1
|
Kokesh KJ, Bala N, Dogan YE, Nguyen VAL, Costa M, Alli A. Mycobacterium avium inhibits protein kinase C and MARCKS phosphorylation in human cystic fibrosis and non-cystic fibrosis cells. PLoS One 2024; 19:e0308299. [PMID: 39413095 PMCID: PMC11482691 DOI: 10.1371/journal.pone.0308299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2024] [Indexed: 10/18/2024] Open
Abstract
In cystic fibrosis (CF), there is abnormal translocation and function of the cystic fibrosis transmembrane conductance regulator (CFTR) and an upregulation of the epithelial sodium channel (ENaC). This leads to hyperabsorption of sodium and fluid from the airway, dehydrated mucus, and an increased risk of respiratory infections. In this study, we performed a proteomic assessment of differentially regulated proteins from CF and non-CF small airway epithelial cells (SAEC) that are sensitive to Mycobacterium avium. CF SAEC and normal non-CF SAEC were infected with M. avium before the cells were harvested for protein. Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with M. avium compared to vehicle. Western blot and densitometric analysis showed a significant increase in cathepsin B protein expression in M. avium infected CF cells. Myristoylated alanine rich C-kinase substrate (MARCKS) protein was one of several differentially expressed proteins between the groups that was identified by mass spectrometry-based proteomics. Total MARCKS protein expression was greater in CF cells compared to non-CF cells. Phosphorylation of MARCKS at serine 163 was also greater in CF cells compared to non-CF cells after treating both groups of cells with M. avium. Taken together, MARCKS protein is upregulated in CF cells and there is decreased phosphorylation of the protein due to a decrease in PKC activity and presumably increased cathepsin B mediated proteolysis of the protein after M. avium infection.
Collapse
Affiliation(s)
- Kevin J. Kokesh
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Yunus E. Dogan
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Pediatrics, Erciyes University of Medicine, Kayseri, Turkey
| | - Van-Anh L. Nguyen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marcus Costa
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Abdel Alli
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Medicine, Division of Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Brown R, Dougan C, Ferris P, Delaney R, Houston CJ, Rodgers A, Downey DG, Mall MA, Connolly B, Small D, Weldon S, Taggart CC. SLPI deficiency alters airway protease activity and induces cell recruitment in a model of muco-obstructive lung disease. Front Immunol 2024; 15:1433642. [PMID: 39301022 PMCID: PMC11410634 DOI: 10.3389/fimmu.2024.1433642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an important cationic protein involved in innate airway immunity and highly expressed in mucosal secretions, shown to target and inhibit neutrophil elastase (NE), cathepsin G and trypsin activity to limit proteolytic activity. In addition to the potent anti-protease activity, SLPI has been demonstrated to exert a direct anti-inflammatory effect, which is mediated via increased inhibition and competitive binding of NF-κB, regulating immune responses through limiting transcription of pro-inflammatory gene targets. In muco-obstructive lung disorders, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), there is an observed elevation in airway SLPI protein concentrations as a result of increased lung inflammation and disease progression. However, studies have identified COPD patients presenting with diminished SLPI concentrations. Furthermore, there is a decrease in SLPI concentrations through cleavage and subsequent inactivation by NE degradation in Pseudomonas aeruginosa infected people with CF (pwCF). These observations suggest reduced SLPI protein levels may contribute to the compromising of airway immunity indicating a potential role of decreased SLPI levels in the pathogenesis of muco-obstructive lung disease. The Beta Epithelial Na+ Channel transgenic (ENaC-Tg) mouse model phenotype exhibits characteristics which replicate the pathological features observed in conditions such as COPD and CF, including mucus accumulation, alterations in airway morphology and increased pulmonary inflammation. To evaluate the effect of SLPI in muco-obstructive pulmonary disease, ENaC-Tg mice were crossed with SLPI knock-out (SLPI-/-) mice, generating a ENaC-Tg/SLPI-/- colony to further investigate the role of SLPI in chronic lung disease and determine the effect of its ablation on disease pathogenesis.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Caoifa Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Peter Ferris
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Rebecca Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Claire J Houston
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Aoife Rodgers
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bronwen Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Donna Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Reches G, Piran R. Par2-mediated responses in inflammation and regeneration: choosing between repair and damage. Inflamm Regen 2024; 44:26. [PMID: 38816842 PMCID: PMC11138036 DOI: 10.1186/s41232-024-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing β-cells in mice, whereas the introduction of a β-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel.
| |
Collapse
|
4
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
5
|
Yin J, Shi D, Sun Y, Zhu P, Zhao Y, Xu X, Chen H, Wu Y, Yuan Z, Gao XH. IRF7 and CTSS are pivotal for cutaneous wound healing and may serve as therapeutic targets. Signal Transduct Target Ther 2023; 8:322. [PMID: 37644004 PMCID: PMC10465541 DOI: 10.1038/s41392-023-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Jiali Yin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Dongxin Shi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Peiyao Zhu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Yiping Zhao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China.
- College of Medicine and Biological Information Engineering, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, China.
| |
Collapse
|
6
|
Chesseron S, Saidi A, Lecaille F, Lalmanach G, Bigot P. [Alteration of pulmonary epithelial permeability by cathepsin S in chronic obstructive pulmonary disease]. Rev Mal Respir 2023; 40:250-253. [PMID: 36828678 DOI: 10.1016/j.rmr.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Smoking is accountable for most of the chronic obstructive pulmonary disease (COPD) cases. COPD, which is characterized by the development of chronic bronchitis, could be associated with emphysema. In active smokers, there is an overexpression of cathepsin S, a cysteine protease, which participates in the development of emphysema via its elastinolytic activity. Likewise, we demonstrated that cathepsin S could degrade one or more protein constituents of cell junctions. This deleterious proteolytic activity leads to an alteration of the integrity of the lung epithelial barrier, which in turn could aggravate chronic inflammation and promote the exacerbation phases associated with infections.
Collapse
Affiliation(s)
- S Chesseron
- University of Tours, Tours, France; Inserm, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Mechanisms in Inflammation", 10, boulevard Tonnellé, 37032 Tours cedex, France
| | - A Saidi
- University of Tours, Tours, France; Inserm, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Mechanisms in Inflammation", 10, boulevard Tonnellé, 37032 Tours cedex, France
| | - F Lecaille
- University of Tours, Tours, France; Inserm, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Mechanisms in Inflammation", 10, boulevard Tonnellé, 37032 Tours cedex, France
| | - G Lalmanach
- University of Tours, Tours, France; Inserm, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Mechanisms in Inflammation", 10, boulevard Tonnellé, 37032 Tours cedex, France
| | - P Bigot
- University of Tours, Tours, France; Inserm, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Mechanisms in Inflammation", 10, boulevard Tonnellé, 37032 Tours cedex, France.
| |
Collapse
|
7
|
Binding mechanism of selective cathepsin K/S inhibition revealed from molecular simulations. Struct Chem 2023. [DOI: 10.1007/s11224-023-02136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Shao C, Lu L. PAR2 Overexpression is Involved in the Occurrence of Hyperoxygen-Induced Bronchopulmonary Dysplasia in Rats. Fetal Pediatr Pathol 2023; 42:423-437. [PMID: 36657618 DOI: 10.1080/15513815.2023.2166799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia is a chronic lung disease commonly seen in preterm infants. It is characterized by delayed development of the alveoli and lung fibrosis. Protease-activated receptor 2 (PAR2) is an inflammatory driver that plays a proinflammatory role mainly through the P38 MAPK/NF-κB signaling pathway. METHODS Newborn rat pups were kept under air or oxygen at >60% concentration. Lung tissues were collected at postnatal days (P) 1, 4, 7, and 10 to observe pathological changes and take measurements. RESULTS In the hyperoxic group, P4 and P7 rats showed delayed alveolar development, septal thickening, and disturbances in alveolar structure.PAR2, P38 MAPK, NF-κB, and IL-18 expression at P4, P7, and P10 was significantly higher than in the air group. CONCLUSION PAR2 is involved in lung injury induced by persistent hyperoxia. Activated PAR2 promotes IL-18 overexpression through the P38 MAPK/NF-κB signaling pathway, which may be an important mechanism of PAR2-mediated lung injury in bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Chunyan Shao
- Department of Pediatrics, Chengdu Medical College, Chengdu, China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| |
Collapse
|
9
|
Bigot P, Chesseron S, Saidi A, Sizaret D, Parent C, Petit-Courty A, Courty Y, Lecaille F, Lalmanach G. Cleavage of Occludin by Cigarette Smoke-Elicited Cathepsin S Increases Permeability of Lung Epithelial Cells. Antioxidants (Basel) 2022; 12:antiox12010005. [PMID: 36670867 PMCID: PMC9854811 DOI: 10.3390/antiox12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an irreversible disease mainly caused by smoking. COPD is characterized by emphysema and chronic bronchitis associated with enhanced epithelial permeability. HYPOTHESIS Lung biopsies from smokers revealed a decreased expression level of occludin, which is a protein involved in the cohesion of epithelial tight junctions. Moreover, the occludin level correlated negatively with smoking history (pack-years), COPD grades, and cathepsin S (CatS) activity. Thus, we examined whether CatS could participate in the modulation of the integrity of human lung epithelial barriers. METHODS AND RESULTS Cigarette smoke extract (CSE) triggered the upregulation of CatS by THP-1 macrophages through the mTOR/TFEB signaling pathway. In a co-culture model, following the exposure of macrophages to CSE, an enhanced level of permeability of lung epithelial (16HBE and NHBE) cells towards FITC-Dextran was observed, which was associated with a decrease in occludin level. Similar results were obtained using 16HBE and NHBE cells cultured at the air-liquid interface. The treatment of THP-1 macrophages by CatS siRNAs or by a pharmacological inhibitor restored the barrier function of epithelial cells, suggesting that cigarette smoke-elicited CatS induced an alteration of epithelial integrity via the proteolytic injury of occludin. CONCLUSIONS Alongside its noteworthy resistance to oxidative stress induced by cigarette smoke oxidants and its deleterious elastin-degrading potency, CatS may also have a detrimental effect on the barrier function of epithelial cells through the cleavage of occludin. The obtained data emphasize the emerging role of CatS in smoking-related lung diseases and strengthen the relevance of targeting CatS in the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Paul Bigot
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Simon Chesseron
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Ahlame Saidi
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Damien Sizaret
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Pathological Anatomy and Cytology, The University Hospital Center of Tours, 37000 Tours, France
| | - Christelle Parent
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Aerosol therapy and Biotherapeutics for Respiratory Diseases”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Agnès Petit-Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Yves Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Fabien Lecaille
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Gilles Lalmanach
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-36-61-51
| |
Collapse
|
10
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
12
|
Wagner C, Balázs A, Schatterny J, Zhou-Suckow Z, Duerr J, Schultz C, Mall MA. Genetic Deletion of Mmp9 Does Not Reduce Airway Inflammation and Structural Lung Damage in Mice with Cystic Fibrosis-like Lung Disease. Int J Mol Sci 2022; 23:13405. [PMID: 36362203 PMCID: PMC9657231 DOI: 10.3390/ijms232113405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2023] Open
Abstract
Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of βENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in βENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in βENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.
Collapse
Affiliation(s)
- Claudius Wagner
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
13
|
McKelvey MC, Bradbury I, McDowell C, Calfee CS, Weldon S, O'Kane CM, McAuley DF, Taggart CC. The relationship between plasma cystatin C, mortality and acute respiratory distress syndrome subphenotype in the HARP-2 trial. CRIT CARE RESUSC 2022; 24:251-258. [PMID: 38046206 PMCID: PMC10692599 DOI: 10.51893/2022.3.oa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To evaluate the performance of cystatin C as a prognostic and predictive marker in a trial of patients with acute respiratory distress syndrome (ARDS). Design, patients and setting: A retrospective analysis was performed on plasma samples from patients included in the HARP-2 (hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction) trial - a multicentre, phase 2b trial carried out in general intensive care units across 40 hospitals in the United Kingdom and Ireland. Cystatin C concentrations in plasma obtained from 466 patients with ARDS (before they were randomly assigned in the trial) were quantified by ELISA (enzyme-linked immunosorbent assay). Results: In a univariate analysis, plasma cystatin C concentrations were significantly higher in patients with ARDS who did not survive past 28 days (odds ratio [OR], 1.39 [95% CI, 1.12-1.72]; P = 0.002). In a multivariate model adjusted for selected covariates, cystatin C concentrations remained higher among patients with ARDS who did not survive, although this did not reach statistical significance (OR, 1.28 [95% CI, 0.96-1.71]; P = 0.090). Cystatin C concentration was also significantly associated with hyperinflammatory ARDS (OR, 2.64 [95% CI, 1.83-3.89]; P < 0.001). In multivariate models adjusted for both cystatin C concentration and ARDS subphenotype, hyperinflammatory ARDS was prognostic for mortality (OR, 2.06 [95% CI, 1.16-3.64]; P = 0.013) but cystatin C concentration was not (OR, 1.16 [95% CI, 0.85-1.57]; P = 0.346). In a multivariate analysis, hyperinflammatory ARDS was predictive of a beneficial effect of simvastatin on mortality (OR, 2.05 [95% CI, 1.16-3.62]; P = 0.014) but cystatin C concentration was not (OR, 1.10 [95% CI, 0.77-1.56]; P = 0.614). Conclusion: The association between cystatin C concentration and mortality in ARDS may be dependent on inflammatory subphenotype. Cystatin C concentration does not appear to add to existing prognostic or predictive approaches.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | | | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Royal Hospitals, Belfast, Northern Ireland, UK
| | - Carolyn S. Calfee
- Pulmonary, Critical Care, Allergy and Sleep Medicine Program, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sinead Weldon
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Cecilia M. O'Kane
- Critical Care Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Daniel F. McAuley
- Critical Care Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Clifford C. Taggart
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
14
|
McKelvey MC, Abladey AA, Small DM, Doherty DF, Williams R, Scott A, Spek CA, Borensztajn KS, Holsinger L, Booth R, O'Kane CM, McAuley DF, Taggart CC, Weldon S. Cathepsin S Contributes to Lung Inflammation in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2022; 205:769-782. [PMID: 35073247 DOI: 10.1164/rccm.202107-1631oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Although the cysteine protease cathepsin S has been implicated in the pathogenesis of several inflammatory lung diseases, its role has not been examined in the context of acute respiratory distress syndrome, a condition that still lacks specific and effective pharmacological treatments. Objectives: To characterize the status of cathepsin S in acute lung inflammation and examine the role of cathepsin S in disease pathogenesis. Methods: Human and mouse model BAL fluid samples were analyzed for the presence and activity of cathepsin S and its endogenous inhibitors. Recombinant cathepsin S was instilled directly into the lungs of mice. The effects of cathepsin S knockout and pharmacological inhibition were examined in two models of acute lung injury. Protease-activated receptor-1 antagonism was used to test a possible mechanism for cathepsin S-mediated inflammation. Measurements and Main Results: Pulmonary cathepsin S concentrations and activity were elevated in acute respiratory distress syndrome, a phenotype possibly exacerbated by the loss of the endogenous antiprotease cystatin SN. Direct cathepsin S instillation into the lungs induced key pathologies of acute respiratory distress syndrome, including neutrophilia and alveolar leakage. Conversely, in murine models of acute lung injury, genetic knockdown and prophylactic or therapeutic inhibition of cathepsin S reduced neutrophil recruitment and protein leakage. Cathepsin S may partly mediate its pathogenic effects via protease-activated receptor-1, because antagonism of this receptor abrogated cathepsin S-induced airway inflammation. Conclusions: Cathepsin S contributes to acute lung injury and may represent a novel therapeutic target for acute respiratory distress syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Richard Williams
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Aaron Scott
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, England, United Kingdom
| | - C Arnold Spek
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France; and
| | | | | | | | | | | | | |
Collapse
|
15
|
Peñaloza HF, van der Geest R, Ybe JA, Standiford TJ, Lee JS. Interleukin-36 Cytokines in Infectious and Non-Infectious Lung Diseases. Front Immunol 2021; 12:754702. [PMID: 34887860 PMCID: PMC8651476 DOI: 10.3389/fimmu.2021.754702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Yoo Y, Choi E, Kim Y, Cha Y, Um E, Kim Y, Kim Y, Lee YS. Therapeutic potential of targeting cathepsin S in pulmonary fibrosis. Biomed Pharmacother 2021; 145:112245. [PMID: 34772578 DOI: 10.1016/j.biopha.2021.112245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cathepsin S (CTSS), a lysosomal protease, belongs to a family of cysteine cathepsin proteases that promote degradation of damaged proteins in the endolysosomal pathway. Aberrant CTSS expression and regulation are associated with the pathogenesis of several diseases, including lung diseases. CTSS overexpression causes a variety of pathological processes, including pulmonary fibrosis, with increased CTSS secretion and accelerated extracellular matrix remodeling. Compared to many other cysteine cathepsin family members, CTSS has unique features that it presents limited tissue expression and retains its enzymatic activity at a neutral pH, suggesting its decisive involvement in disease microenvironments. In this review, we investigated the role of CTSS in lung disease, exploring recent studies that have indicated that CTSS mediates fibrosis in unique ways, along with its structure, substrates, and distinct regulation. We also outlined examples of CTSS inhibitors in clinical and preclinical development and proposed CTSS as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- YoungJo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eun Choi
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yejin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunyoung Cha
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eunhye Um
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunji Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea.
| |
Collapse
|
17
|
Grant GJ, Mimche PN, Paine R, Liou TG, Qian WJ, Helms MN. Enhanced epithelial sodium channel activity in neonatal Scnn1b mouse lung attenuates high oxygen-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321:L29-L41. [PMID: 33949206 PMCID: PMC8321857 DOI: 10.1152/ajplung.00538.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Prolonged oxygen therapy leads to oxidative stress, epithelial dysfunction, and acute lung injury in preterm infants and adults. Heterozygous Scnn1b mice, which overexpress lung epithelial sodium channels (ENaC), and their wild-type (WT) C57Bl6 littermates were utilized to study the pathogenesis of high fraction inspired oxygen ([Formula: see text])-induced lung injury. Exposure to high [Formula: see text] from birth to postnatal (PN) day 11 was used to model oxidative stress. Chronic exposure of newborn pups to 85% O2 increased glutathione disulfide (GSSG) and elevated the GSH/GSSG redox potential (Eh) of bronchoalveolar lavage fluid (BALF). Longitudinal X-ray imaging and Evans blue-labeled-albumin assays showed that chronic 85% O2 and acute GSSG (400 µM) exposures decreased alveolar fluid clearance (AFC) in the WT lung. Morphometric analysis of WT pups insufflated with GSSG (400 µM) or amiloride (1 µM) showed a reduction in alveologenesis and increased lung injury compared with age-matched control pups. The Scnn1b mouse lung phenotype was not further aggravated by chronic 85% O2 exposure. These outcomes support the hypothesis that exposure to hyperoxia increases GSSG, resulting in reduced lung fluid reabsorption due to inhibition of amiloride-sensitive ENaC. Flavin adenine dinucleotide (FADH2; 10 µM) was effective in recycling GSSG in vivo and promoted alveologenesis, but did not impact AFC nor attenuate fibrosis following high [Formula: see text] exposure. In conclusion, the data indicate that FADH2 may be pivotal for normal lung development, and show that ENaC is a key factor in promoting alveologenesis, sustaining AFC, and attenuating fibrotic lung injury caused by prolonged oxygen therapy in WT mice.
Collapse
Affiliation(s)
- Garett J Grant
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Theodore G Liou
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Wei-Jun Qian
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - My N Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S. Protease-Antiprotease Imbalance in Bronchiectasis. Int J Mol Sci 2021; 22:5996. [PMID: 34206113 PMCID: PMC8199509 DOI: 10.3390/ijms22115996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Airway inflammation plays a central role in bronchiectasis. Protease-antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases' over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease-antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.
Collapse
Affiliation(s)
- Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesco Amati
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Anthony De Soyza
- Population and Health Science Institute, NIHR Biomedical Research Centre for Ageing & Freeman Hospital, Newcastle University, Newcastle NE2 4HH, UK;
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, 08036 Barcelona, Spain;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Teaching Hospital, 20122 Milan, Italy;
| | - Paola Marchisio
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Paediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
19
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
20
|
Brown R, Small DM, Doherty DF, Holsinger L, Booth R, Williams R, Ingram RJ, Elborn JS, Mall MA, Taggart CC, Weldon S. Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators Inflamm 2021; 2021:6682657. [PMID: 33828414 PMCID: PMC8004367 DOI: 10.1155/2021/6682657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult βENaC-Tg mice with established disease. METHODS βENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- βENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS At 6 weeks of age, βENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- βENaC-Tg mice and βENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- βENaC-Tg mice, therapeutic inhibition of CatS in βENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Donna M. Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Declan F. Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J. Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
21
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
22
|
Brao KJ, Wille BP, Lieberman J, Ernst RK, Shirtliff ME, Harro JM. Scnn1b-Transgenic BALB/c Mice as a Model of Pseudomonas aeruginosa Infections of the Cystic Fibrosis Lung. Infect Immun 2020; 88:e00237-20. [PMID: 32631918 PMCID: PMC7440770 DOI: 10.1128/iai.00237-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is responsible for much of the morbidity and mortality associated with cystic fibrosis (CF), a condition that predisposes patients to chronic lung infections. P. aeruginosa lung infections are difficult to treat because P. aeruginosa adapts to the CF lung, can develop multidrug resistance, and can form biofilms. Despite the clinical significance of P. aeruginosa, modeling P. aeruginosa infections in CF has been challenging. Here, we characterize Scnn1b-transgenic (Tg) BALB/c mice as P. aeruginosa lung infection models. Scnn1b-Tg mice overexpress the epithelial Na+ channel (ENaC) in their lungs, driving increased sodium absorption that causes lung pathology similar to CF. We intranasally infected Scnn1b-Tg mice and wild-type littermates with the laboratory P. aeruginosa strain PAO1 and CF clinical isolates and then assessed differences in bacterial clearance, cytokine responses, and histological features up to 12 days postinfection. Scnn1b-Tg mice carried higher bacterial burdens when infected with biofilm-grown rather than planktonic PAO1; Scnn1b-Tg mice also cleared infections more slowly than their wild-type littermates. Infection with PAO1 elicited significant increases in proinflammatory and Th17-linked cytokines on day 3. Scnn1b-Tg mice infected with nonmucoid early CF isolates maintained bacterial burdens and mounted immune responses similar to those of PAO1-infected Scnn1b-Tg mice. In contrast, Scnn1b-Tg mice infected with a mucoid CF isolate carried high bacterial burdens, produced significantly more interleukin 1β (IL-1β), IL-13, IL-17, IL-22, and KC, and showed severe immune cell infiltration into the bronchioles. Taken together, these results show the promise of Scnn1b-Tg mice as models of early P. aeruginosa colonization in the CF lung.
Collapse
Affiliation(s)
- Kristen J Brao
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brendan P Wille
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Joshua Lieberman
- Division of Microbiology, Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Brown R, Paulsen M, Schmidt S, Schatterny J, Frank A, Hirtz S, Delaney R, Doherty D, Hagner M, Taggart C, Weldon S, Mall MA. Lack of IL-1 Receptor Signaling Reduces Spontaneous Airway Eosinophilia in Juvenile Mice with Muco-Obstructive Lung Disease. Am J Respir Cell Mol Biol 2020; 62:300-309. [PMID: 31499011 DOI: 10.1165/rcmb.2018-0359oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies demonstrated spontaneous type 2 airway inflammation with eosinophilia in juvenile Scnn1b (sodium channel, non-voltage-gated 1, β-subunit)-transgenic (Scnn1b-Tg) mice with muco-obstructive lung disease. IL-1 receptor (IL-1R) signaling has been implicated in allergen-driven airway disease; however, its role in eosinophilic inflammation in muco-obstructive lung disease remains unknown. In this study, we examined the role of IL-1R signaling in the development of airway eosinophilia and type 2 inflammation in juvenile Scnn1b-Tg mice. We determined effects of genetic deletion of Il1r1 (IL-1 receptor type I) on eosinophil counts, transcript levels of key type 2 cytokines, markers of eosinophil activation and apoptosis, and tissue morphology in lungs of Scnn1b-Tg mice at different time points during neonatal development. Furthermore, we measured endothelial surface expression of intercellular adhesion molecule 1 (ICAM-1), an integrin involved in eosinophil transendothelial migration, and determined effects of eosinophil depletion using an anti-IL-5 antibody on lung morphology. Lack of IL-1R reduced airway eosinophilia and structural lung damage, but it did not reduce concentrations of type 2 cytokines and associated eosinophil activation in Scnn1b-Tg mice. Structural lung damage in Scnn1b-Tg mice was also reduced by eosinophil depletion. Lack of IL-1R was associated with reduced expression of ICAM-1 on lung endothelial cells and reduced eosinophil counts in lungs from Scnn1b-Tg mice. We conclude that IL-1R signaling is implicated in airway eosinophilia independent of type 2 cytokines in juvenile Scnn1b-Tg mice. Our data suggest that IL-1R signaling may be relevant in the pathogenesis of eosinophilic airway inflammation in muco-obstructive lung diseases, which may be mediated in part by ICAM-1-dependent transmigration of eosinophils into the lungs.
Collapse
Affiliation(s)
- Ryan Brown
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Michelle Paulsen
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Simone Schmidt
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Angela Frank
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Rebecca Delaney
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Declan Doherty
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Matthias Hagner
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Cliff Taggart
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Jaramillo AM, Evans CM. It Takes 1 for Type 2: IL-1 Receptor Mediates Eosinophilia in Scnn1b Transgenic Mice. Am J Respir Cell Mol Biol 2020; 62:269-270. [PMID: 31600081 PMCID: PMC7055691 DOI: 10.1165/rcmb.2019-0332ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana M Jaramillo
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Denver School of MedicineAurora, Colorado
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Denver School of MedicineAurora, Colorado
| |
Collapse
|
25
|
McDowell SH, Gallaher SA, Burden RE, Scott CJ. Leading the invasion: The role of Cathepsin S in the tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118781. [PMID: 32544418 DOI: 10.1016/j.bbamcr.2020.118781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Elevated expression of the cysteine protease Cathepsin S has been correlated with a number of different cancer types in recent years. As tools have been developed to enable more accurate examination of individual cathepsin species, our knowledge and appreciation of the role that this protease plays in facilitating cancer has increased exponentially. This review focuses on our current understanding of the role of Cathepsin S within tumours and the surrounding microenvironment. While various publications have shown that Cathepsin S can be derived from tumour cells themselves, a plethora of more recent studies have identified that Cathepsin S can also be derived from other cell types within the tumour microenvironment including endothelial cells, macrophages and T cells. Furthermore, specific proteolytic substrates cleaved by Cathepsin S have also been identified which have reinforced our hypothesis that this protease facilitates key steps within tumours leading to their invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Sara H McDowell
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Samantha A Gallaher
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Roberta E Burden
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| |
Collapse
|
26
|
McKelvey MC, Weldon S, McAuley DF, Mall MA, Taggart CC. Targeting Proteases in Cystic Fibrosis Lung Disease. Paradigms, Progress, and Potential. Am J Respir Crit Care Med 2020; 201:141-147. [PMID: 31626562 DOI: 10.1164/rccm.201906-1190pp] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany; and.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
27
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
28
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
29
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020; 21:ijms21061944. [PMID: 32178437 PMCID: PMC7139492 DOI: 10.3390/ijms21061944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress. Besides an introductory chapter and peculiar attention to lung cysteine cathepsins, the purpose of this review is to afford a concise update of the current knowledge on molecular mechanisms associated with the regulation of cysteine cathepsins by redox balance and by oxidants (e.g., Michael acceptors, reactive oxygen, and nitrogen species).
Collapse
|
31
|
Characterization of cathepsin S exosites that govern its elastolytic activity. Biochem J 2020; 477:227-242. [DOI: 10.1042/bcj20190847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.
Collapse
|
32
|
Yuan L, Zou C, Ge W, Liu Y, Hu B, Wang J, Lin B, Li Y, Ma E. A novel cathepsin L inhibitor prevents the progression of idiopathic pulmonary fibrosis. Bioorg Chem 2019; 94:103417. [PMID: 31744600 DOI: 10.1016/j.bioorg.2019.103417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
In previous work, the target of asperphenamate as a natural product was successfully determined as cathepsin by the natural product consensus pharmacophore strategy. In order to develop accurate SAR (structure-activity relationship) of asperphenamate-type cathepsin inhibitor, we chose several novel analogs with heterocyclic moiety to perform further study. The molecular simulation showed that 4-pyridyl derivative 3 with the greatest cathepsin inhibitory activity presented new interaction modes with protein utilizing its B-ring moiety. And then molecular dynamics (MD) simulation further revealed that 3 and cathepsin kept stable interaction in the binding site, which validated the molecular docking results. In view that cathepsins play an important role in fibrosis and some cathepsin inhibitors display the therapeutic ability for fibrosis, we investigated the anti-fibrotic effect of 3in vitro and in vivo. The results indicated that 3 displayed the strongest inhibitory effect on the formation of α-SMA and collagen I as the protein markers of fibrosis among all tested derivatives. Further in vivo assay confirmed that 3 indeed showed significant inhibitory ability against pulmonary fibrosis by the method of H&E and Masson staining as well as immunohistochemical staining for characteristic α-SMA proteins.
Collapse
Affiliation(s)
- Lei Yuan
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Chunyang Zou
- Department of Pharmacy, Liaoning Vocational College of Medicine, Shenyang 110101, PR China
| | - Wentao Ge
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Yutong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Yanchun Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
33
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|