1
|
Mazio C, Scognamiglio LS, Casale C, Panzetta V, Urciuolo F, Galietta LJV, Imparato G, Netti PA. A functional 3D full-thickness model for comprehending the interaction between airway epithelium and connective tissue in cystic fibrosis. Biomaterials 2024; 308:122546. [PMID: 38552367 DOI: 10.1016/j.biomaterials.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear. Nowadays, animal models are not able to fully replicate clinical features of the human disease and the conventional in vitro models lack a stromal compartment undergoing fibrotic remodeling. To address this gap, we show the development of a 3D full-thickness model of CF with a human bronchial epithelium differentiated on a connective airway tissue. We demonstrated that the epithelial cells not only underwent mucociliary differentiation but also migrated in the connective tissue and formed gland-like structures. The presence of the connective tissue stimulated the pro-inflammatory behaviour of the epithelium, which activated the fibroblasts embedded into their own extracellular matrix (ECM). By varying the composition of the model with CF epithelial cells and a CF or healthy connective tissue, it was possible to replicate different moments of CF disease, as demonstrated by the differences in the transcriptome of the CF epithelium in the different conditions. The possibility to faithfully represent the crosstalk between epithelial and connective in CF through the full thickness model, along with inflammation and stromal activation, makes the model suitable to better understand mechanisms of disease genesis, progression, and response to therapy.
Collapse
Affiliation(s)
- Claudia Mazio
- Istituto Italiano di Tecnologia-IIT, Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125, Napoli, Italy
| | - Laura Sara Scognamiglio
- Istituto Italiano di Tecnologia-IIT, Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125, Napoli, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials-CRIB, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials-CRIB, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy; Department of Chemical, Materials and Industrial Production Engineering-DICMAPI, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials-CRIB, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy; Department of Chemical, Materials and Industrial Production Engineering-DICMAPI, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine-TIGEM, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Giorgia Imparato
- Istituto Italiano di Tecnologia-IIT, Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125, Napoli, Italy.
| | - Paolo A Netti
- Istituto Italiano di Tecnologia-IIT, Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125, Napoli, Italy; Interdisciplinary Research Centre on Biomaterials-CRIB, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy; Department of Chemical, Materials and Industrial Production Engineering-DICMAPI, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
2
|
Liou TG, Argel N, Asfour F, Brown PS, Chatfield BA, Cox DR, Daines CL, Durham D, Francis JA, Glover B, Helms M, Heynekamp T, Hoidal JR, Jensen JL, Kartsonaki C, Keogh R, Kopecky CM, Lechtzin N, Li Y, Lysinger J, Molina O, Nakamura C, Packer KA, Paine R, Poch KR, Quittner AL, Radford P, Redway AJ, Sagel SD, Szczesniak RD, Sprandel S, Taylor-Cousar JL, Vroom JB, Yoshikawa R, Clancy JP, Elborn JS, Olivier KN, Adler FR. Airway inflammation accelerates pulmonary exacerbations in cystic fibrosis. iScience 2024; 27:108835. [PMID: 38384849 PMCID: PMC10879674 DOI: 10.1016/j.isci.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024] Open
Abstract
Airway inflammation underlies cystic fibrosis (CF) pulmonary exacerbations. In a prospective multicenter study of randomly selected, clinically stable adolescents and adults, we assessed relationships between 24 inflammation-associated molecules and the future occurrence of CF pulmonary exacerbation using proportional hazards models. We explored relationships for potential confounding or mediation by clinical factors and assessed sensitivities to treatments including CF transmembrane regulator (CFTR) protein synthesis modulators. Results from 114 participants, including seven on ivacaftor or lumacaftor-ivacaftor, representative of the US CF population during the study period, identified 10 biomarkers associated with future exacerbations mediated by percent predicted forced expiratory volume in 1 s. The findings were not sensitive to anti-inflammatory, antibiotic, and CFTR modulator treatments. The analyses suggest that combination treatments addressing RAGE-axis inflammation, protease-mediated injury, and oxidative stress might prevent pulmonary exacerbations. Our work may apply to other airway inflammatory diseases such as bronchiectasis and the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Theodore G Liou
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
- Primary Children's Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113, USA
| | - Natalia Argel
- Cystic Fibrosis Center, Phoenix Children's Hospital, 1919 East Thomas Road, Phoenix, AZ 85016, USA
| | - Fadi Asfour
- Primary Children's Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113, USA
| | - Perry S Brown
- St. Luke's Cystic Fibrosis Center of Idaho, 610 W. Hays Street, Boise, ID 83702, USA
| | - Barbara A Chatfield
- Primary Children's Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113, USA
| | - David R Cox
- Nuffield College, 1 New Rd, Oxford OX1 1NF, UK
| | - Cori L Daines
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Arizona Health Sciences, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, AZ 85724, USA
| | | | - Jessica A Francis
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Barbara Glover
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109, USA
| | - My Helms
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Theresa Heynekamp
- Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care and Sleep Medicine, DoIM MSC10-5550, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - John R Hoidal
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Judy L Jensen
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit and Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ruth Keogh
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Carol M Kopecky
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| | - Yanping Li
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Jerimiah Lysinger
- Montana Cystic Fibrosis Center, Billings Clinic, 2800 10th Avenue N, Billings, MT 59101, USA
| | - Osmara Molina
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Arizona Health Sciences, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, AZ 85724, USA
| | - Craig Nakamura
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109, USA
| | - Kristyn A Packer
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Robert Paine
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Katie R Poch
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | - Peggy Radford
- Cystic Fibrosis Center, Phoenix Children's Hospital, 1919 East Thomas Road, Phoenix, AZ 85016, USA
| | - Abby J Redway
- Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care and Sleep Medicine, DoIM MSC10-5550, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Rhonda D Szczesniak
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shawna Sprandel
- Montana Cystic Fibrosis Center, Billings Clinic, 2800 10th Avenue N, Billings, MT 59101, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Division of Pulmonology, Department of Pediatrics, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Jane B Vroom
- Adult Cystic Fibrosis Center, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, 26 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA
- Primary Children's Cystic Fibrosis Center, Division of Pediatric Pulmonology, Department of Pediatrics, University of Utah, 81 North Mario Capecchi Drive, Salt Lake City, UT 84113, USA
| | - Ryan Yoshikawa
- Cystic Fibrosis Center, 3006 S. Maryland Pkwy, Suite #315, Las Vegas, NV 89109, USA
| | - John P Clancy
- Former: Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - J Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Health Sciences Building, Lisburn Rd, Belfast BT9 7AE, UK
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive MSC1454, Building 10-CRC, Room 1408A, Bethesda, MD 20892, USA
| | - Frederick R Adler
- Department of Mathematics, 155 South 1400 East, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 South 1400 East, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Wang S, Niroula S, Hoffman A, Khorrami M, Khorrami M, Yuan F, Gasser GN, Choi S, Liu B, Li J, Metersky ML, Vincent M, Crum CP, Boucher RC, Karmouty-Quintana H, Huang HJ, Sheshadri A, Dickey BF, Parekh KR, Engelhardt JF, McKeon FD, Xian W. Inflammatory Activity of Epithelial Stem Cell Variants from Cystic Fibrosis Lungs Is Not Resolved by CFTR Modulators. Am J Respir Crit Care Med 2023; 208:930-943. [PMID: 37695863 PMCID: PMC10870857 DOI: 10.1164/rccm.202305-0818oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Rationale: CFTR (cystic fibrosis transmembrane conductance regulator) modulator drugs restore function to mutant channels in patients with cystic fibrosis (CF) and lead to improvements in body mass index and lung function. Although it is anticipated that early childhood treatment with CFTR modulators will significantly delay or even prevent the onset of advanced lung disease, lung neutrophils and inflammatory cytokines remain high in patients with CF with established lung disease despite modulator therapy, underscoring the need to identify and ultimately target the sources of this inflammation in CF lungs. Objectives: To determine whether CF lungs, like chronic obstructive pulmonary disease (COPD) lungs, harbor potentially pathogenic stem cell "variants" distinct from the normal p63/Krt5 lung stem cells devoted to alveolar fates, to identify specific variants that might contribute to the inflammatory state of CF lungs, and to assess the impact of CFTR genetic complementation or CFTR modulators on the inflammatory variants identified herein. Methods: Stem cell cloning technology developed to resolve pathogenic stem cell heterogeneity in COPD and idiopathic pulmonary fibrosis lungs was applied to end-stage lungs of patients with CF (three homozygous CFTR:F508D, one CFTR F508D/L1254X; FEV1, 14-30%) undergoing therapeutic lung transplantation. Single-cell-derived clones corresponding to the six stem cell clusters resolved by single-cell RNA sequencing of these libraries were assessed by RNA sequencing and xenografting to monitor inflammation, fibrosis, and mucin secretion. The impact of CFTR activity on these variants after CFTR gene complementation or exposure to CFTR modulators was assessed by molecular and functional studies. Measurements and Main Results: End-stage CF lungs display a stem cell heterogeneity marked by five predominant variants in addition to the normal lung stem cell, of which three are proinflammatory both at the level of gene expression and their ability to drive neutrophilic inflammation in xenografts in immunodeficient mice. The proinflammatory functions of these three variants were unallayed by genetic or pharmacological restoration of CFTR activity. Conclusions: The emergence of three proinflammatory stem cell variants in CF lungs may contribute to the persistence of lung inflammation in patients with CF with advanced disease undergoing CFTR modulator therapy.
Collapse
Affiliation(s)
- Shan Wang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Suchan Niroula
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Ashley Hoffman
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Melika Khorrami
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Melina Khorrami
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Feng Yuan
- Department of Anatomy and Cell Biology
- Gene Therapy Center for Cystic Fibrosis and Other Genetic Diseases, and
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology
- Gene Therapy Center for Cystic Fibrosis and Other Genetic Diseases, and
| | - Soon Choi
- Department of Anatomy and Cell Biology
- Gene Therapy Center for Cystic Fibrosis and Other Genetic Diseases, and
| | - Bovey Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | | | - Mark L. Metersky
- Center for Bronchiectasis Care, Pulmonary, Critical Care, and Sleep Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | | | - Christopher P. Crum
- Women’s and Perinatal Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard C. Boucher
- Cystic Fibrosis and Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, Texas; and
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kalpaj R. Parekh
- Department of Anatomy and Cell Biology
- Gene Therapy Center for Cystic Fibrosis and Other Genetic Diseases, and
- Division of Thoracic Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology
- Gene Therapy Center for Cystic Fibrosis and Other Genetic Diseases, and
| | - Frank D. McKeon
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Wa Xian
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
4
|
Slimmen LJM, Giacalone VD, Schofield C, Horati H, Manaï BHAN, Estevão SC, Garratt LW, Peng L, Tirouvanziam R, Janssens HM, Unger WWJ. Airway macrophages display decreased expression of receptors mediating and regulating scavenging in early cystic fibrosis lung disease. Front Immunol 2023; 14:1202009. [PMID: 37457715 PMCID: PMC10338875 DOI: 10.3389/fimmu.2023.1202009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Cystic fibrosis (CF) airway disease is characterized by chronic inflammation, featuring neutrophil influx to the lumen. Airway macrophages (AMs) can promote both inflammation and resolution, and are thus critical to maintaining and restoring homeostasis. CF AM functions, specifically scavenging activity and resolution of inflammation, have been shown to be impaired, yet underlying processes remain unknown. We hypothesized that impaired CF AM function results from an altered expression of receptors that mediate or regulate scavenging, and set out to investigate changes in expression of these markers during the early stages of CF lung disease. Methods Bronchoalveolar lavage fluid (BALF) was collected from 50 children with CF aged 1, 3 or 5 years. BALF cells were analyzed using flow cytometry. Expression levels of surface markers on AMs were expressed as median fluorescence intensities (MFI) or percentage of AMs positive for these markers. The effect of age and neutrophilic inflammation, among other variables, on marker expression was assessed with a multivariate linear regression model. Results AM expression of scavenger receptor CD163 decreased with age (p = 0.016) and was negatively correlated with BALF %neutrophils (r = -0.34, p = 0.016). AM expression of immune checkpoint molecule SIRPα also decreased with age (p = 0.0006), but did not correlate with BALF %neutrophils. Percentage of AMs expressing lipid scavenger CD36 was low overall (mean 20.1% ± 16.5) and did not correlate with other factors. Conversely, expression of immune checkpoint PD-1 was observed on the majority of AMs (mean PD-1pos 72.9% ± 11.8), but it, too, was not affected by age or BALF %neutrophils. Compared to matched blood monocytes, AMs had a higher expression of CD16, CD91, and PD-1, and a lower expression of CD163, SIRPα and CD36. Conclusion In BALF of preschool children with CF, higher age and/or increased neutrophilic inflammation coincided with decreased expression of scavenger receptors on AMs. Expression of scavenging receptors and regulators showed a distinctly different pattern in AMs compared to blood monocytes. These findings suggest AM capacity to counter inflammation and promote homeostasis reduces during initiation of CF airway disease and highlight new avenues of investigation into impaired CF AM function.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Craig Schofield
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Badies H. A. N. Manaï
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Silvia C. Estevão
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Luke W. Garratt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
5
|
Ciszek-Lenda M, Majka G, Suski M, Walczewska M, Górska S, Golińska E, Fedor A, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J. Biofilm-forming strains of P. aeruginosa and S. aureus isolated from cystic fibrosis patients differently affect inflammatory phenotype of macrophages. Inflamm Res 2023:10.1007/s00011-023-01743-x. [PMID: 37253897 DOI: 10.1007/s00011-023-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE Lung cystic fibrosis (CF) is characterized by chronic infections and hyperinflammatory response of neutrophils and macrophages. P. aeruginosa (PA) and S. aureus (MSSA, MRSA) are major pathogens of advanced CF. The main goal of this study was to compare the inflammatory phenotype of murine C57BL/6 macrophages exposed to PA57 with that exposed to MSSA60, both strains isolated from the same patient with severe CF. In the present study, we used C57BL/6 mice sensitive to lung infection with P. aeruginosa. METHODS We measured the release of cytokines and the expression of phenotypic markers of murine neutrophils and macrophages exposed to bacterial cells and biofilm components (i.e., EPS) of the selected bacteria. In addition, a quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. RESULTS Neutrophils stimulated with PA57 and MSSA60 strains produced hyperinflammatory pattern of cytokines. The pro-inflammatory impact of PA57 was significantly higher than that of MSSA60 (IL-6/IL-10 ratio: PA57 = 9.3 vs. MSSA60 = 1.7). Macrophages produced significantly lower amount of cytokines, but showed classical pattern of M1 markers (iNOS-High; arginase-1 and mannose receptor MRC1-Low). Importantly, as evidenced by proteomic analysis, PA57 and PA57-EPS were stronger inducers of M1 macrophage polarization than the MSSA60 counterparts. CONCLUSIONS Our study demonstrated that strong biofilm P. aeruginosa strains, CF isolates, are dominant inducers of M1 macrophages, termed biofilm-associated macrophages (BAMs). We suggest that repolarization of detrimental BAMs might be a new therapeutic strategy to ameliorate the airway damage in CF.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Grzegorz Majka
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland.
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-53, Krakow, Poland
| | - Maria Walczewska
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Sabina Górska
- Department of Microbiology, Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Edyta Golińska
- Department of Microbiology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Angelika Fedor
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-53, Krakow, Poland
| | - Magdalena Strus
- Department of Microbiology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| |
Collapse
|
6
|
Gillan JL, Chokshi M, Hardisty GR, Clohisey Hendry S, Prasca-Chamorro D, Robinson NJ, Lasota B, Clark R, Murphy L, Whyte MK, Baillie JK, Davidson DJ, Bao G, Gray RD. CAGE sequencing reveals CFTR-dependent dysregulation of type I IFN signaling in activated cystic fibrosis macrophages. SCIENCE ADVANCES 2023; 9:eadg5128. [PMID: 37235648 PMCID: PMC10219589 DOI: 10.1126/sciadv.adg5128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
An intense, nonresolving airway inflammatory response leads to destructive lung disease in cystic fibrosis (CF). Dysregulation of macrophage immune function may be a key facet governing the progression of CF lung disease, but the underlying mechanisms are not fully understood. We used 5' end centered transcriptome sequencing to profile P. aeruginosa LPS-activated human CF macrophages, showing that CF and non-CF macrophages deploy substantially distinct transcriptional programs at baseline and following activation. This includes a significantly blunted type I IFN signaling response in activated patient cells relative to healthy controls that was reversible upon in vitro treatment with CFTR modulators in patient cells and by CRISPR-Cas9 gene editing to correct the F508del mutation in patient-derived iPSC macrophages. These findings illustrate a previously unidentified immune defect in human CF macrophages that is CFTR dependent and reversible with CFTR modulators, thus providing new avenues in the search for effective anti-inflammatory interventions in CF.
Collapse
Affiliation(s)
- Jonathan L. Gillan
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mithil Chokshi
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Gareth R. Hardisty
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | - Nicola J. Robinson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Benjamin Lasota
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Moira K. B. Whyte
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | - Donald J. Davidson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Robert D. Gray
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
7
|
Bruscia EM. The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections. Eur Respir J 2023; 61:61/4/2300216. [PMID: 37003613 DOI: 10.1183/13993003.00216-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 04/03/2023]
|
8
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
9
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Britto CJ, Taylor-Cousar JL. Cystic Fibrosis in the Era of Highly Effective CFTR Modulators. Clin Chest Med 2022; 43:xiii-xvi. [PMID: 36344084 DOI: 10.1016/j.ccm.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clemente J Britto
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, TAC-S419, New Haven, CT 06520, USA.
| | - Jennifer L Taylor-Cousar
- Departments of Medicine and Pediatrics, Divisions of Pulmonary Sciences and Critical Care Medicine and Pediatric Pulmonology, University of Colorado, Anschutz Medical Campus, 1400 Jackson Street, J318, Denver, CO 80206, USA.
| |
Collapse
|
11
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
13
|
Cabrini G, Rimessi A, Borgatti M, Pinton P, Gambari R. Overview of CF lung pathophysiology. Curr Opin Pharmacol 2022; 64:102214. [PMID: 35453033 DOI: 10.1016/j.coph.2022.102214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Defects of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein affect the homeostasis of chloride, bicarbonate, sodium, and water in the airway surface liquid, influencing the mucus composition and viscosity, which induces a severe condition of infection and inflammation along the whole life of CF patients. The introduction of CFTR modulators, novel drugs directly intervening to rescue the function of CFTR protein, opens a new era of experimental research. The review summarizes the most recent advancements to understand the characteristics of the infective and inflammatory pathology of CF lungs.
Collapse
Affiliation(s)
- Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.
| | - Alessandro Rimessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Center of Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Begum N, Byrnes CA, Cheney J, Cooper PJ, Fantino E, Gailer N, Grimwood K, GutierrezCardenas D, Massie J, Robertson CF, Sly PD, Tiddens HA, Wainwright CE, Ware RS. Factors in childhood associated with lung function decline to adolescence in cystic fibrosis. J Cyst Fibros 2022; 21:977-983. [PMID: 35341694 DOI: 10.1016/j.jcf.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Despite improvements in general health and life expectancy in people with cystic fibrosis (CF), lung function decline continues unabated during adolescence and early adult life. METHODS We examined factors present at age 5-years that predicted lung function decline from childhood to adolescence in a longitudinal study of Australasian children with CF followed from 1999 to 2017. RESULTS Lung function trajectories were calculated for 119 children with CF from childhood (median 5.0 [25%-75%=5.0-5.1]) years) to early adolescence (median 12.5 [25%-75%=11.4-13.8] years). Lung function fell progressively, with mean (standard deviation) annual change -0.105 (0.049) for forced vital capacity (FVC) Z-score (p<0.001), -0.135 (0.048) for forced expiratory volume in 1-second (FEV1) Z-score (p<0.001), -1.277 (0.221) for FEV1/FVC% (p<0.001), and -0.136 (0.052) for forced expiratory flow between 25% and 75% of FVC Z-score (p<0.001). Factors present in childhood predicting lung function decline to adolescence, in multivariable analyses, were hospitalisation for respiratory exacerbations in the first 5-years of life (FEV1/FVC p = 0.001, FEF25-75p = 0.01) and bronchoalveolar lavage neutrophil elastase activity (FEV1/FVC% p = 0.001, FEV1p = 0.05, FEF25-75p = 0.02). No examined factor predicted a decline in the FVC Z-score. CONCLUSIONS Action in the first 5-years of life to prevent and/or treat respiratory exacerbations and counteract neutrophilic inflammation in the lower airways may reduce lung function decline in children with CF, and these should be targets of future research.
Collapse
Affiliation(s)
- Nelufa Begum
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Catherine A Byrnes
- Starship Children's Hospital and The University of Auckland, Auckland, New Zealand
| | - Joyce Cheney
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Peter J Cooper
- The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Emmanuelle Fantino
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Nicholas Gailer
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Keith Grimwood
- Griffith University and Gold Coast Health, Southport, QLD, Australia
| | - Diana GutierrezCardenas
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - John Massie
- Royal Children's Hospital, Melbourne, VIC, Australia
| | | | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia.
| | | | - Claire E Wainwright
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | | |
Collapse
|
15
|
Kiefer A, Plattner E, Ruppel R, Weiss C, Zhou-Suckow Z, Mall M, Renner M, Müller H. DMBT1 is upregulated in cystic fibrosis, affects ciliary motility, and is reduced by acetylcysteine. Mol Cell Pediatr 2022; 9:4. [PMID: 35249163 PMCID: PMC8898207 DOI: 10.1186/s40348-022-00136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is the most common genetic disorder in the Caucasian population. Despite remarkable improvements in morbidity and mortality during the last decades, the disease still limits survival and reduces quality of life of affected patients. Moreover, CF still represents substantial economic burden for healthcare systems. Inflammation and infection already start in early life and play important roles in pulmonary impairment. The aim of this study is to analyze the potential role of DMBT1, a protein with functions in inflammation, angiogenesis, and epithelial differentiation, in CF. RESULTS Immunohistochemically DMBT1 protein expression was upregulated in lung tissues of CF patients compared to healthy controls. Additionally, pulmonary expression of Dmbt1 was approximately 6-fold increased in an established transgenic mouse model of CF-like lung disease (ENaC tg) compared to wild-type mice as detected by qRT-PCR. Since acetylcysteine (ACC) has been shown to reduce inflammatory markers in the airways, its potential influence on DMBT1 expression was analyzed. A549 cells stably transfected with an expression plasmid encoding the largest (8kb) DMBT1 variant (DMBT1+ cells) or an empty vector control (DMBT1- cells) and incubated with ACC both showed significantly reduced DMBT1 concentrations in the culture medium (p = 0.0001). To further elucidate the function of DMBT1 in pulmonary airways, respiratory epithelial cells were examined by phase contrast microscopy. Addition of human recombinant DMBT1 resulted in altered cilia motility and irregular beat waves (p < 0.0001) suggesting a potential effect of DMBT1 on airway clearance. CONCLUSIONS DMBT1 is part of inflammatory processes in CF and may be used as a potential biomarker for CF lung disease and a potential tool to monitor CF progression. Furthermore, DMBT1 has a negative effect on ciliary motility thereby possibly compromising airway clearance. Application of ACC, leading to reduced DMBT1 concentrations, could be a potential therapeutic option for CF patients.
Collapse
Affiliation(s)
- Alexander Kiefer
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany.,Department of Pediatric Pneumology and Allergology, St. Hedwig's Hospital of the Order of St. John, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany
| | - Erika Plattner
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Renate Ruppel
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Hanna Müller
- Department of Pediatrics, Neonatology and Pediatric Intensive Care, University of Marburg, Baldingerstraße, 35043, Marburg, Germany. .,Department of Pediatrics, Division of Neonatology and Pediatric Intensive Care, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany.
| |
Collapse
|
16
|
Lobbes H, Durupt S, Mainbourg S, Pereira B, Nove-Josserand R, Durieu I, Reynaud Q. Iron Deficiency in Cystic Fibrosis: A Cross-Sectional Single-Centre Study in a Referral Adult Centre. Nutrients 2022; 14:nu14030673. [PMID: 35277032 PMCID: PMC8838796 DOI: 10.3390/nu14030673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Iron deficiency (ID) diagnosis in cystic fibrosis (CF) is challenging because of frequent systemic inflammation. We aimed to determine the prevalence and risk factors of ID in adult patients with CF. We conducted a single-centre prospective study in a referral centre. ID was defined by transferrin saturation ≤16% or ferritin ≤20 (women) or 30 (men) μg/L, or ≤100 μg/L in the case of systemic inflammation. Apparent exacerbation was an exclusion criterion. We included 165 patients (78 women), mean age—31.1 ± 8.9 years. ID prevalence was 44.2%. ID was significantly associated with female gender (58.9% vs. 38%), lower age (29.4 ± 8.5 vs. 32.5 ± 9.1), lower body mass index (20.5 ± 2.2 vs. 21.3 ± 2.5), and Pseudomonas aeruginosa colonization (70.8% vs. 55.1%). Diabetes mellitus, antiacid drug use and low pulmonary function were more frequent in patients with ID with no statistical significance. The use of CFTR correctors was not associated with ID. In the multivariate analysis, ID was associated with female gender (OR 2.64, CI95% 1.31−5.31), age < 30 years (OR 2.30, CI95% 1.16−4.56), and P. aeruginosa (OR 2.09, CI95% 1.04−4.19).
Collapse
Affiliation(s)
- Hervé Lobbes
- Service de Médecine Interne, Hôpital Estaing, CHU de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- SIGMA Clermont, Institut Pascal, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-4-73-750-085; Fax: +33-4-73-750-361
| | - Stéphane Durupt
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France; (S.D.); (S.M.); (R.N.-J.); (I.D.); (Q.R.)
| | - Sabine Mainbourg
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France; (S.D.); (S.M.); (R.N.-J.); (I.D.); (Q.R.)
- Equipe Evaluation et Modélisation des Effets Thérapeutiques, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, Claude Bernard University Lyon 1, F-69622 Villeurbanne, France
| | - Bruno Pereira
- Biostatistics Unit, Centre Hospitalier Universitaire de Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Raphaele Nove-Josserand
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France; (S.D.); (S.M.); (R.N.-J.); (I.D.); (Q.R.)
| | - Isabelle Durieu
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France; (S.D.); (S.M.); (R.N.-J.); (I.D.); (Q.R.)
- Research on Healthcare Performance (REHSAPE), INSERM U1290, Université Claude Bernard Lyon 1, F-69373 Lyon, France
| | - Quitterie Reynaud
- Département de Médecine Interne et Centre de Référence Mucoviscidose, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France; (S.D.); (S.M.); (R.N.-J.); (I.D.); (Q.R.)
- Research on Healthcare Performance (REHSAPE), INSERM U1290, Université Claude Bernard Lyon 1, F-69373 Lyon, France
| |
Collapse
|