1
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Lamothe PA, Capric V, Lee FEH. Viral infections causing asthma exacerbations in the age of biologics and the COVID-19 pandemic. Curr Opin Pulm Med 2024; 30:287-293. [PMID: 38411178 PMCID: PMC10959678 DOI: 10.1097/mcp.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Asthma exacerbations are associated with substantial symptom burden and healthcare costs. Viral infections are the most common identified cause of asthma exacerbations. The epidemiology of viral respiratory infections has undergone a significant evolution during the COVID-19 pandemic. The relationship between viruses and asthmatic hosts has long been recognized but it is still incompletely understood. The use of newly approved asthma biologics has helped us understand this interaction better. RECENT FINDINGS We review recent updates on the interaction between asthma and respiratory viruses, and we address how biologics and immunotherapies could affect this relationship by altering the respiratory mucosa cytokine milieu. By exploring the evolving epidemiological landscape of viral infections during the different phases of the COVID-19 pandemic, we emphasize the early post-pandemic stage, where a resurgence of pre-pandemic viruses with atypical seasonality patterns occurred. Finally, we discuss the newly developed RSV and SARS-CoV-2 vaccines and how they reduce respiratory infections. SUMMARY Characterizing how respiratory viruses interact with asthmatic hosts will allow us to identify tailored therapies to reduce the burden of asthma exacerbations. New vaccination strategies are likely to shape the future viral asthma exacerbation landscape.
Collapse
Affiliation(s)
- Pedro A Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine. Department of Medicine. Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
4
|
Sverrild A, Cerps S, Nieto-Fontarigo JJ, Ramu S, Hvidtfeldt M, Menzel M, Kearley J, Griffiths JM, Parnes JR, Porsbjerg C, Uller L. Tezepelumab decreases airway epithelial IL-33 and T2-inflammation in response to viral stimulation in patients with asthma. Allergy 2024; 79:656-666. [PMID: 37846599 DOI: 10.1111/all.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM To examine effects of blocking TSLP in patients with asthma on host resistance (IFNβ, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNβ IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNβ and IFNλ expression and viral load were unchanged. CONCLUSION Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.
Collapse
Affiliation(s)
- A Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - S Cerps
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J J Nieto-Fontarigo
- Department of Experimental Medicine, Lund University, Lund, Sweden
- BioLympho Research group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - S Ramu
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - M Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - M Menzel
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J Kearley
- Bioscience, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J M Griffiths
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J R Parnes
- Translational Medicine, Amgen, Thousand Oaks, California, USA
| | - C Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - L Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Chen S, Jiang J, Li T, Huang L. PANoptosis: Mechanism and Role in Pulmonary Diseases. Int J Mol Sci 2023; 24:15343. [PMID: 37895022 PMCID: PMC10607352 DOI: 10.3390/ijms242015343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
PANoptosis is a newly defined programmed cell death (PCD) triggered by a series of stimuli, and it engages three well-learned PCD forms (pyroptosis, apoptosis, necroptosis) concomitantly. Normally, cell death is recognized as a strategy to eliminate unnecessary cells, inhibit the proliferation of invaded pathogens and maintain homeostasis; however, vigorous cell death can cause excessive inflammation and tissue damage. Acute lung injury (ALI) and chronic obstructive pulmonary syndrome (COPD) exacerbation is related to several pathogens (e.g., influenza A virus, SARS-CoV-2) known to cause PANoptosis. An understanding of the mechanism and specific regulators may help to address the pathological systems of these diseases. This review presents our understanding of the potential mechanism of PANoptosis and the role of PANoptosis in different pulmonary diseases.
Collapse
Affiliation(s)
| | | | | | - Longshuang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.C.); (J.J.); (T.L.)
| |
Collapse
|
6
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Fan X, Yan Y, Zhao L, Xu X, Dong Y, Sun W. Establishment of the multi-component bone-on-a-chip: to explore therapeutic potential of DNA aptamers on endothelial cells. Front Cell Dev Biol 2023; 11:1183163. [PMID: 37377731 PMCID: PMC10291622 DOI: 10.3389/fcell.2023.1183163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Despite great efforts to develop microvascular bone chips in previous studies, current bone chips still lacked multi-component of human-derived cells close to human bone tissue. Bone microvascular endothelial cells (BMECs) were demonstrated to be closely related to the glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Tumor necrosis factor-alpha (TNF-α) aptamer has been proved to bind to its receptor and block cascade activities. Objective: There are two main objectives in this study: 1) to establish a multi-component bone-on-a-chip within the microfluidic system in vitro, 2) to explore the therapeutic potential of TNF-α aptamer on BMECs in the GC-induced ONFH model. Methods: Histological features of clinical samples were analyzed before BMECs isolation. The functional bone-on-a-chip consists of the vascular channel, stromal channel and structure channel. GC-induced ONFH model was established based on the multi-component of human-derived cells. Truncation and dimerization were performed on a previously reported DNA aptamer (VR11). BMECs apoptosis, cytoskeleton and angiogenesis status in the ONFH model were observed by the TUNEL staining and confocal microscope. Results: The multi-component of BMECs, human embryonic lung fibroblasts and hydroxyapatite were cultured within the microfluidic bone-on-a-chip. TNF-α was found up-regulated in the necrotic regions of femoral heads in clinical samples and similar results were re-confirmed in the ONFH model established in the microfluidic platform by detecting cell metabolites. Molecular docking simulations indicated that the truncated TNF-α aptamer could improve the aptamer-protein interactions. Further results from the TUNEL staining and confocal microscopy showed that the truncated aptamer could protect BMECs from apoptosis and alleviate GC-induced damages to cytoskeleton and vascularization. Conclusion: In summary, a microfluidic multi-component bone-on-a-chip was established with 'off-chip' analysis of cell metabolism. GC-induced ONFH model was achieved based on the platform. Our findings provided initial evidence on the possible potentials of TNF-α aptamer as a new type of TNF-α inhibitor for patients with ONFH.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuhan Yan
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lianhui Zhao
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Xu
- Peking Union Medical College, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yiyang Dong
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Sun
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
- Orthopedics Department, China-Japan Friendship Hospital, Beijing, China
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kobayashi Y, Chu HH, Kanda A, Yun Y, Shimono M, Nguyen LM, Mitani A, Suzuki K, Asako M, Iwai H. CCL4 Functions as a Biomarker of Type 2 Airway Inflammation. Biomedicines 2022; 10:biomedicines10081779. [PMID: 35892679 PMCID: PMC9330411 DOI: 10.3390/biomedicines10081779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Eosinophilic airway inflammatory disease is associated with bronchial asthma, with eosinophilic chronic rhinosinusitis (ECRS) typical of refractory type 2 airway inflammation. CCL4 produced at local inflammatory sites is involved in them via the accumulation and activation of type 2 inflammatory cells, including eosinophils. The detailed mechanism of CCL4 production remains unclear, and also the possibility it could function as a biomarker of type 2 airway inflammation remains unresolved. In this study, we evaluated CCL4 mRNA expression and production via the TSLP receptor (TSLPR) and toll-like receptors (TLRs) or proteinase-activated receptor-2 (PAR2) in BEAS-2B bronchial epithelial cells co-incubated with purified eosinophils or eosinophil peroxidase (EPX). We examined serum chemokine (CCL4, CCL11, CCL26, and CCL17) and total IgE serum levels, fractionated exhaled nitrogen oxide (FENO), and CCL4 expression in nasal polyps in patients with severe ECRS and asthma. CCL4 was induced by TSLP under eosinophilic inflammation. Furthermore, CCL4 was released via TLR3 signaling, which was enhanced by TSLP. CCL4 was mainly located in nasal polyp epithelial cells, while serum CCL4 levels were reduced after dupilumab treatment. Serum CCL4 levels were positively correlated with FENO, serum IgE, and CCL17 levels. Thus, CCL4 released from epithelial cells via the innate immune system during type 2 airway inflammation may function as a useful biomarker for the condition.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2463
| | - Hanh Hong Chu
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Masami Shimono
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Linh Manh Nguyen
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (A.K.); (Y.Y.); (M.S.); (L.M.N.); (A.M.); (K.S.); (M.A.); (H.I.)
| |
Collapse
|
9
|
Wark PAB. We need to understand why viral infections lead to acute asthma. Eur Respir J 2022; 60:60/1/2200194. [PMID: 35902102 DOI: 10.1183/13993003.00194-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peter A B Wark
- Immune Health Program, Hunter Medical Research institute, University of Newcastle, New Lambton, Australia
| |
Collapse
|