1
|
Wrotek A, Badyda A, Jackowska T. Molecular Mechanisms of N-Acetylcysteine in RSV Infections and Air Pollution-Induced Alterations: A Scoping Review. Int J Mol Sci 2024; 25:6051. [PMID: 38892239 PMCID: PMC11172664 DOI: 10.3390/ijms25116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
N-acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties. The respiratory syncytial virus (RSV) is one of the most important etiological factors of lower respiratory tract infections, and exposure to air pollution appears to be additionally associated with higher RSV incidence and disease severity. We aimed to systematically review the existing literature to determine which molecular mechanisms mediate the effects of NAC in an RSV infection and air pollution, and to identify the knowledge gaps in this field. A search for original studies was carried out in three databases and a calibrated extraction grid was used to extract data on the NAC treatment (dose, timing), the air pollutant type, and the most significant mechanisms. We identified only 28 studies conducted in human cellular models (n = 18), animal models (n = 7), and mixed models (n = 3). NAC treatment improves the barrier function of the epithelium damaged by RSV and air pollution, and reduces the epithelial permeability, protecting against viral entry. NAC may also block RSV-activated phosphorylation of the epidermal growth factor receptor (EGFR), which promotes endocytosis and facilitates cell entry. EGFR also enhances the release of a mucin gene, MUC5AC, which increases mucus viscosity and causes goblet cell metaplasia; the effects are abrogated by NAC. NAC blocks virus release from the infected cells, attenuates the cigarette smoke-induced shift from necrosis to apoptosis, and reverses the block in IFN-γ-induced antiviral gene expression caused by the inhibited Stat1 phosphorylation. Increased synthesis of pro-inflammatory cytokines and chemokines is induced by both RSV and air pollutants and is mediated by the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that are activated in response to oxidative stress. MCP-1 (monocyte chemoattractant protein-1) and RANTES (regulated upon activation, expressed and secreted by normal T cells) partially mediate airway hyperresponsiveness (AHR), and therapeutic (but not preventive) NAC administration reduces the inflammatory response and has been shown to reduce ozone-induced AHR. Oxidative stress-induced DNA damage and cellular senescence, observed during RSV infection and exposure to air pollution, can be partially reversed by NAC administration, while data on the emphysema formation are disputed. The review identified potential common molecular mechanisms of interest that are affected by NAC and may alleviate both the RSV infection and the effects of air pollution. Data are limited and gaps in knowledge include the optimal timing or dosage of NAC administration, therefore future studies should clarify these uncertainties and verify its practical use.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Artur Badyda
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
2
|
Robinson E, Sawhney S, Cortina-Borja M, David AL, Smith CM, Smyth RL. Neutrophil responses to RSV infection show differences between infant and adult neutrophils. Thorax 2024; 79:545-552. [PMID: 38050163 PMCID: PMC11137455 DOI: 10.1136/thorax-2023-220081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) causes a severe respiratory condition, bronchiolitis, in infants but not in adults. Bronchiolitis is characterised by neutrophilic infiltration in the airways, but whether neutrophils enhance recovery from infection or contribute to its pathology remains unknown. METHODS We used a novel in-vitro model to compare term umbilical cord blood (infant) (n=17 donors) and adult neutrophils (n=15 donors) during migration across RSV-infected differentiated human nasal airway epithelial cells (AECs) in a basolateral to apical direction. RESULTS Greater numbers of infant neutrophils (mean (95% CI)) (336 684 (242 352 to 431 015)) migrated across RSV-infected AECs to the apical compartment (equivalent to the airway lumen) compared with adult neutrophils (56 586 (24 954 to 88 218)) (p<0.0001). Having reached the apical compartment of infected AECs, much greater numbers of infant neutrophils (140 787 (103 117 to 178 456)) became apoptotic compared with adult (5853 (444 to 11 261)) (p=0.002). Infant neutrophils displayed much greater expression of CD11b, CD64, neutrophil elastase (NE) and myeloperoxidase (MPO) than adult neutrophils at baseline and at all points of migration. However, as adult neutrophils migrated, expression of CD11b, CD64, NE and MPO became greater than at baseline. DISCUSSION The high proportion of infant neutrophils migrating across RSV-infected AECs correlates with the neutrophilic infiltrate seen in infants with severe RSV bronchiolitis, with large numbers undergoing apoptosis, which may represent a protective mechanism during infection. Compared with adult neutrophils, infant neutrophils already have high expression of surface markers before contact with AECs or migration, with less capacity to increase further in response to RSV infection or migration.
Collapse
Affiliation(s)
| | - Shyam Sawhney
- School of Medicine, Imperial College London, London, UK
| | | | - Anna L David
- UCL Elizabeth Garrett Anderson Institute of Women's Health, UCL, London, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Rosalind L Smyth
- UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| |
Collapse
|
3
|
Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J 2023; 20:224. [PMID: 37798799 PMCID: PMC10557227 DOI: 10.1186/s12985-023-02194-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Respiratory syncytial virus (RSV), a member of the Pneumoviridae family, can cause severe acute lower respiratory tract infection in infants, young children, immunocompromised individuals and elderly people. RSV is associated with an augmented innate immune response, enhanced secretion of inflammatory cytokines, and necrosis of infected cells. Oxidative stress, which is mainly characterized as an imbalance in the production of reactive oxygen species (ROS) and antioxidant responses, interacts with all the pathophysiologic processes above and is receiving increasing attention in RSV infection. A gradual accumulation of evidence indicates that ROS overproduction plays an important role in the pathogenesis of severe RSV infection and serves as a major factor in pulmonary inflammation and tissue damage. Thus, antioxidants seem to be an effective treatment for severe RSV infection. This article mainly reviews the information on oxidative stress and ROS-mediated cellular events during RSV infection for the first time.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Xue Liu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yujun Nie
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Fei Zhan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
4
|
Saunders JL, Daniels IA, Edwards TL, Relich RF, Zhao Y, Smith LA, Gaston BM, Davis MD. Effects of pH alteration on respiratory syncytial virus in human airway epithelial cells. ERJ Open Res 2023; 9:00404-2022. [PMID: 37465558 PMCID: PMC10351676 DOI: 10.1183/23120541.00404-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 07/20/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of respiratory distress and hospitalisation in the paediatric population. Low airway surface pH impairs antimicrobial host defence and worsens airway inflammation. Inhaled Optate safely raises airway surface pH in humans and raises intracellular pH in primary human airway epithelial cells (HAECs) in vitro. We aimed to determine whether raising intracellular pH with Optate would decrease infection and replication of RSV in primary HAECs. Methods We cultured HAECs from healthy subjects in both air-liquid interface and submerged conditions. We infected HAECs with green fluorescent protein-labelled RSV (GFP-RSV; multiplicity of infection=1) and treated them with Optate or PBS control. We collected supernatant after a 4-h incubation and then every 24 h. We used fluorescence intensity, fluorescent particle counts, plaque assays, Western blots and ELISA to quantitate infection. Results In submerged culture, fluorescence intensity decreased in Optate-treated cells (48 h p=0.0174, 72 h p≤0.001). Similarly, Optate treatment resulted in decreased fluorescent particle count (48 h p=0.0178, 72 h p=0.0019) and plaque-forming units (48 h p=0.0011, 72 h p=0.0148) from cell culture supernatant. In differentiated HAECs cultured at ALI, Optate treatment decreased fluorescence intensity (p≤0.01), GFP via Western blot and ELISA (p<0.0001), and RSV-fusion protein via ELISA (p=0.001). Additionally, RSV infection decreased as Optate concentration increased in a dose-dependent manner (p<0.001). Conclusions Optate inhibits RSV infection in primary HAECs in a dose-dependent manner. These findings suggest that Optate may have potential as an inhaled therapeutic for patients with RSV.
Collapse
Affiliation(s)
- Jessica L. Saunders
- Division of Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivana A. Daniels
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taiya L. Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura A. Smith
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin M. Gaston
- Division of Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael D. Davis
- Division of Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Robinson E, Herbert JA, Palor M, Ren L, Larken I, Patel A, Moulding D, Cortina-Borja M, Smyth RL, Smith CM. Trans-epithelial migration is essential for neutrophil activation during RSV infection. J Leukoc Biol 2023; 113:354-364. [PMID: 36807711 PMCID: PMC11334017 DOI: 10.1093/jleuko/qiad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
The recruitment of neutrophils to the infected airway occurs early following respiratory syncytial virus (RSV) infection, and high numbers of activated neutrophils in the airway and blood are associated with the development of severe disease. The aim of this study was to investigate whether trans-epithelial migration is sufficient and necessary for neutrophil activation during RSV infection. Here, we used flow cytometry and novel live-cell fluorescent microscopy to track neutrophil movement during trans-epithelial migration and measure the expression of key activation markers in a human model of RSV infection. We found that when migration occurred, neutrophil expression of CD11b, CD62L, CD64, NE, and MPO increased. However, the same increase did not occur on basolateral neutrophils when neutrophils were prevented from migrating, suggesting that activated neutrophils reverse migrate from the airway to the bloodstream side, as has been suggested by clinical observations. We then combined our findings with the temporal and spatial profiling and suggest 3 initial phases of neutrophil recruitment and behavior in the airways during RSV infection; (1) initial chemotaxis; (2) neutrophil activation and reverse migration; and (3) amplified chemotaxis and clustering, all of which occur within 20 min. This work and the novel outputs could be used to develop therapeutics and provide new insight into how neutrophil activation and a dysregulated neutrophil response to RSV mediates disease severity.
Collapse
Affiliation(s)
- Elisabeth Robinson
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Jenny Amanda Herbert
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Machaela Palor
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Luo Ren
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Isobel Larken
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Alisha Patel
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Dale Moulding
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Mario Cortina-Borja
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Rosalind Louise Smyth
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Claire Mary Smith
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| |
Collapse
|
6
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Kewalramani N, Heenan KM, McKeegan D, Chaudhuri N. Post-COVID Interstitial Lung Disease—The Tip of the Iceberg. Immunol Allergy Clin North Am 2023; 43:389-410. [PMID: 37055095 PMCID: PMC9982726 DOI: 10.1016/j.iac.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The proportion of symptomatic patients with post-coronavirus 2019 (COVID-19) condition (long COVID) represents a significant burden on the individual as well as on the health care systems. A greater understanding of the natural evolution of symptoms over a longer period and the impacts of interventions will improve our understanding of the long-term impacts of the COVID-19 disease. This review will discuss the emerging evidence for the development of post-COVID interstitial lung disease focusing on the pathophysiological mechanisms, incidence, diagnosis, and impact of this potentially new and emerging respiratory disease.
Collapse
Affiliation(s)
- Namrata Kewalramani
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Switzerland,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland,Corresponding author. Department of Biomedical Research, Lung Precision Medicine, Room 340, Murtenstrasse 24, Bern 3008. Switzerland
| | - Kerri-Marie Heenan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Denise McKeegan
- Department of Respiratory Medicine, Antrim Area Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| | - Nazia Chaudhuri
- University of Ulster Magee Campus, Northland Road, Londonderry, Northern Ireland, UK
| |
Collapse
|
8
|
Feng Q, Feng Z, Yang B, Han S, Wen S, Lu G, Jin R, Xu B, Zhang H, Xu L, Xie Z. Metatranscriptome Reveals Specific Immune and Microbial Signatures of Respiratory Syncytial Virus Infection in Children. Microbiol Spectr 2023; 11:e0410722. [PMID: 36861979 PMCID: PMC10100699 DOI: 10.1128/spectrum.04107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequently detected respiratory virus in children with acute lower respiratory tract infection. Previous transcriptome studies have focused on systemic transcriptional profiles in blood and have not compared the expression of multiple viral transcriptomes. Here, we sought to compare transcriptome responses to infection with four common respiratory viruses for children (respiratory syncytial virus, adenovirus, influenza virus, and human metapneumovirus) in respiratory samples. Transcriptomic analysis showed that cilium organization and assembly were common pathways related to viral infection. Compared with other virus infections, collagen generation pathways were distinctively enriched in RSV infection. We identified two interferon-stimulated genes (ISGs), CXCL11 and IDO1, which were upregulated to a greater extent in the RSV group. In addition, a deconvolution algorithm was used to analyze the composition of immune cells in respiratory tract samples. The proportions of dendritic cells and neutrophils in the RSV group were significantly higher than those in the other virus groups. The RSV group exhibited a higher richness of Streptococcus than the other virus groups. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to RSV. Last, according to host-microbe network interference, RSV may disrupt respiratory microbial composition by changing the immune microenvironment. IMPORTANCE In the present study, we demonstrated the comparative results of host responses to infection between RSV and other three common respiratory viruses for children. The comparative transcriptomics study of respiratory samples sheds light on the significant roles that ciliary organization and assembly, extracellular matrix changes, and microbial interactions play in the pathogenesis of RSV infection. Additionally, it was demonstrated that the recruitment of neutrophils and dendritic cells (DCs) in the respiratory tract is more substantial in RSV infection than in other viral infections. Finally, we discovered that RSV infection dramatically increased the expression of two ISGs (CXCL11 and IDO1) and the abundance of Streptococcus.
Collapse
Affiliation(s)
- Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong, China
| | - Shuaibing Han
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Shunhang Wen
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gen Lu
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children’s Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Hailin Zhang
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhong H, Zhou Y, Mei SY, Tang R, Feng JH, He ZY, Xu QY, Xing SP. Scars of COVID-19: A bibliometric analysis of post-COVID-19 fibrosis. Front Public Health 2022; 10:967829. [PMID: 36203683 PMCID: PMC9530282 DOI: 10.3389/fpubh.2022.967829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) becomes a worldwide public health threat. Increasing evidence proves that COVID-19-induced acute injuries could be reversed by a couple of therapies. After that, post-COVID-19 fibrosis (PCF), a sequela of "Long COVID," earns rapidly emerging concerns. PCF is associated with deteriorative lung function and worse quality of life. But the process of PCF remains speculative. Therefore, we aim to conduct a bibliometric analysis to explore the overall structure, hotspots, and trend topics of PCF. Materials and methods A comprehensive search was performed in the Web of Science core database to collect literature on PCF. Search syntax included COVID-19 relevant terms: "COVID 19," "COVID-19 Virus Disease," "COVID-19 Virus Infection," "Coronavirus Disease-19," "2019 Novel Coronavirus Disease," "2019 Novel Coronavirus Infection," "SARS Coronavirus 2 Infection," "COVID-19 Pandemic," "Coronavirus," "2019-nCoV," and "SARS-CoV-2"; and fibrosis relevant terms: "Fibrosis," "Fibroses," and "Cirrhosis." Articles in English were included. Totally 1,088 publications were enrolled. Searching results were subsequentially exported and collected for the bibliometric analysis. National, organizational, and individual level data were analyzed and visualized through biblioshiny package in the R, VOSviewer software, the CiteSpace software, and the Graphical Clustering Toolkit (gCLUTO) software, respectively. Results The intrinsic structure and development in the field of PCF were investigated in the present bibliometric analysis. The topmost keywords were "COVID-19" (occurrences, 636) surrounded by "SARS-CoV-2" (occurrences, 242), "coronavirus" (occurrences, 123), "fibrosis" (occurrences, 120), and "pneumonia" (occurrences, 94). The epidemiology, physiopathology, diagnosis, and therapy of PCF were extensively studied. After this, based on dynamic analysis of keywords, hot topics sharply changed from "Wuhan," "inflammation," and "cytokine storm" to "quality of life" and "infection" through burst detection; from "acute respiratory syndrome," "cystic-fibrosis" and "fibrosis" to "infection," "COVID-19," "quality-of-life" through thematic evolution; from "enzyme" to "post COVID." Similarly, co-cited references analysis showed that topics of references with most citations shift from "pulmonary pathology" (cluster 0) to "COVID-19 vaccination" (cluster 6). Additionally, the overview of contributors, impact, and collaboration was revealed. Summarily, the USA stood out as the most prolific, influential, and collaborative country. The Udice French Research University, Imperial College London, Harvard University, and the University of Washington represented the largest volume of publications, citations, H-index, and co-authorships, respectively. Dana Albon was the most productive and cited author with the strongest co-authorship link strength. Journal of Cystic Fibrosis topped the list of prolific and influential journals. Conclusion Outcomes gained from this study assisted professionals in better realizing PCF and would guide future practices. Epidemiology, pathogenesis, and therapeutics were study hotspots in the early phase of PCF research. As the spread of the COVID-19 pandemic and progress in this field, recent attention shifted to the quality of life of patients and post-COVID comorbidities. Nevertheless, COVID-19 relevant infection and vaccination were speculated to be research trends with current and future interest. International cooperation as well as in-depth laboratory experiments were encouraged to promote further explorations in the field of PCF.
Collapse
|
10
|
Yao Y, Liu H, Yuan L, Du X, Yang Y, Zhou K, Wu X, Qin L, Yang M, Xiang Y, Qu X, Qin X, Liu C. Integrins are double-edged swords in pulmonary infectious diseases. Biomed Pharmacother 2022; 153:113300. [PMID: 35728353 DOI: 10.1016/j.biopha.2022.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Integrins are an important family of adhesion molecules that are widely distributed on immune cells in the lungs. Of note, accumulating evidences have shown that integrins are double-edged swords in pulmonary infectious diseases. On one hand, integrins promote the migration of immune cells to remove the invaded pathogens in the infected lungs. However, on the other hand, integrins also act as the targets for pathogens to escape from host immune system, which is a potential factor leading to further tissue damage. Thus, the innovative therapeutic strategies based on integrins has inspired well-founded hopes to treat pulmonary infectious diseases. In this review, we illustrate the involvement of integrins in pulmonary infectious diseases, and further discuss the innovative therapeutic targets based on integrins.
Collapse
Affiliation(s)
- Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Aggio JB, Porto BN, Duarte dos Santos CN, Mosimann ALP, Wowk PF. Human Neutrophils Present Mild Activation by Zika Virus But Reduce the Infection of Susceptible Cells. Front Immunol 2022; 13:784443. [PMID: 35747137 PMCID: PMC9210994 DOI: 10.3389/fimmu.2022.784443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the Zika virus (ZIKV) has highlighted the need for a deeper understanding of virus-host interactions in order to pave the way for the development of antiviral therapies. The present work aimed to address the response of neutrophils during ZIKV infection. Neutrophils are important effector cells in innate immunity implicated in the host’s response to neurotropic arboviruses. Our results indicate that human neutrophils were not permissive to Asian or African ZIKV strain replication. In fact, after stimulation with ZIKV, neutrophils were mild primed against the virus as evaluated through CD11b and CD62L modulation, secretion of inflammatory cytokines and granule content, production of reactive oxygen species, and neutrophil extracellular traps formation. Overall, neutrophils did not affect ZIKV infectivity. Moreover, in vitro ZIKV infection of primary innate immune cells did not trigger neutrophil migration. However, neutrophils co-cultured with ZIKV susceptible cell lineages resulted in lower cell infection frequencies, possibly due to cell-to-cell contact. In vivo, neutrophil depletion in immunocompetent mice did not affect ZIKV spreading to the draining lymph nodes. The data suggest that human neutrophils do not play an antiviral role against ZIKV per se, but these cells might participate in an infected environment shaping the ZIKV infection in other target cells.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- *Correspondence: Pryscilla Fanini Wowk, ; Ana Luiza Pamplona Mosimann,
| |
Collapse
|
12
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
13
|
Vitiello A, Ferrara F. Physiopathology and prospectives for therapeutic treatment of pulmonary fibrotic state in COVID-19 patients. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100056. [PMID: 34870154 PMCID: PMC8444447 DOI: 10.1016/j.crphar.2021.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 global pandemic has caused about 4,30 Mln deaths. Recently the first vaccines have been licensed, representing the most powerful weapon available to stop the pandemic. The COVID-19 viral infection in the most severe cases can cause severe lung lesions with the presence of fibrotic tissue. Even among cured individuals, the presence of pulmonary fibrotic tissue may be the major cause of long-term complications of COVID-19 requiring antifibrotic therapeutic treatment even in the post-COVID-19 infection phase to accelerate the healing process and fully recover lung function. This article reviews the fibrogenic mechanism of SARS-CoV-2-induced viral damage and the antifibrotic treatments indicated to treat sequelae post COVID-19 infection.
Collapse
Affiliation(s)
- Antonio Vitiello
- Clinical Pharmacologist, Pharmaceutical Department, Usl Umbria 1, A.Migliorati Street, 06132, Perugia, Italy
| | - Francesco Ferrara
- Hospital Pharmacist Manager, Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 22, 80035, Nola, Naples, Italy
| |
Collapse
|
14
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Woodall MNJ, Masonou T, Case K, Smith CM. Human models for COVID-19 research. J Physiol 2021; 599:4255-4267. [PMID: 34287894 PMCID: PMC8447334 DOI: 10.1113/jp281499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Currently, therapeutics for COVID-19 are limited. To overcome this, it is important that we use physiologically relevant models to reproduce the pathology of infection and evaluate the efficacy of antiviral drugs. Models of airway infection, including the use of a human infection challenge model or well-defined, disease relevant in vitro systems can help determine the key components that perpetuate the severity of the disease. Here, we briefly review the human models that are currently being used in COVID-19 research and drug development.
Collapse
Affiliation(s)
| | - Tereza Masonou
- GOS Institute of Child HealthUniversity College LondonLondonUK
| | | | - Claire M. Smith
- GOS Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
16
|
Chong DLW, Rebeyrol C, José RJ, Williams AE, Brown JS, Scotton CJ, Porter JC. ICAM-1 and ICAM-2 Are Differentially Expressed and Up-Regulated on Inflamed Pulmonary Epithelium, but Neither ICAM-2 nor LFA-1: ICAM-1 Are Required for Neutrophil Migration Into the Airways In Vivo. Front Immunol 2021; 12:691957. [PMID: 34484188 PMCID: PMC8415445 DOI: 10.3389/fimmu.2021.691957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophil migration into the airways is an important process to fight infection and is mediated by cell adhesion molecules. The intercellular adhesion molecules, ICAM-1 (CD54) and ICAM-2 (CD102) are known ligands for the neutrophil integrins, lymphocyte function associated antigen (LFA)-1 (αLβ2; CD11a/CD18), and macrophage-1 antigen (Mac-1;αMβ2;CD11b/CD18) and are implicated in leukocyte migration into the lung. However, it is ill-defined how neutrophils exit the lung and the role for ICAMs in trans-epithelial migration (TEpM) across the bronchial or alveolar epithelium. We found that human and murine alveolar epithelium expressed ICAM-1, whilst the bronchial epithelium expressed ICAM-2, and both were up-regulated during inflammatory stimulation in vitro and in inflammatory lung diseases such as cystic fibrosis. Although β2 integrins interacting with ICAM-1 and -2 mediated neutrophil migration across human bronchial epithelium in vitro, neither ICAM-2 nor LFA-1 binding of ICAM-1 mediated murine neutrophil migration into the lung or broncho-alveolar space during LPS-induced inflammation in vivo. Furthermore, TEpM of neutrophils themselves resulted in increased epithelial junctional permeability and reduced barrier function in vitro. This suggests that although β2 integrins interacting with ICAMs may regulate low levels of neutrophil traffic in healthy lung or early in inflammation when the epithelial barrier is intact; these interactions may be redundant later in inflammation when epithelial junctions are disrupted and no longer limit TEpM.
Collapse
Affiliation(s)
- Deborah L. W. Chong
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Carine Rebeyrol
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Ricardo J. José
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Andrew E. Williams
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Chris J. Scotton
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
- Institute of Biomedical and Clinical Sciences, College of Medicine & Health, Exeter, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
17
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
18
|
McDonald LT. Healing after COVID-19: are survivors at risk for pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 320:L257-L265. [PMID: 33355522 PMCID: PMC7900916 DOI: 10.1152/ajplung.00238.2020] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus, which is responsible for COVID-19 disease, was first reported in Wuhan, China, in December of 2019. The virus rapidly spread, and the World Health Organization declared a pandemic by March 2020. With millions of confirmed cases worldwide, there is growing concern and considerable debate regarding the potential for coronavirus infection to contribute to an appreciable burden of chronic respiratory symptoms or fibrotic disease among recovered individuals. Because the first case of COVID-19 was documented less than one year ago, data regarding long-term clinical outcomes are not yet available, and predictions for long-term outcome are speculative at best. However, due to the staggering number of cases and the severity of disease in many individuals, there is a critical need to consider the potential long-term implications of COVID-19. This review examines current basic and clinical data regarding fibrogenic mechanisms of viral injury in the context of SARS-CoV-2. Several intersecting mechanisms between coronavirus infection and fibrotic pathways are discussed to highlight factors and processes that may be targetable to improve patient outcome. Reports of post-infection sequelae from previous coronavirus outbreaks are presented toward the goal of improved recognition of potential contributing risk factors for fibrotic disease.
Collapse
Affiliation(s)
- Lindsay T McDonald
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
19
|
Qiu D, Nikita D, Zhang L, Deng J, Xia Z, Zhan J, Huang J, Liu L, Liu F, Duan J, Li J. ICAM-1 deletion delays the repair process in aging diabetic mice. Metabolism 2021; 114:154412. [PMID: 33164859 DOI: 10.1016/j.metabol.2020.154412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The delayed repair process in the aging diabetic population is becoming an alarming public health concern. ICAM-1 plays an important role in orchestrating the repair process by mediating neutrophil recruitment and phagocytosis. However, little is known about the role of ICAM-1 in aging diabetic repair. METHODS By causing injury in aging diabetic mice with ICAM-1 deletion (AD-ICAM-1-/-), we found that AD-ICAM-1-/- mice exhibited a delayed repair process with incomplete re-epithelialization and reduced angiogenesis. Additionally, high-throughput Illumina sequencing was performed to evaluate the microbiota of such mice. RESULTS The results indicate that the microbiota of the AD-ICAM-1-/- injury site differed taxonomically at both the phylum and genus levels. Neutrophil recruitment and phagocytic function were also reduced in the AD-ICAM-1-/- group. Notably, major inflammatory biomarker expression was also detected in AD-ICAM-1-/- injured tissue. CONCLUSIONS Overall, this study demonstrated that AD-ICAM-1-/- mice exhibit delayed repair. In addition, neutrophil recruitment and phagocytic activity were impaired in the AD-ICAM-1-/- group, which may have allowed microbes to colonize the injury site.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - David Nikita
- School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Lei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jun Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhiwei Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Junkun Zhan
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan 410011, PR China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Lanzhi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Fan Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jingfeng Duan
- Department of Geriatrics, The Third Clinical Hospital of Xiangya Medical School, Hunan 410011, PR China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
20
|
Tahamtan A, Besteman S, Samadizadeh S, Rastegar M, Bont L, Salimi V. Neutrophils in respiratory syncytial virus infection: From harmful effects to therapeutic opportunities. Br J Pharmacol 2020; 178:515-530. [PMID: 33169387 DOI: 10.1111/bph.15318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important infectious agent in infants and young children. In most cases, RSV infection only causes mild disease, but in some, it requires invasive ventilation. Although antiviral drugs are obvious candidates to treat viral illness, and some have shown antiviral effects in humans, antivirals such as GS-5806, ALX-0171 and ALS-8176 have not yet met their expectations. Since the inappropriate or dysregulated immune response against RSV leads to harmful immune pathology, a robust immune cascade is probably underway by the time patients reach the hospital. RSV infection is associated with a strong neutrophil influx into the airway. It not clear if these cells contribute to antiviral defence or to lung pathology. This article discusses the protective and harmful roles of neutrophils during RSV infection and provides an overview of mechanisms by which neutrophil function could be targeted to prevent tissue injury and preserve homeostasis.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sjanna Besteman
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.,Center for Translation Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Saeed Samadizadeh
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Louis Bont
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|