1
|
Wang S, Gong X, Yuan J, Huang J, Zhao R, Ji J, Wang M, Shi X, Xin W, Zhong Y, Zheng Y, Jiang Q. Iron-doped diesel exhaust early-in-life inhalation-induced cardiopulmonary toxicity in chicken embryo: Roles of ferroptosis and acyl hydrocarbon signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125085. [PMID: 39374763 DOI: 10.1016/j.envpol.2024.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Diesel exhaust (DE) is a major contributor to air pollution. Iron-doping could improve diesel burning efficacy and decrease emission, however, it will also change the composition of DE, potentially enhancing the toxicities. This study is aimed to assess iron-doped DE-induced cardiopulmonary toxicity in an established in ovo early-in-life inhalation exposure chicken embryo model, and to explore potential mechanisms. Ferrocene (205, 410, 820,1640 mg/L, equivalent to 75, 150, 300, 600 ppm iron mass) was added to diesel fuel, DE was collected from a diesel generator, and then exposed to embryonic day 18-19 chicken embryo via in ovo inhalation. Hatched chickens were kept for 0, 1, or 3 months, and then sacrificed. Histopathology, electrocardiography along with biochemical methods were used to assess cardiopulmonary toxicities. For mechanistic investigation, inhibitor for ferroptosis (ferrostatin-1) or Acyl hydrocarbon receptor (PDM2) were administered before DE (with or without iron-doping), and the cardiopulmonary toxicities were compared. Characterization of DE particles indicated that addition of ferrocene significantly elevated iron content. Additionally, the contents of major toxic polycyclic aromatic hydrocarbons decreased following addition of 820 mg/L ferrocene, but increased at other doses. Remarkable cardiopulmonary toxicities, in the manifestation of elevated heart rates, cardiac remodeling and cardiac/pulmonary fibrosis were observed in animals exposed to iron-doped DEs, in which the addition of ferrocene significantly enhanced the toxicities. Both ferrostatin-1 and PDM2 pretreatment could effectively alleviate the observed effects in animals exposed to iron-doped DE. Inhibition of AhR signaling seems to be capable of alleviating changes to ferroptosis related molecules following exposure to iron-doped DE, while inhibition of ferroptosis does not seem to affect AhR signaling molecules. In summary, iron-doping with ferrocene to diesel enhanced DE-induced cardiopulmonary toxicities in chicken embryos. Ferroptosis and AhR signaling both seem to participate in this process, in which AhR signaling seems to affect ferroptosis.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Xinxian Gong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Huang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Rui Zhao
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Meinan Wang
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Xiaoyu Shi
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Wenya Xin
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
2
|
Chen B, Gao P, Yang Y, Ma Z, Sun Y, Lu J, Qi L, Li M. Discordant definitions of small airway dysfunction between spirometry and parametric response mapping: the HRCT-based study. Insights Imaging 2024; 15:233. [PMID: 39356413 PMCID: PMC11447176 DOI: 10.1186/s13244-024-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES To analyze the lung structure of small airway dysfunction (SAD) defined by spirometry and parametric response mapping (PRM) using high-resolution computed tomography (HRCT), and to analyze the predictive factors for SAD. METHODS A prospective study was conducted with 388 participants undergoing pulmonary function test (PFT) and inspiratory-expiratory chest CT scans. The clinical data and HRCT assessments of SAD patients defined by both methods were compared. A prediction model for SAD was constructed based on logistic regression. RESULTS SAD was defined in 122 individuals by spirometry and 158 by PRM. In HRCT visual assessment, emphysema, tree-in-bud sign, and bronchial wall thickening have higher incidence in SAD defined by each method. (p < 0.001). Quantitative CT showed that spirometry-SAD had thicker airway walls (p < 0.001), smaller lumens (p = 0.011), fewer bronchi (p < 0.001), while PRM-SAD had slender blood vessels. Predictive factors for spirometry-SAD were age, male gender, the volume percentage of emphysema in PRM (PRMEmph), tree-in-bud sign, bronchial wall thickening, bronchial count; for PRM-SAD were age, male gender, BMI, tree-in-bud sign, emphysema, the percentage of blood vessel volume with a cross-sectional area less than 1 mm2 (BV1/TBV). The area under curve (AUC) values for the fitted predictive models were 0.855 and 0.808 respectively. CONCLUSIONS Compared with PRM, SAD defined by spirometry is more closely related to airway morphology, while PRM is sensitive to early pulmonary dysfunction but may be interfered by pulmonary vessels. Models combining patient information and HRCT assessment have good predictive value for SAD. CRITICAL RELEVANCE STATEMENT HRCT reveals lung structural differences in small airway dysfunction defined by spirometry and parametric response mapping. This insight aids in understanding methodological differences and developing radiological tools for small airways that align with pathophysiology. KEY POINTS Spirometry-SAD shows thickened airway walls, narrowed lumen, and reduced branch count, which are closely related to airway morphology. PRM shows good sensitivity to early pulmonary dysfunction, although its assessment of SAD based on gas trapping may be affected by the density of pulmonary vessels and other lung structures. Combining patient information and HRCT features, the fitted model has good predictive performance for SAD defined by both spirometry and PRM (AUC values are 0.855 and 0.808, respectively).
Collapse
Affiliation(s)
- Bin Chen
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Zongjing Ma
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Jinjuan Lu
- Department of Radiology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China.
| |
Collapse
|
3
|
Mu C, Li Q, Niu Y, Hu T, Li Y, Wang T, Yu X, Lv Y, Tang H, Jiang J, Xu H, Zheng Y, Han W. Chronic diesel exhaust exposure induced pulmonary vascular remodeling a potential trajectory for traffic related pulmonary hypertension. Respir Res 2024; 25:348. [PMID: 39342206 PMCID: PMC11439202 DOI: 10.1186/s12931-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.
Collapse
Affiliation(s)
- Chaohui Mu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yong Niu
- National Institute of Occupational Health and Posing Control, China CDC, Beijing, 100050, China
| | - Ting Hu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Tao Wang
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yiqiao Lv
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Huiling Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Hospital, Dalian Medical University, Dalian, 116000, China
| | - Jing Jiang
- Department of Ultrasound, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Haibin Xu
- Department of Radiology, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Lab for Common Diseases, Qingdao Hospital, University of Rehabilitation and Health Sciences, Qingdao, 266071, China.
- School of Public Health, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Pistenmaa CL, Washko GR. BEACON: A Missing Piece of the Puzzle for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:1177-1178. [PMID: 38330311 PMCID: PMC11146538 DOI: 10.1164/rccm.202401-0144ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Carrie L Pistenmaa
- Department of Medicine Brigham and Women's Hospital Boston, Massachusetts
| | - George R Washko
- Department of Medicine Brigham and Women's Hospital Boston, Massachusetts
| |
Collapse
|
5
|
Zhang X, Angelini ED, Hoffman EA, Watson KE, Smith BM, Barr RG, Laine AF. ROBUST QUANTIFICATION OF PERCENT EMPHYSEMA ON CT VIA DOMAIN ATTENTION: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2024; 2024:1-5. [PMID: 39267982 PMCID: PMC11388062 DOI: 10.1109/isbi56570.2024.10635299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Robust quantification of pulmonary emphysema on computed tomography (CT) remains challenging for large-scale research studies that involve scans from different scanner types and for translation to clinical scans. Although the domain shifts in different CT scanners are subtle compared to shifts existing in other modalities (e.g., MRI) or cross-modality, emphysema is highly sensitive to it. Such subtle difference limits the application of general domain adaptation methods, such as image translation-based methods, as the contrast difference is too subtle to be distinguished. Existing studies have explored several directions to tackle this challenge, including density correction, noise filtering, regression, hidden Markov measure field (HMMF) model-based segmentation, and volume-adjusted lung density. Despite some promising results, previous studies either required a tedious workflow or eliminated opportunities for downstream emphysema subtyping, limiting efficient adaptation on a large-scale study. To alleviate this dilemma, we developed an end-to-end deep learning framework based on an existing HMMF segmentation framework. We first demonstrate that a regular UNet cannot replicate the existing HMMF results because of the lack of scanner priors. We then design a novel domain attention block, a simple yet efficient cross-modal block to fuse image visual features with quantitative scanner priors (a sequence), which significantly improves the results.
Collapse
Affiliation(s)
- Xuzhe Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elsa D Angelini
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
| | - Eric A Hoffman
- Department of Radiology, Medicine, and Biomedical Engineering, Univ. of Iowa, Iowa City, IA, USA
| | - Karol E Watson
- Division of Cardiovascular Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew F Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Lichtblau M, Reimann L, Piccari L. Pulmonary vascular disease, environmental pollution, and climate change. Pulm Circ 2024; 14:e12394. [PMID: 38933180 PMCID: PMC11205889 DOI: 10.1002/pul2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Pollution and climate change constitute a combined, grave and pervasive threat to humans and to the life-support systems on which they depend. Evidence shows a strong association between pollution and climate change on cardiovascular and respiratory diseases, and pulmonary vascular disease (PVD) is no exception. An increasing number of studies has documented the impact of environmental pollution and extreme temperatures on pulmonary circulation and the right heart, on the severity and outcomes of patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (PH), on the incidence of pulmonary embolism, and the prevalence and severity of diseases associated with PH. Furthermore, the downstream consequences of climate change impair health care systems' accessibility, which could pose unique obstacles in the case of PVD patients, who require a complex and sophisticated network of health interventions. Patients, caretakers and health care professionals should thus be included in the design of policies aimed at adaptation to and mitigation of current challenges, and prevention of further climate change. The purpose of this review is to summarize the available evidence concerning the impact of environmental pollution and climate change on the pulmonary circulation, and to propose measures at the individual, healthcare and community levels directed at protecting patients with PVD.
Collapse
Affiliation(s)
- Mona Lichtblau
- Clinic of Pulmonology, Pulmonary Hypertension UnitUniversity Hospital ZurichZurichSwitzerland
| | - Lena Reimann
- Clinic of Pulmonology, Pulmonary Hypertension UnitUniversity Hospital ZurichZurichSwitzerland
| | - Lucilla Piccari
- Department of Pulmonary MedicineHospital del MarBarcelonaSpain
| |
Collapse
|
7
|
Liu Q, Yang Y, Wu M, Wang M, Yang P, Zheng J, Du Z, Pang Y, Bao L, Niu Y, Zhang R. Hub gene ELK3-mediated reprogramming lipid metabolism regulates phenotypic switching of pulmonary artery smooth muscle cells to develop pulmonary arterial hypertension induced by PM 2.5. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133190. [PMID: 38071773 DOI: 10.1016/j.jhazmat.2023.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Fine particulate matter (PM2.5) as an environmental pollutant is related with respiratory and cardiovascular diseases. Pulmonary arterial hypertension (PAH) was characterized by incremental pulmonary artery pressure and pulmonary arterial remodeling, leading to right ventricular hypertrophy, and finally cardiac failure and death. The adverse effects on pulmonary artery and the molecular biological mechanism underlying PM2.5-caused PAH has not been elaborated clearly. In the current study, the ambient PM2.5 exposure mice model along with HPASMCs models were established. Based on bioinformatic methods and machine learning algorithms, the hub genes in PAH were screened and then adverse effects on pulmonary artery and potential mechanism was studied. Our results showed that chronic PM2.5 exposure contributed to increased pulmonary artery pressure, pulmonary arterial remodeling and right ventricular hypertrophy in mice. In vitro, PM2.5 induced phenotypic switching in HPASMCs, which served as the early stage of PAH. In mechanism, we investigated that PM2.5-mediated mitochondrial dysfunction could induce phenotypic switching in HPASMCs, which was possibly through reprogramming lipid metabolism. Next, we used machine learning algorithm to identify ELK3 as potential hub gene for mitochondrial fission. Besides, the effect of DNA methylation on ELK3 was further detected in HPASMCs after PM2.5 exposure. The results provided novel directions for protection of pulmonary vasculature injury, against adverse environmental stimuli. This work also provided a new idea for the prevention of PAH, as well as provided experimental evidence for the targeted therapy of PAH.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Zheng
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
8
|
Angelini ED, Yang J, Balte PP, Hoffman EA, Manichaikul AW, Sun Y, Shen W, Austin JHM, Allen NB, Bleecker ER, Bowler R, Cho MH, Cooper CS, Couper D, Dransfield MT, Garcia CK, Han MK, Hansel NN, Hughes E, Jacobs DR, Kasela S, Kaufman JD, Kim JS, Lappalainen T, Lima J, Malinsky D, Martinez FJ, Oelsner EC, Ortega VE, Paine R, Post W, Pottinger TD, Prince MR, Rich SS, Silverman EK, Smith BM, Swift AJ, Watson KE, Woodruff PG, Laine AF, Barr RG. Pulmonary emphysema subtypes defined by unsupervised machine learning on CT scans. Thorax 2023; 78:1067-1079. [PMID: 37268414 PMCID: PMC10592007 DOI: 10.1136/thorax-2022-219158] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.
Collapse
Affiliation(s)
- Elsa D Angelini
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- LTCI, Institut Polytechnique de Paris, Telecom Paris, Palaiseau, France
- NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College, London, UK
| | - Jie Yang
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Pallavi P Balte
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Eric A Hoffman
- Departments of Radiology, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yifei Sun
- Department of Biostatistics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wei Shen
- Department of Pediatrics, Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University Irving Medical Center, New York, New York, USA
| | - John H M Austin
- Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Norrina B Allen
- Institute for Public Health and Medicine (IPHAM) - Center for Epidemiology and Population Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene R Bleecker
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - MeiLan K Han
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emlyn Hughes
- Department of Physics, Columbia University, New York, New York, USA
| | - David R Jacobs
- Division of Epidemiology and Community Public Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Silva Kasela
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- New York Genome Center, New York, New York, USA
| | - Joel Daniel Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - John Shinn Kim
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tuuli Lappalainen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Joao Lima
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel Malinsky
- Department of Biostatistics, Columbia University Irving Medical Center, New York, New York, USA
| | - Fernando J Martinez
- Department of Medicine, Cornell University Joan and Sanford I Weill Medical College, New York, New York, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victor E Ortega
- Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Robert Paine
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Wendy Post
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tess D Pottinger
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Martin R Prince
- Department of Radiology, Cornell University Joan and Sanford I Weill Medical College, New York, New York, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew J Swift
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Karol E Watson
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, California, USA
| | - Andrew F Laine
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University Irving Medical Center, New York, New York, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Shahin Y, Alabed S, Alkhanfar D, Tschirren J, Rothman AMK, Condliffe R, Wild JM, Kiely DG, Swift AJ. Quantitative CT Evaluation of Small Pulmonary Vessels Has Functional and Prognostic Value in Pulmonary Hypertension. Radiology 2022; 305:431-440. [PMID: 35819325 PMCID: PMC9619204 DOI: 10.1148/radiol.210482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Background The in vivo relationship between peel pulmonary vessels, small pulmonary vessels, and pulmonary hypertension (PH) is not fully understood. Purpose To quantitatively assess peel pulmonary vessel volumes (PPVVs) and small pulmonary vessel volumes (SPVVs) as estimated from CT pulmonary angiography (CTPA) in different subtypes of PH compared with controls, their relationship to pulmonary function and right heart catheter metrics, and their prognostic value. Materials and Methods In this retrospective single-center study performed from January 2008 to February 2018, quantitative CTPA analysis of total SPVV (TSPVV) (0.4- to 2-mm vessel diameter) and PPVV (within 15, 30, and 45 mm from the lung surface) was performed. Results A total of 1823 patients (mean age, 69 years ± 13 [SD]; 1192 women [65%]) were retrospectively analyzed; 1593 patients with PH (mean pulmonary arterial pressure [mPAP], 43 mmHg ± 13 [SD]) were compared with 230 patient controls (mPAP, 19 mm Hg ± 3). The mean vessel volumes in pulmonary peels at 15-, 30-, and 45-mm depths were higher in pulmonary arterial hypertension (PAH) and PH secondary to lung disease compared with chronic thromboembolic PH (45-mm peel, mean difference: 6.4 mL [95% CI: 1, 11] [P < .001] vs 6.8 mL [95% CI: 1, 12] [P = .01]). Mean small vessel volumes at a diameter of less than 2 mm were lower in PAH and PH associated with left heart disease compared with controls (1.6-mm vessels, mean difference: -4.3 mL [95% CI: -8, -0.1] [P = .03] vs -6.8 mL [95% CI: -11, -2] [P < .001]). In patients with PH, the most significant positive correlation was noted with forced vital capacity percentage predicted (r = 0.30-0.40 [all P < .001] for TSPVVs and r = 0.21-0.25 [all P < .001] for PPVVs). Conclusion The volume of pulmonary small vessels is reduced in pulmonary arterial hypertension and pulmonary hypertension (PH) associated with left heart disease, with similar volume of peel vessels compared with controls. For chronic thromboembolic PH, the volume of peel vessels is reduced. In PH, small pulmonary vessel volume is associated with pulmonary function tests. Clinical trial registration no. NCT02565030 Published under a CC BY 4.0 license Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yousef Shahin
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Samer Alabed
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Dheyaa Alkhanfar
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Juerg Tschirren
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Alex M. K. Rothman
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Robin Condliffe
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - James M. Wild
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - David G. Kiely
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Andrew J. Swift
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| |
Collapse
|
10
|
He X, Zhang L, Liu S, Wang J, Liu Y, Xiong A, Jiang M, Luo L, Ying X, Li G. Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119607. [PMID: 35718042 DOI: 10.1016/j.envpol.2022.119607] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter 2.5 (PM2.5) exposure leads to the progress of pulmonary disease. It has been reported that N6-methyladenosine (m6A) modification was involved in various biological processes and diseases. However, the critical role of m6A modification in pulmonary disease during PM2.5 exposure remains elusive. Here, we revealed that lung inflammation and mucus production caused by PM2.5 were associated with m6A modification. Both in vivo and in vitro assays demonstrated that PM2.5 exposure elevated the total level of m6A modification as well as the methyltransferase like 3 (METTL3) expression. Integration analysis of m6A RNA immunoprecipitation-seq (meRIP-seq) and RNA-seq discovered that METTL3 up-regulated the expression level and the m6A modification of Interleukin 24 (IL24). Importantly, we explored that the stability of IL24 mRNA was enhanced due to the increased m6A modification. Moreover, the data from qRT-PCR showed that PM2.5 also increased YTH N6-Methyladenosine RNA Binding Protein 1 (YTHDF1) expression, and the up-regulated YTHDF1 augmented IL24 mRNA translation efficiency. Down-regulation of Mettl3 reduced Il24 expression and ameliorated the pulmonary inflammation and mucus secretion in mice exposed to PM2.5. Taken together, our finding provided a comprehensive insight for revealing the significant role of m6A regulators in the lung injury via METTL3/YTHDF1-coupled epitranscriptomal regulation of IL24.
Collapse
Affiliation(s)
- Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiong Ying
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| |
Collapse
|
11
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
12
|
Swinnen K, Bijnens E, Casas L, Nawrot TS, Delcroix M, Quarck R, Belge C. Health effects of exposure to residential air pollution in patients with pulmonary arterial hypertension: A cohort study in Belgium. Eur Respir J 2022; 60:13993003.02335-2021. [PMID: 35618275 DOI: 10.1183/13993003.02335-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Katleen Swinnen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lidia Casas
- Social Epidemiology and Health Policy (SEHPO), Department of Family Medicine and Population Health (FAMPOP), University of Antwerp, Belgium.,Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Marion Delcroix
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium.,Centre of Pulmonary Vascular Diseases, Clinical Department of Respiratory Diseases, University Hospitals of Leuven; Leuven, Belgium
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium.,Centre of Pulmonary Vascular Diseases, Clinical Department of Respiratory Diseases, University Hospitals of Leuven; Leuven, Belgium.,Joint last authorship
| | - Catharina Belge
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium .,Centre of Pulmonary Vascular Diseases, Clinical Department of Respiratory Diseases, University Hospitals of Leuven; Leuven, Belgium.,Joint last authorship
| |
Collapse
|
13
|
Wang JM, Ram S, Labaki WW, Han MK, Galbán CJ. CT-Based Commercial Software Applications: Improving Patient Care Through Accurate COPD Subtyping. Int J Chron Obstruct Pulmon Dis 2022; 17:919-930. [PMID: 35502294 PMCID: PMC9056100 DOI: 10.2147/copd.s334592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/03/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is heterogenous in its clinical manifestations and disease progression. Patients often have disease courses that are difficult to predict with readily available data, such as lung function testing. The ability to better classify COPD into well-defined groups will allow researchers and clinicians to tailor novel therapies, monitor their effects, and improve patient-centered outcomes. Different modalities of assessing these COPD phenotypes are actively being studied, and an area of great promise includes the use of quantitative computed tomography (QCT) techniques focused on key features such as airway anatomy, lung density, and vascular morphology. Over the last few decades, companies around the world have commercialized automated CT software packages that have proven immensely useful in these endeavors. This article reviews the key features of several commercial platforms, including the technologies they are based on, the metrics they can generate, and their clinical correlations and applications. While such tools are increasingly being used in research and clinical settings, they have yet to be consistently adopted for diagnostic work-up and treatment planning, and their full potential remains to be explored.
Collapse
Affiliation(s)
- Jennifer M Wang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sundaresh Ram
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA,Correspondence: Craig J Galbán, Department of Radiology, University of Michigan, BSRB, Room A506, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA, Tel +1 734-764-8726, Fax +1 734-615-1599, Email
| |
Collapse
|
14
|
Alkhanfar D, Shahin Y, Alandejani F, Dwivedi K, Alabed S, Johns C, Lawrie A, Thompson AAR, Rothman AMK, Tschirren J, Uthoff JM, Hoffman E, Condliffe R, Wild JM, Kiely DG, Swift AJ. Severe pulmonary hypertension associated with lung disease is characterised by a loss of small pulmonary vessels on quantitative computed tomography. ERJ Open Res 2022; 8:00503-2021. [PMID: 35586449 PMCID: PMC9108962 DOI: 10.1183/23120541.00503-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background Pulmonary hypertension (PH) in patients with chronic lung disease (CLD) predicts reduced functional status, clinical worsening and increased mortality, with patients with severe PH-CLD (≥35 mmHg) having a significantly worse prognosis than mild to moderate PH-CLD (21-34 mmHg). The aim of this cross-sectional study was to assess the association between computed tomography (CT)-derived quantitative pulmonary vessel volume, PH severity and disease aetiology in CLD. Methods Treatment-naïve patients with CLD who underwent CT pulmonary angiography, lung function testing and right heart catheterisation were identified from the ASPIRE registry between October 2012 and July 2018. Quantitative assessments of total pulmonary vessel and small pulmonary vessel volume were performed. Results 90 patients had PH-CLD including 44 associated with COPD/emphysema and 46 with interstitial lung disease (ILD). Patients with severe PH-CLD (n=40) had lower small pulmonary vessel volume compared to patients with mild to moderate PH-CLD (n=50). Patients with PH-ILD had significantly reduced small pulmonary blood vessel volume, compared to PH-COPD/emphysema. Higher mortality was identified in patients with lower small pulmonary vessel volume. Conclusion Patients with severe PH-CLD, regardless of aetiology, have lower small pulmonary vessel volume compared to patients with mild-moderate PH-CLD, and this is associated with a higher mortality. Whether pulmonary vessel changes quantified by CT are a marker of remodelling of the distal pulmonary vasculature requires further study.
Collapse
Affiliation(s)
- Dheyaa Alkhanfar
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Yousef Shahin
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Krit Dwivedi
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Chris Johns
- Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - A A Roger Thompson
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alexander M K Rothman
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Johanna M Uthoff
- Dept of Computer Science, University of Sheffield, Sheffield, UK
| | - Eric Hoffman
- Dept of Radiology, University of Iowa, Iowa City, IA, USA
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.,These authors contributed equally
| | - Andrew J Swift
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.,These authors contributed equally
| |
Collapse
|
15
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
16
|
Pistenmaa CL, Nardelli P, Ash SY, Come CE, Diaz AA, Rahaghi FN, Barr RG, Young KA, Kinney GL, Simmons JP, Wade RC, Wells JM, Hokanson JE, Washko GR, San José Estépar R. Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function: The Genetic Epidemiology of COPD Study. Chest 2021; 160:470-480. [PMID: 33607083 PMCID: PMC8411454 DOI: 10.1016/j.chest.2021.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary endothelial damage has been shown to precede the development of emphysema in animals, and vascular changes in humans have been observed in COPD and emphysema. RESEARCH QUESTION Is intraparenchymal vascular pruning associated with longitudinal progression of emphysema on CT imaging or decline in lung function over 5 years? STUDY DESIGN AND METHODS The Genetic Epidemiology of COPD Study enrolled ever smokers with and without COPD from 2008 through 2011. The percentage of emphysema-like lung, or "percent emphysema," was assessed at baseline and after 5 years on noncontrast CT imaging as the percentage of lung voxels < -950 Hounsfield units. An automated CT imaging-based tool assessed and classified intrapulmonary arteries and veins. Spirometry measures are postbronchodilator. Pulmonary arterial pruning was defined as a lower ratio of small artery volume (< 5 mm2 cross-sectional area) to total lung artery volume. Mixed linear models included demographics, anthropomorphics, smoking, and COPD, with emphysema models also adjusting for CT imaging scanner and lung function models adjusting for clinical center and baseline percent emphysema. RESULTS At baseline, the 4,227 participants were 60 ± 9 years of age, 50% were women, 28% were Black, 47% were current smokers, and 41% had COPD. Median percent emphysema was 2.1 (interquartile range, 0.6-6.3) and progressed 0.24 percentage points/y (95% CI, 0.22-0.26 percentage points/y) over 5.6 years. Mean FEV1 to FVC ratio was 68.5 ± 14.2% and declined 0.26%/y (95% CI, -0.30 to -0.23%/y). Greater pulmonary arterial pruning was associated with more rapid progression of percent emphysema (0.11 percentage points/y per 1-SD increase in arterial pruning; 95% CI, 0.09-0.16 percentage points/y), including after adjusting for baseline percent emphysema and FEV1. Arterial pruning also was associated with a faster decline in FEV1 to FVC ratio (-0.04%/y per 1-SD increase in arterial pruning; 95% CI, -0.008 to -0.001%/y). INTERPRETATION Pulmonary arterial pruning was associated with faster progression of percent emphysema and more rapid decline in FEV1 to FVC ratio over 5 years in ever smokers, suggesting that pulmonary vascular differences may be relevant in disease progression. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
| | - P Nardelli
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - S Y Ash
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - C E Come
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - A A Diaz
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - F N Rahaghi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - R G Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, NY
| | - K A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - J P Simmons
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - R C Wade
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J M Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G R Washko
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | |
Collapse
|
17
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
18
|
Ambient air pollution exposure and radiographic pulmonary vascular volumes. Environ Epidemiol 2021; 5:e143. [PMID: 33870015 PMCID: PMC8043731 DOI: 10.1097/ee9.0000000000000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Supplemental Digital Content is available in the text. Exposure to higher levels of ambient air pollution is a known risk factor for cardiovascular disease but long-term effects of pollution exposure on the pulmonary vessels are unknown.
Collapse
|
19
|
Lequy E, Siemiatycki J, de Hoogh K, Vienneau D, Dupuy JF, Garès V, Hertel O, Christensen JH, Zhivin S, Goldberg M, Zins M, Jacquemin B. Contribution of Long-Term Exposure to Outdoor Black Carbon to the Carcinogenicity of Air Pollution: Evidence regarding Risk of Cancer in the Gazel Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37005. [PMID: 33759553 PMCID: PMC7989243 DOI: 10.1289/ehp8719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Black carbon (BC), a component of fine particulate matter [particles with an aerodynamic diameter ≤2.5 μm (PM2.5)], may contribute to carcinogenic effects of air pollution. Until recently however, there has been little evidence to evaluate this hypothesis. OBJECTIVE This study aimed to estimate the associations between long-term exposure to BC and risk of cancer. This study was conducted within the French Gazel cohort of 20,625 subjects. METHODS We assessed exposure to BC by linking subjects' histories of residential addresses to a map of European black carbon levels in 2010 with back- and forward-extrapolation between 1989 and 2015. We used extended Cox models, with attained age as time-scale and time-varying cumulative exposure to BC, adjusted for relevant sociodemographic and lifestyle variables. To consider latency between exposure and cancer diagnosis, we implemented a 10-y lag, and as a sensitivity analysis, a lag of 2 y. To isolate the effect of BC from that of total PM2.5, we regressed BC on PM2.5 and used the residuals as the exposure variable. RESULTS During the 26-y follow-up period, there were 3,711 incident cancer cases (all sites combined) and 349 incident lung cancers. Median baseline exposure in 1989 was 2.65 10-5/m [interquartile range (IQR): 2.23-3.33], which generally slightly decreased over time. Using 10 y as a lag-time in our models, the adjusted hazard ratio per each IQR increase of the natural log-transformed cumulative BC was 1.17 (95% confidence interval: 1.06, 1.29) for all-sites cancer combined and 1.31 (0.93, 1.83) for lung cancer. Associations with BC residuals were also positive for both outcomes. Using 2 y as a lag-time, the results were similar. DISCUSSION Our findings for a cohort of French adults suggest that BC may partly explain the association between PM2.5 and lung cancer. Additional studies are needed to confirm our results and further disentangle the effects of BC, total PM2.5, and other constituents. https://doi.org/10.1289/EHP8719.
Collapse
Affiliation(s)
- Emeline Lequy
- UMS 011, Institut national de la santé et de la recherché médicale (Inserm), Villejuif, France
- Centre de recherche du centre hospitalier de l’université de Montréal, Université de Montréal, Québec, Canada
| | - Jack Siemiatycki
- Centre de recherche du centre hospitalier de l’université de Montréal, Université de Montréal, Québec, Canada
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Valérie Garès
- UMR 6625 IRMAR, INSA, CNRS, Université de Rennes, Rennes, France
| | - Ole Hertel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Sergey Zhivin
- UMS 011, Institut national de la santé et de la recherché médicale (Inserm), Villejuif, France
| | - Marcel Goldberg
- UMS 011, Institut national de la santé et de la recherché médicale (Inserm), Villejuif, France
| | - Marie Zins
- UMS 011, Institut national de la santé et de la recherché médicale (Inserm), Villejuif, France
| | - Bénédicte Jacquemin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Rennes, France
| |
Collapse
|
20
|
Alter P, Baker JR, Dauletbaev N, Donnelly LE, Pistenmaa C, Schmeck B, Washko G, Vogelmeier CF. Update in Chronic Obstructive Pulmonary Disease 2019. Am J Respir Crit Care Med 2020; 202:348-355. [PMID: 32407642 PMCID: PMC8054880 DOI: 10.1164/rccm.202002-0370up] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| | - Jonathan R. Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nurlan Dauletbaev
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan; and
| | - Louise E. Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carrie Pistenmaa
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Institute for Lung Research, Member of the DZL and of the German Center of Infection Research (DZIF), and,Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - George Washko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| |
Collapse
|
21
|
Zhang M, Li H, Li H, Zhao X, Zhou Q, Rao Q, Han Y, Lan Y, Deng H, Sun X, Lou X, Ye C, Zhou X. Quantitative evaluation of lung injury caused by PM 2.5 using hyperpolarized gas magnetic resonance. Magn Reson Med 2019; 84:569-578. [PMID: 31868253 DOI: 10.1002/mrm.28145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe MR in evaluating the pulmonary physiological changes caused by PM2.5 in animal models. METHODS Six rats were treated with PM2.5 solution (16.2 mg/kg) by intratracheal instillation twice a week for 4 weeks, and another six rats treated with normal saline served as the control cohort. Pulmonary function tests, hyperpolarized 129 Xe multi-b diffusion-weighted imaging, and chemical shift saturation recovery MR spectroscopy were performed on all rats, and the pulmonary structure and functional parameters were obtained from hyperpolarized 129 Xe MR data. Additionally, histological analysis was performed on all rats to evaluate alveolar septal thickness. Statistical analysis of all the obtained parameters was performed using unpaired 2-tailed t tests. RESULTS Compared with the control group, the measured exchange time constant increased from 11.74 ± 2.39 to 14.00 ± 2.84 ms (P < .05), and the septal wall thickness increased from 6.17 ± 0.48 to 6.74 ± 0.52 μm (P < .05) in the PM2.5 cohort by 129 Xe MR spectroscopy, which correlated well with that obtained using quantitative histology (increased from 5.52 ± 0.32 to 6.20 ± 0.36 μm). Additionally, the mean TP/GAS ratio increased from 0.828 ± 0.115 to 1.019 ± 0.140 in the PM2.5 cohort (P = .021). CONCLUSIONS Hyperpolarized 129 Xe MR could quantify the changes in gas exchange physiology caused by PM2.5 , indicating that the technique has the potential to be a useful tool for evaluation of pulmonary injury caused by air pollution in the future.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yina Lan
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Genomics of Particulate Matter Exposure Associated Cardiopulmonary Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224335. [PMID: 31703266 PMCID: PMC6887978 DOI: 10.3390/ijerph16224335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Particulate matter (PM) exposure is associated with the development of cardiopulmonary disease. Our group has studied the adverse health effects of World Trade Center particulate matter (WTC-PM) exposure on firefighters. To fully understand the complex interplay between exposure, organism, and resultant disease phenotype, it is vital to analyze the underlying role of genomics in mediating this relationship. A PubMed search was performed focused on environmental exposure, genomics, and cardiopulmonary disease. We included original research published within 10 years, on epigenetic modifications and specific genetic or allelic variants. The initial search resulted in 95 studies. We excluded manuscripts that focused on work-related chemicals, heavy metals and tobacco smoke as primary sources of exposure, as well as reviews, prenatal research, and secondary research studies. Seven full-text articles met pre-determined inclusion criteria, and were reviewed. The effects of air pollution were evaluated in terms of methylation (n = 3), oxidative stress (n = 2), and genetic variants (n = 2). There is evidence to suggest that genomics plays a meditating role in the formation of adverse cardiopulmonary symptoms and diseases that surface after exposure events. Genomic modifications and variations affect the association between environmental exposure and cardiopulmonary disease, but additional research is needed to further define this relationship.
Collapse
|