Affiliation(s)
- Diego Jose Maselli
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Andrew Yen
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Wei Wang
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Yuka Okajima
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Wojciech R Dolliver
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Christina Mercugliano
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Antonio Anzueto
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Marcos I Restrepo
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Timothy R Aksamit
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Ashwin Basavaraj
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Stefano Aliberti
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Kendra A Young
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Gregory L Kinney
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - J Michael Wells
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Raúl San José Estépar
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - David A Lynch
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Alejandro A Diaz
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| |
Collapse
|
45
|
Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S. Protease-Antiprotease Imbalance in Bronchiectasis. Int J Mol Sci 2021; 22:5996. [PMID: 34206113 PMCID: PMC8199509 DOI: 10.3390/ijms22115996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Airway inflammation plays a central role in bronchiectasis. Protease-antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases' over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease-antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.
Collapse
Affiliation(s)
- Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesco Amati
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Anthony De Soyza
- Population and Health Science Institute, NIHR Biomedical Research Centre for Ageing & Freeman Hospital, Newcastle University, Newcastle NE2 4HH, UK;
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, 08036 Barcelona, Spain;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Teaching Hospital, 20122 Milan, Italy;
| | - Paola Marchisio
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Paediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
46
|
Dicker AJ, Lonergan M, Keir HR, Smith AH, Pollock J, Finch S, Cassidy AJ, Huang JTJ, Chalmers JD. The sputum microbiome and clinical outcomes in patients with bronchiectasis: a prospective observational study. THE LANCET RESPIRATORY MEDICINE 2021; 9:885-896. [PMID: 33961805 DOI: 10.1016/s2213-2600(20)30557-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Infection is a key component of bronchiectasis pathophysiology. Characterisation of the microbiome offers a higher degree of sensitivity and resolution than does traditional culture methods. We aimed to evaluate the role of the microbiome in determining the risk of exacerbation and long-term outcomes, including all-cause mortality, in bronchiectasis. METHODS We did a prospective observational cohort study of patients with bronchiectasis from eastern Scotland. Patients were enrolled from Sept 11, 2012, to Dec 21, 2015, and followed until Jan 8, 2019, for long-term outcomes. Patients were included if they were aged 18 years or older, and had a high-resolution CT-confirmed diagnosis of bronchiectasis and clinical symptoms consistent with the disease. Sputum samples were obtained when patients were clinically stable. Repeat sputum samples were taken at stable and exacerbation visits during follow-up. The V3-V4 region of the bacterial 16S rRNA gene was sequenced using the Illumina MiSeq platform. The dominant bacterial genus in each sample was assigned on the basis of a previously published method. Microbiome characteristics were analysed for their association with measures of clinical disease severity and long-term outcomes using PERMANOVA, random forest, and survival analyses. FINDINGS Sequencing data were obtained from the sputum samples of 281 patients with bronchiectasis who were included in the stable baseline cohort. 49 (17%) of 281 patients provided more than one sample when clinically stable and were included in the longitudinal analysis. 64 (23%) patients provided both stable and exacerbation samples. In both stable bronchiectasis and during exacerbations, a sputum microbiome dominated by Proteobacteria and Firmicutes was observed. Individual patients' microbiome profiles were relatively stable over time, during exacerbations and at disease stability. Lower microbiome diversity, measured using the Shannon-Wiener diversity index, was associated with more severe bronchiectasis defined by the bronchiectasis severity index, lower FEV1, and more severe symptoms. Random forest analysis of baseline samples identified Pseudomonas, Enterobacteriaceae, and Stenotrophomonas as being associated with severe bronchiectasis (bronchiectasis severity index ≥9) and greater lung inflammation and Pseudomonas and Enterobacteriaceae with more frequent exacerbations. Patients in whom Pseudomonas was dominant (n=35) were at increased risk of all-cause mortality (hazard ratio 3·12, 95% CI 1·33-7·36; p=0·0091) and had more frequent exacerbations (incident rate ratio 1·69, 95% CI 1·07-2·67; p=0·024) during follow-up compared with patients with other dominant genera (n=246). INTERPRETATION A reduction in microbiome diversity, particularly one associated with dominance of Pseudomonas, is associated with greater disease severity, higher frequency and severity of exacerbations, and higher risk of mortality. The microbiome might therefore identify subgroups of patients at increased risk of poor outcomes who could benefit from precision treatment strategies. Further research is required to identify the mechanisms of reduced microbiome diversity and to establish whether the microbiome can be therapeutically targeted. FUNDING British Lung Foundation and European Respiratory Society EMBARC2 consortium.
Collapse
Affiliation(s)
- Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Mike Lonergan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Cassidy
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T J Huang
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
47
|
Frent S, Calarasu C, Suska K, Gashynova K, Keir H. ERS International Congress 2020: highlights from the Respiratory Infections assembly. ERJ Open Res 2021; 7:00091-2021. [PMID: 33898612 PMCID: PMC8053904 DOI: 10.1183/23120541.00091-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022] Open
Abstract
In the coronavirus disease 2019 (COVID-19) pandemic year 2020, the 30th European Respiratory Society (ERS) International Congress took place for the first time in a fully virtual format. Despite the challenging nature of the task to create and deliver an online event of this size and scope, it turned out to be a great success, welcoming over 33 000 delegates to the specially designed online platform and offering more than 450 scientific and educational sessions. Somewhat predictably, this year's ERS International Congress dedicated a full day to the topic of COVID-19, highlighting that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a respiratory disease that is particularly important this year. In this article, the Early Career Members of the Assembly 10 (Respiratory Infections and Tuberculosis) review some of the most interesting sessions including presentations and posters on respiratory infections and tuberculosis that were deemed as important. This is a comprehensive summary of several interesting sessions from #ERSCongress 2020 including presentations and posters on respiratory infections and tuberculosis that were deemed as importanthttps://bit.ly/2OtrYXH
Collapse
Affiliation(s)
- Stefan Frent
- Dept of Pulmonology, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Cristina Calarasu
- Dept of Medical Specialities, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Kseniia Suska
- State Institution "Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine", Dnipro, Ukraine
| | - Kateryna Gashynova
- State Institution "Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine", Dnipro, Ukraine
| | - Holly Keir
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
48
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
49
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Keir HR, Shoemark A, Dicker AJ, Perea L, Pollock J, Giam YH, Suarez-Cuartin G, Crichton ML, Lonergan M, Oriano M, Cant E, Einarsson GG, Furrie E, Elborn JS, Fong CJ, Finch S, Rogers GB, Blasi F, Sibila O, Aliberti S, Simpson JL, Huang JTJ, Chalmers JD. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. THE LANCET RESPIRATORY MEDICINE 2021; 9:873-884. [PMID: 33609487 DOI: 10.1016/s2213-2600(20)30504-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bronchiectasis is predominantly a neutrophilic inflammatory disease. There are no established therapies that directly target neutrophilic inflammation because little is understood of the underlying mechanisms leading to severe disease. Neutrophil extracellular trap (NET) formation is a method of host defence that has been implicated in multiple inflammatory diseases. We aimed to investigate the role of NETs in disease severity and treatment response in bronchiectasis. METHODS In this observational study, we did a series of UK and international studies to investigate the role of NETs in disease severity and treatment response in bronchiectasis. First, we used liquid chromatography-tandem mass spectrometry to identify proteomic biomarkers associated with disease severity, defined using the bronchiectasis severity index, in patients with bronchiectasis (n=40) in Dundee, UK. Second, we validated these biomarkers in two cohorts of patients with bronchiectasis, the first comprising 175 patients from the TAYBRIDGE study in the UK and the second comprising 275 patients from the BRIDGE cohort study from centres in Italy, Spain, and UK, using an immunoassay to measure NETs. Third, we investigated whether pathogenic bacteria had a role in NET concentrations in patients with severe bronchiectasis. In a separate study, we enrolled patients with acute exacerbations of bronchiectasis (n=20) in Dundee, treated with intravenous antibiotics for 14 days and proteomics were used to identify proteins associated with treatment response. Findings from this cohort were validated in an independent cohort of patients who were admitted to the same hospital (n=20). Fourth, to assess the potential use of macrolides to reduce NETs in patients with bronchiectasis, we examined two studies of long-term macrolide treatment, one in patients with bronchiectasis (n=52 from the UK) in which patients were given 250 mg of azithromycin three times a week for a year, and a post-hoc analysis of the Australian AMAZES trial in patients with asthma (n=47) who were given 500 mg of azithromycin 3 times per week for a year. FINDINGS Sputum proteomics identified that NET-associated proteins were the most abundant and were the proteins most strongly associated with disease severity. This finding was validated in two observational cohorts, in which sputum NETs were associated with bronchiectasis severity index, quality of life, future risk of hospital admission, and mortality. In a subgroup of 20 patients with acute exacerbations, clinical response to intravenous antibiotic treatment was associated with successfully reducing NETs in sputum. Patients with Pseudomonas aeruginosa infection had a lessened proteomic and clinical response to intravenous antibiotic treatment compared with those without Pseudomonas infections, but responded to macrolide therapy. Treatment with low dose azithromycin was associated with a significant reduction in NETs in sputum over 12 months in both bronchiectasis and asthma. INTERPRETATION We identified NETs as a key marker of disease severity and treatment response in bronchiectasis. These data support the concept of targeting neutrophilic inflammation with existing and novel therapies. FUNDING Scottish Government, British Lung Foundation, and European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC).
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lidia Perea
- Respiratory Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Mike Lonergan
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Martina Oriano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Gisli G Einarsson
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Elizabeth Furrie
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - J Stuart Elborn
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Christopher J Fong
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Stefano Aliberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Jeffrey T J Huang
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|