1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Park HE, Shin JI, Kim KM, Choi JG, Anh WJ, Trinh MP, Kang KM, Byun JH, Yoo JW, Kang HL, Baik SC, Lee WK, Jung M, Shin MK. Genetic variations underlying aminoglycoside resistance in antibiotic-induced Mycobacterium intracellulare mutants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105716. [PMID: 39837360 DOI: 10.1016/j.meegid.2025.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Mycobacterium avium complex (MAC) is an emerging pathogen leading to public health concerns in developing and developed countries, particularly among immunocompromised individuals and patients with structural lung diseases. Current clinical guidelines recommend combination antibiotic therapy for treating MAC pulmonary disease (MAC-PD). However, the rising prevalence of antibiotic resistance poses significant challenges, including treatment failure and clinical recurrence. A deeper understanding of the mechanisms underlying MAC antibiotic resistance is essential to improve treatment outcomes. This study investigates the genetic variations associated with aminoglycoside resistance in an antibiotic-induced Mycobacterium intracellulare mutant derived from a clinical strain. Whole-genome analysis identified seven mutations in the aminoglycoside-resistant mutant, including single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Key genetic alterations included a frameshift variant in a gene encoding a secreted protein antigen, missense mutations in rpsL and rsmG, and synonymous and in-frame deletion variants in srfAB and mtrB, respectively. These findings highlight the complex genetic landscape of aminoglycoside resistance in M. intracellulare. Understanding these resistance determinants provides valuable insights for developing diagnostic tools to detect drug-resistant MAC strains and optimizing therapeutic strategies for managing MAC infections in clinical practice.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Jun Anh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
3
|
Liang X, Liu Z, Wang Y, Zhang Y, Deng W, Liu Q, Lu Z, Li K, Chang Y, Wei L. Progress in the study of mefloquine as an antibiotic adjuvant for combination bacterial inhibition treatment. Front Cell Infect Microbiol 2024; 14:1470891. [PMID: 39669268 PMCID: PMC11634880 DOI: 10.3389/fcimb.2024.1470891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
Antimicrobial resistance is among the greatest threats to public health globally, and drug repurposing strategies may be advantageous to addressing this problem. Mefloquine, a drug traditionally used to treat malaria, has emerged as a promising antibiotic adjuvant, due to its ability to enhance the effectiveness of conventional antibiotics against resistant bacterial strains. In this paper, we first outline the enhancement properties of mefloquine and its mechanisms of action as an adjuvant antibiotic against multidrug-resistant bacteria. Mefloquine exhibits synergistic bacteriostatic effects when combined with colistin, β-lactams, antituberculosis drugs, quinolones, and linezolid. Potential mechanisms underlying its synergistic effects include inhibition of antibiotic efflux, disruption of bacterial cell membrane integrity, and disturbance of biofilm formation. In addition, we explore the bacteriostatic effects of several mefloquine derivatives against Mycobacterium tuberculosis and some fungi. Further, we summarize the findings of recent studies on other aspects of mefloquine activity, including its antiviral and antitumor effects. Finally, the advantages and challenges of mefloquine use as an antibiotic adjuvant in combination with antibiotics for bacterial inhibition are discussed. Overall, mefloquine shows excellent potential as an antibiotic adjuvant therapy against multidrug-resistant bacteria and is a promising candidate for combination therapy; however, further studies are needed to fully elucidate its mechanism of action and address the challenges associated with its clinical application.
Collapse
Affiliation(s)
- Xiaofang Liang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhihong Liu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yulin Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenbo Deng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yanbing Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Lianhua Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Coelho AA, Barbosa LCDS, da Costa AC, Kipnis A, Junqueira-Kipnis AP. Novel Synthetic Peptide Agelaia-12 Has Improved Activity Against Mycobacterium abscessus Complex. Pathogens 2024; 13:994. [PMID: 39599547 PMCID: PMC11597844 DOI: 10.3390/pathogens13110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Fast-growing mycobacteria cause difficult-to-treat infections due to their high intrinsic resistance to antibiotics as well as disinfectant agents. Mycobacterium abscessus complex (MAC) is the main cause of nontuberculous mycobacteria diseases. In this work, we evaluated the activity of the novel synthetic antimicrobial peptide, Agelaia-12, against Mycobacterium abscessus and M. massiliense. Agelaia-12 showed a minimum inhibitory concentration (MIC) of 25 μM detected against M. abscessus and M. massiliense with no cytotoxicity. The scanning electronic microscopy analysis of mycobacterial treated with Agelaia-12 demonstrated the presence of filamentous structures and aggregation of the cells. Congo red binding assay of M. abscessus exhibited altered dye accumulation after treatment with Agelaia-12. Treatment of M. abscessus- or M. massiliense-infected murine macrophages with Agelaia-12 decreased the mycobacterial load by 92% for the tested strains. Additionally, IFN-y KO mice infected with M. abscessus or M. massiliense and treated with Agelaia-12 showed a 98% reduction in lung bacterial load. Thus, the synthetic peptide Agelaia-12 may be a promising biomolecule for the treatment of mycobacteriosis, and its structural properties may serve as a foundational model for the design and development of novel pharmaceutical agents aimed at combating this disease.
Collapse
Affiliation(s)
- Arthur Alves Coelho
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Lília Cristina de Souza Barbosa
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Adeliane Castro da Costa
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
- Health Sciences Academic Unit, Federal University of Jataí, Jatái 75801-615, GO, Brazil
| | - André Kipnis
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| |
Collapse
|
5
|
Fukushima K, Matsumoto Y, Abe Y, Hashimoto K, Motooka D, Kitada S, Saito H, Komukai S, Fukui E, Niitsu T, Nabeshima H, Nagahama Y, Yamauchi J, Nitta T, Nii T, Matsuki T, Tsujino K, Miki K, Shintani Y, Kumanogoh A, Akira S, Nakamura S, Kida H. Variability of macrolide-resistant profile in Mycobacterium avium complex pulmonary disease. Antimicrob Agents Chemother 2024; 68:e0121324. [PMID: 39377582 PMCID: PMC11539230 DOI: 10.1128/aac.01213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
This single-center retrospective study aimed to analyze the variability of macrolide resistance (MR) in 68 patients with Mycobacterium avium complex pulmonary disease. Among 25 patients treated without macrolides, 13 (52%) reverted to macrolide-susceptible (MS) profiles. Only one (2%) of 43 patients who continued macrolide treatment showed this change. We compared 30 MR isolates with recent specimens. Among them, seven shifted to MS (five attributed to clonally related strains; two resulting from reinfection or polyclonal infection).
Collapse
Affiliation(s)
- Kiyoharu Fukushima
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Suita, Osaka, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Yuko Abe
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuki Hashimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | | | - Haruko Saito
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Sho Komukai
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Nabeshima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - June Yamauchi
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Tadayoshi Nitta
- Department of Clinical Laboratory, National Hospital Organization, Osaka Toneyama Medical Centre, Toyonaka, Osaka, Japan
| | - Takuro Nii
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Japan for Infectious Disease Education and Research, Osaka University, Toyonaka, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Japan for Infectious Disease Education and Research, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| |
Collapse
|
6
|
Roh T, Seo W, Won M, Yang WS, Sapkota A, Park EJ, Yun SH, Jeon SM, Kim KT, Lee B, Ryu G, Lee SH, Shin JM, Shin HJ, Kim YJ, Lee Y, Chung C, Song IC, Song HK, Jo EK. The inflammasome-activating poxvirus peptide IAMP29 promotes antimicrobial and anticancer responses. Exp Mol Med 2024; 56:2475-2490. [PMID: 39511430 PMCID: PMC11612179 DOI: 10.1038/s12276-024-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
Poxviruses are implicated in a variety of infectious diseases; however, little is known about the molecular mechanisms that underlie the immune response during poxvirus infection. We investigated the function and mechanisms of the monkeypox virus envelope protein (A30L) and its core peptide (IAMP29) during the activation of innate immune responses. The A30L protein and its core peptide, IAMP29 (a 29-amino-acid inflammasome-activating peptide encompassing His40 to Asp69 of A30L), strongly activated the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome by inducing the production of mitochondrial reactive oxygen species in human monocytes. Specifically, IAMP29 triggered metabolic reprogramming toward glycolysis and interacted with pyruvate kinase M isoforms (PKM1 and PKM2), thus activating the NLRP3 inflammasome and interleukin (IL)-1β production in human monocytes and murine macrophages. In human primary monocyte-derived macrophages, IAMP29-induced inflammasome activation promoted an antimicrobial response to rapidly growing non-tuberculous mycobacteria. Furthermore, IAMP29 exhibited cytotoxic activity against leukemia cells, which was mediated by pyroptosis and apoptosis. These findings provide insights into the immunological function of the poxvirus envelope peptide and suggest its therapeutic potential.
Collapse
Affiliation(s)
- Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Wonhyoung Seo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Minho Won
- Department of Biochemistry, Chungnam National University College of Natural Sciences, Daejeon, Republic of Korea
| | - Woo Seok Yang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sung-Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bomi Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Gyoungah Ryu
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Bates NA, Rodriguez R, Drwich R, Ray A, Stanley SA, Penn BH. Reactive Oxygen Detoxification Contributes to Mycobacterium abscessus Antibiotic Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618103. [PMID: 39554100 PMCID: PMC11565942 DOI: 10.1101/2024.10.13.618103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When a population of bacteria encounter a bactericidal antibiotic most cells die rapidly. However, a sub-population, known as "persister cells", can survive for prolonged periods in a non-growing, but viable, state. Persister cell frequency is dramatically increased by stresses such as nutrient deprivation, but it is unclear what pathways are required to maintain viability, and how this process is regulated. To identify the genetic determinants of antibiotic persistence in mycobacteria, we carried out transposon mutagenesis high-throughput sequencing (Tn-Seq) screens in Mycobacterium abscessus (Mabs). This analysis identified genes essential in both spontaneous and stress-induced persister cells, allowing the first genetic comparison of these states in mycobacteria, and unexpectedly identified multiple genes involved in the detoxification of reactive oxygen species (ROS). We found that endogenous ROS were generated following antibiotic exposure, and that the KatG catalase-peroxidase contributed to survival in both spontaneous and starvation-induced persisters. We also found that that hypoxia significantly impaired bacterial killing, and notably, in the absence of oxygen, KatG became dispensable. Thus, the lethality of some antibiotics is amplified by toxic ROS accumulation, and persister cells depend on detoxification systems to remain viable.
Collapse
Affiliation(s)
- Nicholas A. Bates
- Department of Internal Medicine, University of California, Davis, California, USA
- Graduate Group in Immunology, University of California, Davis, California, USA
| | - Ronald Rodriguez
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Rama Drwich
- Department of Internal Medicine, University of California, Davis, California, USA
| | - Abigail Ray
- Microbiology Graduate Group, University of California, Davis, California, USA
| | - Sarah A. Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
8
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024; 16:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
9
|
Chen S, Zhong J, Yang Q, Song X, Zhang L, Ruan G, Zhou B, Shi X, Liu X. Comparative analysis of non-tuberculous mycobacterial lung disease and lung colonization: a case-control study. BMC Infect Dis 2024; 24:1159. [PMID: 39407161 PMCID: PMC11476636 DOI: 10.1186/s12879-024-10067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are common opportunistic pathogens, and the most common infection site is lung. NTM are found commonly in the environment. Many patients have NTM lung colonization (NTM-Col). NTM lung disease (NTM-LD) have no specific sympotms, though it is hard to differentiate NTM-LD and NTM-Col under this circumstance. The aim of this study is to explore the differences between NTM-LD and NTM-Col for future clinical diagnosis and treatment. METHODS We retrospectively enrolled patients who had a history of NTM isolated from respiratory specimens in Peking Union Medical College Hospital (PUMCH) from January 1st, 2013 to December 31st, 2022. Patients were classified into NTM-LD group and NTM-Col group. Demographic characteristics, clinical manifestations, laboratory tests and imaging findings of the two groups were compared. Comparative analysis was also performed in peripheral blood lymphocyte subsets among three groups. RESULTS A total of 127 NTM-LD patients and 37 NTM-Col patients were enrolled. Proportion of patients with bronchiectasis was higher in NTM-LD group than in NTM-Col group (P = 0.026). Predominant NTM isolates were Mycobacterium avium complex (MAC). NTM-LD group had a higher proportion of Mycobacterium intracellulare (P = 0.004). CD4+ T cells counts was lower in NTM-LD group (P = 0.041) than in NTM-Col group. Imaging finding of bronchiectasis (P = 0.006) was higher in NTM-LD group than in NTM-Col group. Imaging findings of bronchiectasis (OR = 6.282, P = 0.016), and CD4+ T cell count (OR = 0.997, P = 0.012) were independent associated factors for differential diagnosis between NTM-LD and NTM-Col. CONCLUSION NTM isolates from both NTM-LD and NTM-Col patients were predominantly MAC, with a higher Mycobacterium intracellulare isolation rate in NTM-LD group. Imaging findings of bronchiectasis and lower peripheral blood CD4+ T cell count may be helpful to separate the diagnosis of NTM-LD from NTM-Col.
Collapse
Affiliation(s)
- Shi Chen
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jingjing Zhong
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinuo Song
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lifan Zhang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, International Epidemiology Network, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Guiren Ruan
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Baotong Zhou
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaochun Shi
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Clinical Epidemiology Unit, International Epidemiology Network, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Guo W, Shangguan Y, Ji Z, Hu M, Li X, Hu W, Zheng L, Huang S, Wang Y, Xia J, Jiang L, Xu K. Clinical characteristics and antimicrobial susceptibility profiles of Mycobacterium abscessus and Mycobacterium massiliense pulmonary infection. J Glob Antimicrob Resist 2024; 38:83-89. [PMID: 38719186 DOI: 10.1016/j.jgar.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES Mycobacterium abscessus complex (MABC) is the most common rapidly growing Mycobacterium species in structural pulmonary diseases and can be life-threatening. This study aimed to assess the clinical characteristics and drug-susceptibility statuses of different M. abscessus (MAB) subspecies in the Zhejiang Province. METHODS DNA sequencing was used to differentiate clinical MABC subspecies isolates. The Clinical and Laboratory Standards Institute guidelines were used to determine in vitro susceptibility of imipenem-relebactam (IMP-REL), omadacycline, and other conventional antibiotics. Patient clinical characteristics were collected and analysed. RESULTS In total, 139 M. abscessus, 39 Mycobacterium massiliense, and 1 Mycobacterium bolletii isolates were collected, accounting for 77.7%, 21.8%, and 0.5% of the MABC isolates, respectively. Patients with M. abscessus pulmonary disease (M.ab-PD) had higher proportions of older adults, tuberculosis history, chronic pulmonary disease, and malignancy than those with M. massiliense pulmonary disease (M.ma-PD). Patients with M.ab-PD had higher rates of bilateral middle- and lower-lobe involvement than patients with M.ma-PD. Both subspecies showed high resistance rates to doxycycline and moxifloxacin, and clarithromycin-induced resistance was more common in M.ab than in M.ma. IMP-REL resulted in a twofold reduction in the minimum inhibitory concentration (MIC) value compared with imipenem alone among MAB; furthermore, the MIC was lower in M.ab than in M.ma. Omadacycline and tigecycline had comparable in vitro susceptibility, and the MIC showed no statistically significant difference between M.ab and M.ma. CONCLUSIONS M.ab is the most prevalent MABC subspecies in the Zhejiang Province. Patients with M.ab-PD have complex underlying diseases and broader lobar lesions. IMP-REL and omadacycline are promising antibiotics for MABC infection treatment.
Collapse
Affiliation(s)
- Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanwan Shangguan
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Hu
- Hangzhou Vocational and Technical College, Hangzhou, China
| | - Xiaomeng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangxiu Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Hu X, Jiang L, Liu X, Chang H, Dong H, Yan J, Zhou X, Kong M. The diagnostic value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in critically ill patients with respiratory tract infections. Microbiol Spectr 2024; 12:e0045824. [PMID: 38916357 PMCID: PMC11302328 DOI: 10.1128/spectrum.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/18/2024] [Indexed: 06/26/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is an unbiased and rapid method for detecting pathogens. This study enrolled 145 suspected severe pneumonia patients who were admitted to the Affiliated Hospital of Jining Medical University. This study primarily aimed to determine the diagnostic performance of mNGS and conventional microbiological tests (CMTs) using bronchoalveolar lavage fluid samples for detecting pathogens. Our findings indicated that mNGS performed significantly higher sensitivity (97.54% vs 28.68%, P < 0.001), coincidence (90.34% vs 35.17%, P < 0.001), and negative predictive value (80.00% vs 13.21%, P < 0.001) but performed lower specificity than CMTs (52.17% vs 87.5%, P < 0.001). Streptococcus pneumoniae as the most common bacterial pathogen had the largest proportion (22.90%, 30/131) in this study. In addition to bacteria, fungi, and virus, mNGS can detect a variety of atypical pathogens such as Mycobacterium tuberculosis and non-tuberculous. Mixed infections were common in patients with severe pneumonia, and bacterial-fungal-viral-atypical pathogens were the most complicated infection. After adjustments of antibiotics based on mNGS and CMTs, the clinical manifestation improved in 139 (95.86%, 139/145) patients. Our data demonstrated that mNGS had significant advantage in diagnosing respiratory tract infections, especially atypical pathogens and fungal infections. Pathogens were detected timely and comprehensively, contributing to the adjustments of antibiotic treatments timely and accurately, improving patient prognosis and decreasing mortality potentially.IMPORTANCEMetagenomic next-generation sequencing using bronchoalveolar lavage fluid can provide more comprehensive and accurate pathogens for respiratory tract infections, especially when considering the previous usage of empirical antibiotics before admission or complicated clinical presentation. This technology is expected to play an important role in the precise application of antimicrobial drugs in the future.
Collapse
Affiliation(s)
- Xiaohang Hu
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Liqing Jiang
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Xiaowei Liu
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University,Jining Medical University, Shandong Jining, China
| | - Hong Chang
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Haixin Dong
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Jinyan Yan
- Medical Laboratory Science, Affiliated Hospital of Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Xiaoya Zhou
- Medical Laboratory of Jining Medical University, Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Shandong Jining, China
| | - Min Kong
- Medical Laboratory of Jining Medical University, Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Shandong Jining, China
| |
Collapse
|
12
|
Mishra P, Kondisetti M, Patil A, Sarangdhar N. Pulmonary Mycobacterium avium Complex With Adenocarcinoma of the Lung: A Case Report. Cureus 2024; 16:e66589. [PMID: 39252743 PMCID: PMC11382968 DOI: 10.7759/cureus.66589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Nontuberculous mycobacteria are responsible for causing pulmonary as well as extrapulmonary diseases. These organisms are often multidrug resistant and management of these cases poses a therapeutic challenge. Lung cancer has been a prevalent challenge globally with a high mortality rate in affected individuals. Adenocarcinoma poses debilitating outcomes in most patients by inflicting a diagnostic and therapeutic challenge. The concomitant association of adenocarcinoma and Mycobacterium avium complex worsens the prognosis causing a challenge in managing such cases. We present a rare association between adenocarcinoma and pulmonary Mycobacterium avium complex complicating the traditional therapeutic regime. A different approach in the administration of therapy for this unique concomitant association between two debilitating diseases is outlined in the presented report.
Collapse
Affiliation(s)
- Priyavardhan Mishra
- Medicine, DY Patil Deemed to be University School of Medicine, Navi Mumbai, IND
| | - Mohit Kondisetti
- Pulmonary Medicine, DY Patil Deemed to be University School of Medicine, Navi Mumbai, IND
| | - Anant Patil
- Pharmacology, DY Patil Deemed to be University School of Medicine, Navi Mumbai, IND
| | - Nikhil Sarangdhar
- Pulmonary Medicine, DY Patil Deemed to be University School of Medicine, Navi Mumbai, IND
| |
Collapse
|
13
|
Wang QY, Cheng M, Ban CJ, Zhang LS, Wang HW, Yang B, Zou H, Wang MZ. Integrated Chinese and Western Medicine in Treatment of Bronchopleural Fistula with Mycobacterium abscessus: A Case Report. Chin J Integr Med 2024; 30:742-746. [PMID: 38157117 DOI: 10.1007/s11655-023-3605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Qian-Yun Wang
- The First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Miao Cheng
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Cheng-Jun Ban
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Li-Shan Zhang
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hong-Wu Wang
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Bing Yang
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Heng Zou
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ming-Zhe Wang
- Department of Respiratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
14
|
Zhou B, Cheng Y, Wang H, Lin L, Zheng H, Shen Y. A rare family outbreak of Mycobacterium abscessus infection in immunocompetent fraternal triplets. Heliyon 2024; 10:e34536. [PMID: 39148980 PMCID: PMC11324831 DOI: 10.1016/j.heliyon.2024.e34536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Background Mycobacterium abscessus (M. abscessus) infection is rare in children who were previously healthy, particularly in infants. We present the first report of a family outbreak of M. abscessus infection among immunocompetent infant triplets. Methods We reviewed triplets' demographic data, laboratory tests and imaging examinations to describe their clinical features. We performed whole-exome sequencing to rule out primary immunodeficiency disorders. We used DNA sequencing for M. abscessus subspecies identification. Results The fraternal triplets (triples A, B and C) presented with a 10-day history of cough. Triple A also experienced a brief episode of fever, and triple B had tachypnea. Chest CT scans showed pulmonary masses and nodules in triples A and C, and cavities in triple B. Cultures of sputum and bronchoalveolar lavage fluid from all triplets yielded M. abscessus. Further subspecies identification showed that isolates from triples A and C were M. abscessus subsp. massiliense, and isolates from triple B were M. abscessus subsp. abscessus (MAA). After eight months of combination therapy, the pulmonary lesions of the triplets improved significantly. Conclusion Our study confirms that M. abscessus pulmonary disease can occur in immunocompetent infants. We hypothesize that the simultaneous infection of the triplets may be associated with their prematurity and extensive environmental exposure. This study highlights the importance to include M. abscessus infection in the differential diagnosis of pulmonary masses and/or cavities, regardless of the age of onset or the presence of underlying pathology or susceptible genes.
Collapse
Affiliation(s)
- Bingyan Zhou
- Emergency Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, 450018, China
| | - Yibing Cheng
- Emergency Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, 450018, China
| | - Haijun Wang
- Emergency Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, 450018, China
| | - Li Lin
- Emergency Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, 450018, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, 100045, China
| | - Yuelin Shen
- Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
- Respiratory Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, 450018, China
| |
Collapse
|
15
|
Kim SH, Moon JY, Min KH, Lee H. Proposed Etiotypes for Chronic Obstructive Pulmonary Disease: Controversial Issues. Tuberc Respir Dis (Seoul) 2024; 87:221-233. [PMID: 38317417 PMCID: PMC11222089 DOI: 10.4046/trd.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
The 2023 Global Initiative for Chronic Obstructive Lung Disease (GOLD) revised the definition of chronic obstructive pulmonary disease (COPD) to broadly include a variety of etiologies. A new taxonomy, composed of etiotypes, aims to highlight the heterogeneity in causes and pathogenesis of COPD, allowing more personalized management strategies and emphasizing the need for targeted research to understand and manage COPD better. However, controversy arises with including some diseases under the umbrella term of COPD, as their clinical presentations and treatments differ from classical COPD, which is smoking-related. COPD due to infection (COPD-I) and COPD due to environmental exposure (COPD-P) are classifications within the new taxonomy. Some disease entities in these categories show distinct clinical features and may not benefit from conventional COPD treatments, raising questions about their classification as COPD subtypes. There is also controversy regarding whether bronchiectasis with airflow limitations should be classified as an etiotype of COPD. This article discusses controversial issues associated with the proposed etiotypes for COPD in terms of COPD-I, COPD-P, and bronchiectasis. While the updated COPD definition by GOLD 2023 is a major step towards recognizing the disease's complexity, it also raises questions about the classification of related respiratory conditions. This highlights the need for further research to improve our understanding and approach to COPD management.
Collapse
Affiliation(s)
- Sang Hyuk Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Ji-Yong Moon
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hoon Min
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends Microbiol 2024; 32:663-677. [PMID: 38135617 DOI: 10.1016/j.tim.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases. Zebrafish have emerged as an excellent animal model due to genetic amenability and optical transparency during embryonic development, allowing spatiotemporal visualization of host-pathogen interactions. Furthermore, adult zebrafish possess fully functional innate and adaptive immunity and recapitulate important pathophysiological hallmarks of mycobacterial infection. Here, we report recent breakthroughs in understanding the hallmarks of NTM infections using the zebrafish model.
Collapse
Affiliation(s)
- Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Stefan H Oehlers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Kremer
- Centre National de la Recherche Scientifique, UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
17
|
Van Braeckel E, Bosteels C. Growing from common ground: nontuberculous mycobacteria and bronchiectasis. Eur Respir Rev 2024; 33:240058. [PMID: 38960614 PMCID: PMC11220627 DOI: 10.1183/16000617.0058-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis and nontuberculous mycobacteria (NTM) are intricately intertwined, with NTM capable of being both a cause and consequence of bronchiectatic disease. This narrative review focuses on the common ground of bronchiectasis and NTM pulmonary disease (NTM-PD) in terms of diagnostic approach, underlying risk factors and treatment strategies. NTM-PD diagnosis relies on a combination of clinical, radiological and microbiological criteria. Although their epidemiology is complicated by detection and reporting biases, the prevalence and pathogenicity of NTM species vary geographically, with Mycobacterium avium complex and Mycobacterium abscessus subspecies most frequently isolated in bronchiectasis-associated NTM-PD. Diagnosis of nodular bronchiectatic NTM-PD should prompt investigation of host factors, including disorders of mucociliary clearance, connective tissue diseases and immunodeficiencies, either genetic or acquired. Treatment of NTM-PD in bronchiectasis involves a multidisciplinary approach and considers the (sub)species involved, disease severity and comorbidities. Current guideline-based antimicrobial treatment of NTM-PD is considered long, cumbersome and unsatisfying in terms of outcomes. Novel treatment regimens and strategies are being explored, including rifampicin-free regimens and inclusion of clofazimine and inhaled antibiotics. Host-directed therapies, such as immunomodulators and cytokine-based therapies, might enhance antimycobacterial immune responses. Optimising supportive care, as well as pathogen- and host-directed strategies, is crucial, highlighting the need for personalised approaches tailored to individual patient needs. Further research is warranted to elucidate the complex interplay between host and mycobacterial factors, informing more effective management strategies.
Collapse
Affiliation(s)
- Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| | - Cédric Bosteels
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| |
Collapse
|
18
|
Ying C, Zhang L, Jin X, Zhu D, Wu W. Advances in diagnosis and treatment of non-tuberculous mycobacterial lung disease. Diagn Microbiol Infect Dis 2024; 109:116254. [PMID: 38492490 DOI: 10.1016/j.diagmicrobio.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The prevalence of Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is increasing worldwide. The advancement in molecular diagnostic technology has greatly promoted the rapid diagnosis of NTM-PD clinically, and the pathogenic strains can be identified to the species level through molecular typing, which provides a reliable basis for treatment. In addition to the well-known PCR and mNGS methods, there are numerous alternative methods to identify NTM to the species level. The treatment of NTM-PD remains a challenging problem. Although clinical guidelines outline several treatment options for common NTM species infections, in most cases, the therapeutic outcomes of these drugs for NTM-PD often fall short of expectations. At present, the focus of research is to find more effective and more tolerable NTM-PD therapeutic drugs and regimens. In this paper, the latest diagnostic techniques, therapeutic drugs and methods, and prevention of NTM-PD are reviewed.
Collapse
Affiliation(s)
- Chiqing Ying
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Lvjun Zhang
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xuehang Jin
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Dan Zhu
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
19
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
20
|
Tatano Y, Shimizu T, Sano C, Tomioka H. Roles of autophagy in killing of mycobacterial pathogens by host macrophages - Effects of some medicinal plants. Eur J Microbiol Immunol (Bp) 2024; 14:26-36. [PMID: 38349363 PMCID: PMC10895364 DOI: 10.1556/1886.2023.00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Autophagy is a cellular stress-induced intracellular process, through which damaged cellular components are decomposed via lysosomal degradation. This process plays important roles in host innate immunity, particularly the elimination of intracellular pathogens inside host macrophages. A more detailed understanding of the roles of autophagic events in the effective manifestation of macrophagic antimycobacterial activity is needed. Furthermore, the effects of medicinal plants on macrophagic autophagy response to mycobacterial infection need to be clarified. We herein examined the significance of autophagic events in the manifestation of host immunity during mycobacterial infection, by performing a literature search using PubMed. Recent studies demonstrated that autophagy up-regulated macrophage functions related to the intracellular killing of mycobacteria, even when pathogens were residing within the cytoplasm of macrophages. The majority of medicinal plants potentiated macrophagic autophagy, thereby enhancing their antimycobacterial functions. In contrast, most medicinal plants down-regulate the development and activation of the Th17 cell population, which reduces macrophage antimycobacterial activity. These opposing effects of medicinal plants on macrophage autophagy (enhancement) and Th17 cell functions (inhibition) may provide a plausible explanation for the clinical observation of their modest efficacy in the treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Yutaka Tatano
- 1Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- 2Department of Nutrition Administration, Yasuda Women's University, Hiroshima, Japan
| | - Chiaki Sano
- 3Department of Community Medicine Management, Faculty of Medicine, Shimane University, Izumo Japan
| | | |
Collapse
|
21
|
McDonald RA, Nagy SG, Chambers M, Broberg CA, Ahonen MJR, Schoenfisch MH. Nitric oxide-releasing prodrug for the treatment of complex Mycobacterium abscessus infections. Antimicrob Agents Chemother 2024; 68:e0132723. [PMID: 38206003 PMCID: PMC10848776 DOI: 10.1128/aac.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024] Open
Abstract
Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections in vivo. Its efficacy in inhibiting growth or killing mycobacteria was explored in vitro alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative Mycobacterium abscessus isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in M. abscessus bacterial load in both acute and chronic models of M. abscessus lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by M. abscessus, and warrants further exploration as a therapeutic.
Collapse
Affiliation(s)
| | - Sarah G. Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Chris A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Mark H. Schoenfisch
- Vast Therapeutics, Durham, North Carolina, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Kumar K, Ponnuswamy A, Capstick TG, Chen C, McCabe D, Hurst R, Morrison L, Moore F, Gallardo M, Keane J, Harwood S, Sinnett T, Bryant S, Breen R, Kon OM, Lipman M, Loebinger MR, Dhasmana DJ. Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management. Clin Med (Lond) 2024; 24:100017. [PMID: 38387207 PMCID: PMC11024839 DOI: 10.1016/j.clinme.2024.100017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms that can cause significant disease in both immunocompromised and immunocompetent individuals. The incidence of NTM pulmonary disease (NTM-PD) is rising globally. Diagnostic challenges persist and treatment efficacy is variable. This article provides an overview of NTM-PD for clinicians. We discuss how common it is, who is at risk, how it is diagnosed and the multidisciplinary approach to its clinical management.
Collapse
Affiliation(s)
- Kartik Kumar
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK. https://twitter.com/DrKartikKumar
| | - Aravind Ponnuswamy
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Chester Medical School, University of Chester, Chester, UK
| | - Toby Gd Capstick
- Pharmacy Department, St James's University Hospital, The Leeds Teaching Hospitals NHS Trust, Leeds, UK. https://twitter.com/tcapper78
| | - Christabelle Chen
- Pharmacy Department, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK. https://twitter.com/Christab3lleMin
| | - Douglas McCabe
- Pharmacy Department, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Rhys Hurst
- Department of Thoracic Medicine, Royal Papworth Hospital, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK. https://twitter.com/RespPT_rhys
| | - Lisa Morrison
- West of Scotland Adult Cystic Fibrosis Unit, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Fiona Moore
- West of Scotland Adult Cystic Fibrosis Unit, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Matt Gallardo
- Tuberculosis Service, Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Jennie Keane
- Tuberculosis Service, Raphael House, Essex Partnership University NHS Foundation Trust, Rochford, UK
| | | | | | - Sarah Bryant
- NTM Network UK, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Ronan Breen
- Department of Respiratory Medicine, Forth Valley Royal Hospital, NHS Forth Valley, Larbert, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK. https://twitter.com/onnmin
| | - Marc Lipman
- Department of Respiratory Medicine, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK; UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Michael R Loebinger
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK. https://twitter.com/mloebinger
| | - Devesh J Dhasmana
- Department of Respiratory Medicine, Victoria Hospital, NHS Fife, Kirkcaldy, UK; School of Medicine, North Haugh, University of St Andrews, St Andrews, UK.
| |
Collapse
|
23
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
24
|
Derbyshire KM, Salfinger M. Plasmid-mediated drug resistance in mycobacteria: the tip of the iceberg? J Clin Microbiol 2023; 61:e0062823. [PMID: 37724858 PMCID: PMC10595058 DOI: 10.1128/jcm.00628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Macrolides, such as clarithromycin, are crucial in the treatment of nontuberculous mycobacteria (NTM). NTM are notoriously innately drug resistant, which has made the dependence on macrolides for their treatment even more important. Not surprisingly, resistance to macrolides has been documented in some NTM, including Mycobacterium avium and Mycobacterium abscessus, which are the two NTM species most often identified in clinical isolates. Resistance is mediated by point mutations in the 23S ribosomal RNA or by methylation of the rRNA by a methylase (encoded by an erm gene). Chromosomally encoded erm genes have been identified in many of the macrolide-resistant isolates, but not in Mycobacterium chelonae. Now, Brown-Elliott et al. (J Clin Microbiol 61:e00428-23, 2023, https://doi.org/10.1128/JCM.00428-23) describe the identification of a new erm variant, erm(55), which was found either on the chromosome or on a plasmid in highly macrolide-resistant clinical isolates of M. chelonae. The chromosomal erm(55) gene appears to be associated with mobile elements; one gene is within a putative transposon and the second is in a large (37 kb) insertion/deletion. The plasmid carrying erm(55) also encodes type IV and type VII secretion systems, which are often linked on large mycobacterial plasmids and are hypothesized to mediate plasmid transfer. While the conjugative transfer of the erm(55)-containing plasmid between NTM has yet to be demonstrated, the inferences are clear, as evidenced by the dissemination of plasmid-mediated drug resistance in other medically important bacteria. Here, we discuss the findings of Brown-Elliott et al., and the potential ramifications on treatment of NTM infections.
Collapse
Affiliation(s)
- Keith M. Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, Florida, USA
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
25
|
Curtoni A, Cordovana M, Bondi A, Scaiola F, Criscione G, Ghibaudo D, Pastrone L, Zanotto E, Camaggi A, Caroppo MS, Kostrzewa M, Cavallo R, Costa C. Application of FT-IR Spectroscopy for Mycobacterium abscessus complex subspecies differentiation. J Microbiol Methods 2023; 212:106792. [PMID: 37517511 DOI: 10.1016/j.mimet.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Mycobacterium abscessus complex (MABSC) subspecies differentiation improves patients' therapy and outcome. Fourier-Transform-Infrared Spectroscopy (FT-IRS) was applied for subspecies discrimination of 15 strains on different media: Löwenstein-Jensen showed the best resolution power; Linear Discriminant Analysis model differentiated M. abscessus susbsp. abscessus from M. abscessus subsp. massiliense. FT-IRS has a potential role in rapidly MABSC subspecies identification.
Collapse
Affiliation(s)
- Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Alessandro Bondi
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Turin, Italy.
| | - Francesca Scaiola
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Giulia Criscione
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Davide Ghibaudo
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Lisa Pastrone
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elisa Zanotto
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Anna Camaggi
- Microbiology and Virology Unit, Azienda Ospedaliero-Universitaria Maggiore della Carità di Novara, Novara, Italy
| | - Maria Simona Caroppo
- Microbiology and Virology Unit, Azienda Ospedaliero-Universitaria Maggiore della Carità di Novara, Novara, Italy
| | - Markus Kostrzewa
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Park J, Kim LH, Lee JM, Choi S, Son YJ, Hwang HJ, Shin SJ. In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex. Microbiol Spectr 2023; 11:e0182523. [PMID: 37594284 PMCID: PMC10580953 DOI: 10.1128/spectrum.01825-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target bacterial ribosomes, but drug development has been hampered due to their extremely poor solubility. Here, we evaluated three new compounds (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2 with enhanced aqueous solubility; the derivatives were generated based on structure-activity relationship analysis. We conducted in vitro drug susceptibility and intracellular antimycobacterial activity testing of the three thiopeptide derivatives against various MAC strains, including macrolide-resistant MAC clinical isolates. These compounds showed low MICs against MAC, similar to that of clarithromycin (CLR). In particular, two compounds, AJ-037 and AJ-206, had intracellular antimycobacterial activities, along with synergistic effects with CLR, and inhibited the growth of MAC inside macrophages. Moreover, these two compounds showed in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing cross-resistance with CLR. Taken together, the results of the current study suggest that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infection, including for macrolide-resistant MAC strains. IMPORTANCE Novel antibiotics for the treatment of MAC infection are urgently needed because the treatment outcomes using the standard regimen for Mycobacterium avium complex (MAC) pulmonary disease remain unsatisfactory. Here, we evaluated three novel thiopeptide derivatives (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2, and they were confirmed to be effective against macrolide-susceptible and macrolide-resistant MAC. Our thiopeptide derivatives have enhanced aqueous solubility through structural modifications of poorly soluble thiopeptides. The thiopeptide derivatives showed minimal inhibitory concentrations against MAC that were comparable to clarithromycin (CLR). Notably, two compounds, AJ-037 and AJ-206, exhibited intracellular antimycobacterial activities and acted synergistically with CLR to hinder the growth of MAC within macrophages. Additionally, these compounds demonstrated in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing any cross-resistance with CLR. We believe that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infections, including macrolide-resistant MAC strains.
Collapse
Affiliation(s)
- Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Balandis B, Kavaliauskas P, Grybaitė B, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of Novel Benzenesulfonamide-Bearing Functionalized Imidazole Derivatives as Novel Candidates Targeting Multidrug-Resistant Mycobacterium abscessus Complex. Microorganisms 2023; 11:microorganisms11040935. [PMID: 37110358 PMCID: PMC10145568 DOI: 10.3390/microorganisms11040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Infections caused by drug-resistant (DR) Mycobacterium abscessus (M. abscessus) complex (MAC) are an important public health concern, particularly when affecting individuals with various immunodeficiencies or chronic pulmonary diseases. Rapidly growing antimicrobial resistance among MAC urges us to develop novel antimicrobial candidates for future optimization. Therefore, we have designed and synthesized benzenesulfonamide-bearing functionalized imidazole or S-alkylated derivatives and evaluated their antimicrobial activity using multidrug-resistant M. abscessus strains and compared their antimycobacterial activity using M. bovis BCG and M. tuberculosis H37Ra. Benzenesulfonamide-bearing imidazole-2-thiol compound 13, containing 4-CF3 substituent in benzene ring, showed strong antimicrobial activity against the tested mycobacterial strains and was more active than some antibiotics used as a reference. Furthermore, an imidazole-bearing 4-F substituent and S-methyl group demonstrated good antimicrobial activity against M. abscessus complex strains, as well as M. bovis BCG and M. tuberculosis H37Ra. In summary, these results demonstrated that novel benzenesulfonamide derivatives, bearing substituted imidazoles, could be further explored as potential candidates for the further hit-to-lead optimization of novel antimycobacterial compounds.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Rūta Petraitienė
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Andrew Garcia
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 1300 York Ave., New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės Str. 18/7, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
28
|
Side-by-Side Profiling of Oxazolidinones to Estimate the Therapeutic Window against Mycobacterial Infections. Antimicrob Agents Chemother 2023; 67:e0165522. [PMID: 36920191 PMCID: PMC10112060 DOI: 10.1128/aac.01655-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
New oxazolidinones are in clinical development for the treatment of tuberculosis and nontuberculous mycobacterial (NTM) infections, as a replacement for linezolid and tedizolid, which cause mitochondrial toxicity after prolonged treatment. Here, we carried out side-by-side measurements of mitochondrial protein synthesis inhibition and activity against clinically relevant mycobacterial pathogens of approved and novel oxazolidinones. We found a large range of selectivity indices suggesting TBI-223 and sutezolid as promising candidates against tuberculosis and NTM lung disease caused by Mycobacterium kansasii.
Collapse
|
29
|
Murata T, Morimoto K, Matsuyama F, Yamada M, Feliciano J, Hassan M. Health state utility estimation of Mycobacterium Avium complex pulmonary disease using a time trade-off approach. J Med Econ 2023; 26:477-487. [PMID: 36896886 DOI: 10.1080/13696998.2023.2189858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AIMS To obtain appropriate health state utility values for cost-effectiveness analyses of new Mycobacterium avium complex pulmonary disease (MAC-PD) treatments. The impact of MAC-PD severity and symptoms on quality of life (QoL) also were quantified. METHODS A questionnaire describing four health states, MAC-positive severe, MAC-positive moderate, MAC-positive mild, and MAC-negative, was developed based on St. George's Respiratory Questionnaire (SGRQ) Symptom and Activity scores from the CONVERT trial. The time trade-off (TTO) method with ping-pong titration procedure was used to estimated health state utilities. Regression analyses assessed impacts of covariates. RESULTS Of 319 Japanese adults (49.8% female, mean age 44.8 years), mean (95% CI) health state utility scores (MAC-positive severe, MAC-positive moderate, MAC-positive mild, and MAC-negative) were 0.252 (0.194-0.310), 0.535 (0.488-0.582), 0.816 (0.793-0.839), and 0.881 (0.866-0.896), respectively. MAC-negative state utility scores were significantly higher than MAC-positive severe (mean difference [95% CI], 0.629 [0.574-0.684]), MAC-positive moderate (0.346 [0.304-0.389]), and MAC-positive mild (0.065 [0.048-0.082]) scores (p < 0.001 each). Most participants would trade survival duration to avoid MAC-positive states (97.5% to avoid MAC-positive severe; 88.7% MAC-positive moderate; 61.4% MAC-positive mild). Regression analyses to investigate the impact of background characteristics showed similar utility differences between health states when not adjusted for covariates. LIMITATIONS Some participant demographics differed from the general population; however, this did not impact utility differences among health states as regression analyses adjusting for demographics did not affect these differences. Similar investigations are needed among patients with MAC-PD and in other countries. CONCLUSIONS This study evaluating the impact of MAC-PD on utilities using the TTO method demonstrates that differences in utilities are dependent on the severity of respiratory symptoms and their impacts on daily activities and QoL. These results could contribute to better quantification of the value of MAC-PD treatments and improve assessments of cost-effectiveness.
Collapse
|
30
|
Shin HS, Yang B, Kim SR, Kim HS, Shin KS, Shin YM. Disseminated nontuberculous mycobacteria infection in an immunocompetent host: A case report. Medicine (Baltimore) 2023; 102:e32416. [PMID: 36607850 PMCID: PMC9829286 DOI: 10.1097/md.0000000000032416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE Disseminated nontuberculous mycobacterial (NTM) infections are rare and occur primarily in immunocompromised hosts. Mycobacterium abscessus complex (MABC), including M abscessus subsp. massiliense (hereafter M massiliense) is a complex of rapidly growing mycobacterial (RGM) species of NTM. Here, we present a rare case of disseminated NTM infection with RGM bacteremia caused by M massiliense in an immunocompetent host. PATIENT CONCERNS A 64-year-old woman with a recent history of spine fracture and septic pneumonia was transferred to our emergency room for dyspnea and fever. A peripherally inserted central catheter (PICC) had been placed over 6 months prior. DIAGNOSES Chest computed tomography (CT) showed multifocal patchy consolidations and ground-glass opacity in both lungs. NTM suspected of RGM was isolated from the blood cultures. During hospitalization, multiple erythematous and hemorrhagic crusted nodules developed on the patient's upper and lower extremities, which were confirmed as disseminated NTM infection on skin biopsy. INTERVENTIONS After NTM suspected of RGM was isolated from the blood cultures, the patient was empirically treated with antibiotics used for NTM infection, and the PICC was removed. Thereafter, the subspecies of NTM was reported as M massiliense and she was treated according to the antibiotic susceptibility testing results. OUTCOME Although skin lesions and inflammatory markers improved gradually during antibiotic treatment over 10 weeks, NTM could still be isolated from the blood culture. LESSONS Disseminated NTM infections with RGM bacteremia in an immunocompetent host have rarely been reported. In this case, PICC placement for more than 6 months was suspected to be an important risk factor for RGM bacteremia in an immunocompetent patient. To date, there are only insufficient case reports, moreover no clear guidelines regarding the optimal choice of antibiotics or length of treatment for disseminated NTM infection. Therefore, it is necessary to establish treatment guidelines for patients with disseminated NTM infection and bacteremia.
Collapse
Affiliation(s)
- Hye Soon Shin
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Bumhee Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - So Rae Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hee-Sung Kim
- Division of Infectious Disease, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Yoon Mi Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
- * Correspondence: Yoon Mi Shin, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea (e-mail address: )
| |
Collapse
|
31
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
32
|
Niederman MS, Torres A. Respiratory infections. Eur Respir Rev 2022; 31:31/166/220150. [PMID: 36261160 PMCID: PMC9724828 DOI: 10.1183/16000617.0150-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023] Open
Abstract
Respiratory infections, whether acute or chronic, are extremely frequent in both adults and children, representing an increased economic burden on healthcare systems, morbidity and mortality. These infections can be either community- or hospital-acquired. Both non-immunosuppressed and immunosuppressed patients can develop such health issues, although prevalence is higher in the latter group. In terms of microbial aetiology, the causative pathogen can be viral, bacterial, fungal or parasitic. In this European Respiratory Review (ERR) series, the authors review some key issues relating to the aforementioned topics. A new European Respiratory Review series explores respiratory infectionshttps://bit.ly/3A5eN3A
Collapse
Affiliation(s)
- Michael S. Niederman
- Division of Pulmonary and Critical Care Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Antoni Torres
- Department of Pulmonology, Hospital Clinic, University of Barcelona, IDIBAPS, ICREA, CIBERES, Barcelona, Spain,Corresponding author: Antoni Torres ()
| |
Collapse
|
33
|
Zhou H, Yang H, Gong F, Zhou S, Yang Y, Liu H, Liu J. Case Report: Mycobacterium senegalense Infection After Cholecystectomy. Front Public Health 2022; 10:899846. [PMID: 35899170 PMCID: PMC9309716 DOI: 10.3389/fpubh.2022.899846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mycobacterium senegalense is a non-tuberculous mycobacterium and is found everywhere in the environment. However, M. senegalense infection in human is extremely rare, especially in immunocompetent individuals. It is difficult to detect M. senegalense infection because its symptoms are non-specific, and routine diagnostic tests are less sensitive. It is also resistant to commonly used antibiotics. Here, we report the first case of M. senegalense infection after laparoscopic cholecystectomy in China. Case Presentation A 55-year-old man was admitted because of repeated infections at multiple incision sites for more than 1 year. Although routine diagnostic test results were negative, metagenomic next-generation sequencing (mNGS) identified DNA sequences of M. senegalense in tissue samples from incision sites. The presence of M. senegalense was further confirmed by polymerase chain reaction and capillary electrophoresis. After 60 days of quadruple therapy with clarithromycin, moxifloxacin, rifampicin, and oxycycline, the patient's wound healed. Conclusion We believe the case findings contribute to the limited amount of knowledge about M. senegalense infection and raises awareness that this infection can result in poor wound healing, even in an immunocompetent host. Owing to a lack of early, precise diagnosis, it is difficult to treat M. senegalense infections. Based on our findings, mNGS is a sensitive diagnostic test for M. senegalense infections.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yang
- Department of General Surgery, Xiangyin People's Hospital, Yueyang, China
| | - Fengling Gong
- Department of Anesthesiology, Xiangdong Hospital Hunan Normal University, Zhuzhou, China
| | - Shaolong Zhou
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Haidan Liu
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Jijia Liu
| |
Collapse
|
34
|
van der Laan R, Snabilié A, Obradovic M. Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: innovations in drug development and delivery. Respir Res 2022; 23:376. [PMID: 36566170 PMCID: PMC9789522 DOI: 10.1186/s12931-022-02299-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) poses a substantial patient, healthcare, and economic burden. Managing NTM-PD remains challenging, and factors contributing to this include morphological, species, and patient characteristics as well as the treatment itself. This narrative review focusses on the challenges of NTM-PD from the perspective of the organism and the disease process. Morphological characteristics of non-tuberculous mycobacteria (NTM), antimicrobial resistance mechanisms, and an ability to evade host defences reduce NTM susceptibility to many antibiotics. Resistance to antibiotics, particularly macrolides, is of concern, and is associated with high mortality rates in patients with NTM-PD. New therapies are desperately needed to overcome these hurdles and improve treatment outcomes in NTM-PD. Amikacin liposome inhalation suspension (ALIS) is the first therapy specifically developed to treat refractory NTM-PD caused by Mycobacterium avium complex (MAC) and is approved in the US, EU and Japan. It provides targeted delivery to the lung and effective penetration of macrophages and biofilms and has demonstrated efficacy in treating refractory MAC pulmonary disease (MAC-PD) in the Phase III CONVERT study. Several other therapies are currently being developed including vaccination, bacteriophage therapy, and optimising host defences. Newly developed antibiotics have shown potential activity against NTM-PD and include benzimidazole, delamanid, and pretomanid. Antibiotics commonly used to treat other infections have also been repurposed for NTM-PD, including clofazimine and bedaquiline. Data from larger-scale studies are needed to determine the potential of many of these therapies for treating NTM-PD.
Collapse
|