1
|
Ayturk SA, Taskiran OO, Tohma EK, Dincel AS, Demirsoy N, Sepici V. Pharmacogenetics of Response to Bisphosphonate Treatment in Postmenopausal Osteoporosis: A Prospective Study. J Bone Metab 2025; 32:21-30. [PMID: 40098426 PMCID: PMC11960302 DOI: 10.11005/jbm.24.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/25/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND This study aims to investigate the effect of genetic polymorphisms of vitamin D receptor (VDR), estrogen receptor 1 (ER1), and Col1a1 on the response to bisphosphonate (BP) therapy in women with postmenopausal osteoporosis (OP). METHODS Twenty-one women with postmenopausal OP who received alendronate, ibandronate, or zoledronic acid for one year were enrolled in this study. Bone mineral density (BMD) at the lumbar spine and femoral neck were assessed by dual energy X-ray absorptiometry at baseline and after 12 months. Serum osteocalcin levels were measured at baseline and after 12 months. Polymorphic sites of the genes encoding ER1, VDR and Col1a1 proteins were amplified by polymerase chain reaction and examined using restriction fragment length polymorphism. Response to BP treatment and change in osteocalcin levels were compared among women with different gene polymorphisms. RESULTS Ratio of responders to treatment regarding improvements in the BMD of lumbar spine and femoral neck was adequate in 76% and 62%, respectively. There was no significant difference in treatment response regarding BMD in either region or change in serum osteocalcin levels among different gene polymorphisms. CONCLUSIONS These findings did not support the potential role of VDR BsmI, Col1a1 Sp1, ER1 PvuII, or XbaI polymorphisms in predicting the response to BP therapy in women with postmenopausal OP. Further investigation with larger prospective studies is required.
Collapse
Affiliation(s)
- Sirin Akbulut Ayturk
- Department of Physical Medicine and Rehabilitation, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Türkiye
| | - Ozden Ozyemisci Taskiran
- Department of Physical Medicine and Rehabilitation, Koç University School of Medicine, İstanbul,
Türkiye
| | - Ebru Koseoglu Tohma
- Department of Physical Medicine and Rehabilitation, Muğla Training and Research Hospital, Muğla,
Türkiye
| | - Aylin Sepici Dincel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Nesrin Demirsoy
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Vesile Sepici
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| |
Collapse
|
2
|
Bojtor B, Balla B, Vaszilko M, Szentpeteri S, Putz Z, Kosa JP, Lakatos P. Genetic Background of Medication-Related Osteonecrosis of the Jaw: Current Evidence and Future Perspectives. Int J Mol Sci 2024; 25:10488. [PMID: 39408816 PMCID: PMC11477157 DOI: 10.3390/ijms251910488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare side effect of antiresorptive drugs that significantly hinders the quality of life of affected patients. The disease develops in the presence of a combination of factors. Important pathogenetic factors include inflammation, inhibition of bone remodeling, or genetic predisposition. Since the first description of this rare side effect in 2003, a growing body of data has suggested a possible role for genetic factors in the disease. Several genes have been suggested to play an important role in the pathogenesis of MRONJ such as SIRT1, VEGFA, and CYP2C8. With the development of molecular biology, newer methods such as miRNA and gene expression studies have been introduced in MRONJ, in addition to methods that can examine the base sequence of the DNA. Describing the complex genetic background of MRONJ can help further understand its pathophysiology as well as identify new therapeutic targets to better manage this adverse drug reaction.
Collapse
Affiliation(s)
- Bence Bojtor
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
| | - Bernadett Balla
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Mihaly Vaszilko
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary; (M.V.); (S.S.)
| | - Szofia Szentpeteri
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary; (M.V.); (S.S.)
| | - Zsuzsanna Putz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Janos P. Kosa
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Peter Lakatos
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| |
Collapse
|
3
|
Guaraná WL, Lima CAD, Barbosa AD, Crovella S, Sandrin-Garcia P. Farnesyl Diphosphate Synthase Gene Associated with Loss of Bone Mass Density and Alendronate Treatment Failure in Patients with Primary Osteoporosis. Int J Mol Sci 2024; 25:5623. [PMID: 38891810 PMCID: PMC11172034 DOI: 10.3390/ijms25115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.
Collapse
Affiliation(s)
- Werbson Lima Guaraná
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
| | - Camilla Albertina Dantas Lima
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Oceanography, Technology and Geoscience Center, Federal University of Pernambuco, Recife Campus, Recife 50740-550, Brazil
| | - Alexandre Domingues Barbosa
- Rheumatology Division, Clinical Hospital of Federal University of Pernambuco, Recife Campus, Recife 50740-900, Brazil;
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Paula Sandrin-Garcia
- Keizo Asami Institute, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50670-901, Brazil;
- Department of Genetics, Biosciences Center, Federal University of Pernambuco, Recife Campus, Recife 50730-120, Brazil
| |
Collapse
|
4
|
Wang L, Chen Z, Chen D, Kan B, He Y, Cai H. Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncol Lett 2023; 25:145. [PMID: 36936029 PMCID: PMC10018273 DOI: 10.3892/ol.2023.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Farnesyl diphosphate synthase (FDPS), an essential enzyme involved in the mevalonate pathway, is implicated in various diseases, including multiple types of cancer. As an RNA-binding protein (RBP), FDPS is also involved in transcriptional and post-transcriptional regulation. However, to the best of our knowledge, transcriptome-wide targets of FDPS still remain unknown. In the present study, FDPS expression patterns in pan-cancer were analyzed. In addition, it was investigated how FDPS overexpression (FDPS-OE) regulates the transcriptome in HeLa cells. FDPS-OE increased the proliferation rate in HeLa cells by MTT assay. Using transcriptome-wide high throughput sequencing and bioinformatics analysis, it was found that FDPS upregulated the expression levels of genes enriched in cell proliferation and extracellular matrix organization, including the laminin subunit γ2, interferon-induced proteins with tetratricopeptide repeats 2 and matrix metallopeptidase 19 genes. According to alternative splicing (AS) analysis, FDPS modulated the splicing patterns of the bone morphogenic protein 1, semaphorin 4D, annexin A2 and sirtuin 2 genes, which are enriched in the cell cycle and DNA repair, and are related to cell proliferation. To corroborate the FDPS-regulated transcriptome findings, FDPS was overexpressed in human osteosarcoma cells. Differentially expressed genes and regulated AS genes in the cells were both validated by reverse transcription-quantitative PCR. The results suggested that, as an emerging RBP, FDPS may serve an important role in transcriptome profiles by altering gene expression and regulating AS. FDPS also affected the cell proliferation rate. These findings broaden the understanding of the molecular functions of FDPS, and the potential of FDPS as a target in therapy should be investigated.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhigang Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangfang He
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Correspondence to: Dr Hanqing Cai, Department of Endocrinology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
5
|
del Real Á, Valero C, Olmos JM, Hernández JL, Riancho JA. Pharmacogenetics of Osteoporosis: A Pathway Analysis of the Genetic Influence on the Effects of Antiresorptive Drugs. Pharmaceutics 2022; 14:pharmaceutics14040776. [PMID: 35456610 PMCID: PMC9032991 DOI: 10.3390/pharmaceutics14040776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Osteoporosis is a skeletal disorder defined by a decreased bone mineral density (BMD) and an increased susceptibility to fractures. Bisphosphonates and selective oestrogen receptor modulators (SERM) are among the most widely used drugs. They inhibit bone resorption by targeting the mevalonate and oestrogen pathways, respectively. The aim of this study was to determine if common variants of genes in those pathways influence drug responses. We studied 192 women treated with oral aminobisphosphonates and 51 with SERMs. Genotypes at 154 SNPs of the mevalonate pathway and 806 in the oestrogen pathway were analyzed. Several SNPs located in genes FDPS and FNTA were associated with the bisphosphonate-induced changes in hip bone mineral density (BMD), whereas polymorphisms of the PDSS1, CYP19A1, CYP1A1, and CYP1A2 genes were associated with SERM-induced changes in spine BMD. After multivariate analyses, genotypes combining genes FDPS and FNTA showed a stronger association with bisphosphonate response (r = 0.34; p = 0.00009), whereas the combination of CYP19A1 and PDSS1 genotypes was associated with the response to SERMs (r = 0.62, p = 0.0003). These results suggest that genotyping genes in these pathways may help predict the response to antiresorptive drugs and hence make personalized therapeutic choices.
Collapse
Affiliation(s)
- Álvaro del Real
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
| | - Carmen Valero
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José M. Olmos
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Jose L. Hernández
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José A. Riancho
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
- Correspondence:
| |
Collapse
|
6
|
Garcia-Giralt N, Roca-Ayats N, Abril JF, Martinez-Gil N, Ovejero D, Castañeda S, Nogues X, Grinberg D, Balcells S, Rabionet R. Gene Network of Susceptibility to Atypical Femoral Fractures Related to Bisphosphonate Treatment. Genes (Basel) 2022; 13:genes13010146. [PMID: 35052486 PMCID: PMC8774942 DOI: 10.3390/genes13010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication.
Collapse
Affiliation(s)
- Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
- Correspondence:
| | - Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Nuria Martinez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
| | - Santos Castañeda
- Department of Rheumatology, Hospital Universitario de La Princesa, IIS-Princesa, Cátedra UAM-Roche, EPID-Future, Universidad Autónoma de Madrid, 28670 Madrid, Spain;
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| |
Collapse
|
7
|
Zhao J, Liu L, Lv S, Wang C, Yue H, Zhang Z. PFN1 Gene Polymorphisms and the Bone Mineral Density Response to Alendronate Therapy in Postmenopausal Chinese Women with Low Bone Mass. Pharmgenomics Pers Med 2022; 14:1669-1678. [PMID: 34992429 PMCID: PMC8711734 DOI: 10.2147/pgpm.s344818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Alendronate is a widely used anti-osteoporotic drug. PFN1 gene is a newly identified early-onset Paget’s disease pathogenic gene. The purpose of this study is to study whether the genetic variations in this gene affect the clinical efficacy of alendronate in postmenopausal Chinese women with low bone mass. Patients and Methods Seven single nucleotide polymorphisms in PFN1 gene were genotyped. A total of 500 postmenopausal women with osteoporosis or osteopenia were included. All participants were treated with weekly alendronate 70 mg for 12 months. A total of 466 subjects completed the follow-up. Bone mineral density (BMD) of lumbar spine, femoral neck and total hip were measured at baseline and after treatment. Results After 12 months of treatment, the BMD of lumbar spine, femoral neck and total hip all increased significantly (all P < 0.001), with an average increase of 4.72 ± 5.31%, 2.08 ± 4.45%, and 2.42 ± 3.46%, respectively. At baseline, there were no significant differences in BMD at lumbar spine, femoral neck and total hip between different genotype groups (P > 0.05). We failed to identify any significant association between the genotypes or haplotypes of PFN1 and the BMD response to alendronate therapy. Conclusion Genetic polymorphisms of PFN1 may not be a major contributor to the therapeutic response to alendronate treatment in Chinese women with low bone mass.
Collapse
Affiliation(s)
- Jiao Zhao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Li Liu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shanshan Lv
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Trajanoska K, Rivadeneira F. Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:556610. [PMID: 33162933 PMCID: PMC7581702 DOI: 10.3389/fendo.2020.556610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Current genetic studies of monogenic and complex bone diseases have broadened our understanding of disease pathophysiology, highlighting the need for medical interventions and treatments tailored to the characteristics of patients. As genomic research progresses, novel insights into the molecular mechanisms are starting to provide support to clinical decision-making; now offering ample opportunities for disease screening, diagnosis, prognosis and treatment. Drug targets holding mechanisms with genetic support are more likely to be successful. Therefore, implementing genetic information to the drug development process and a molecular redefinition of skeletal disease can help overcoming current shortcomings in pharmaceutical research, including failed attempts and appalling costs. This review summarizes the achievements of genetic studies in the bone field and their application to clinical care, illustrating the imminent advent of the genomic medicine era.
Collapse
|
9
|
Møller AMJ, Delaisse J, Olesen JB, Bechmann T, Madsen JS, Søe K. Zoledronic Acid Is Not Equally Potent on Osteoclasts Generated From Different Individuals. JBMR Plus 2020; 4:e10412. [PMID: 33210064 PMCID: PMC7657394 DOI: 10.1002/jbm4.10412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Zoledronic acid is a bisphosphonate commonly used to treat bone diseases such as osteoporosis and cancer‐induced bone disease. Patients exhibit a variable sensitivity to zoledronic acid; the underlying explanation for this remains unclear. The objective of this study was to obtain more knowledge in this regard. We hypothesized that osteoclasts generated from different individuals would show a variable sensitivity to zoledronic acid in vitro. Osteoclasts were generated using monocytes from 46 healthy female blood donors (40 to 66 years). Matured osteoclasts were reseeded onto bone slices precoated with different concentrations of zoledronic acid. IC50 values were determined based on total eroded bone surface after 3 days of resorption. The IC50 for inhibition of osteoclastic bone resorption varied from 0.06 to 12.57μM zoledronic acid; thus, a more than 200‐fold difference in sensitivity to zoledronic acid among osteoclasts from different individuals was observed. Multiple linear regression analyses showed that the determined IC50 correlated with smoking status, and the average number of nuclei per osteoclast in vitro. Further analyses showed that: (i) increasing protein levels of mature cathepsin K in osteoclast cultures rendered the osteoclasts less sensitive to zoledronic acid; (ii) surprisingly, neither the gene nor the protein expression of farnesyl diphosphate synthase was found to correlate with the IC50; and (iii) trench‐forming osteoclasts were found to be more sensitive to zoledronic acid than pit‐forming osteoclasts within the same cell culture. Thus, we conclude that there indeed is a high degree of variation in the potency of zoledronic acid on osteoclasts when generated from different individuals. We propose that our findings can explain some of the varying clinical efficacy of zoledronic acid therapy observed in patients, and may therefore be of clinical importance, which should be investigated in a clinical trial combining in vitro and in vivo investigations. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anaïs M J Møller
- Clinical Cell BiologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Department of Clinical Biochemistry and ImmunologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
| | - Jean‐Marie Delaisse
- Clinical Cell BiologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Jacob B Olesen
- Clinical Cell BiologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
| | - Troels Bechmann
- Department of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark
- Department of OncologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
| | - Jonna S Madsen
- Department of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark
- Department of Clinical Biochemistry and ImmunologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
| | - Kent Søe
- Clinical Cell BiologyLillebaelt Hospital, University Hospital of Southern DenmarkVejleDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkVejleDenmark
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- OPEN, Open Patient data Explorative NetworkUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
10
|
Guo Z, Cui W, Que L, Li C, Tang X, Liu J. Pharmacogenetics of medication-related osteonecrosis of the jaw: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 2020; 49:298-309. [PMID: 31445964 DOI: 10.1016/j.ijom.2019.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication that can develop in patients treated with anti-resorptive drugs. Although the pathogenesis of MRONJ is still unclear, genetic factors have a demonstrated important role. Thus, the aim of this study was to perform a systematic review on the pharmacogenetics of MRONJ. Studies published until March 2019 were retrieved from eight databases and were selected by two independent reviewers. Evidence on several genetic polymorphisms was summarized and a meta-analysis was conducted when possible. Fourteen studies involving 1515 participants were eligible for systematic review. For CYP2C8 rs1934951, no significant difference was observed between the MRONJ and non-MRONJ groups (odds ratio (OR) 2.04, 95% confidence interval (CI) 0.88-4.73, P=0.09). However, a subgroup analysis based on only multiple myeloma status showed a positive association (OR 3.64, 95% CI 1.29-10.30, P=0.01). PPARG rs1152003 was not differently distributed between groups (OR 0.25, 95% CI 0.01-9.92, P=0.46). Also, VEGF rs3025039 was found to be correlated with the occurrence of MRONJ (OR 0.35, 95% CI 0.15-0.82, P=0.02). CYP2C8 rs1934951 (in multiple myeloma patients) and VEGF rs3025039 are associated with the development of MRONJ in patients treated with bisphosphonates. The results are promising and call for new trials with a larger sample to further explore this growing field.
Collapse
Affiliation(s)
- Z Guo
- Department of Head and Neck Oncology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Cui
- Department of Dental and Alveolar Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Que
- Department of Head and Neck Oncology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Li
- Department of Head and Neck Oncology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Tang
- Department of Head and Neck Oncology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Liu
- Department of Dental and Alveolar Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Ciubean AD, Ungur RA, Irsay L, Ciortea VM, Borda IM, Dogaru GB, Trifa AP, Vesa SC, Buzoianu AD. Polymorphisms of FDPS, LRP5, SOST and VKORC1 genes and their relation with osteoporosis in postmenopausal Romanian women. PLoS One 2019; 14:e0225776. [PMID: 31774873 PMCID: PMC6880991 DOI: 10.1371/journal.pone.0225776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES This study aimed to assess the relationship between bone mineral density and genotypes of four polymorphisms in previously detected osteoporosis-candidate genes (FDPS rs2297480, LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438) in postmenopausal Romanian women with primary osteoporosis. METHODS An analytical, prospective, transversal, observational, case-control study on 364 postmenopausal Romanian women was carried out between June 2016 and August 2017 in Cluj Napoca, Romania. Clinical data and blood samples were collected from all study participants. Four polymorphisms were genotyped using TaqMan SNP Genotyping assays, run on a QuantStudio 3 real-time PCR machine. RESULTS Women with TT genotype in FDPS rs2297480 had significantly lower bone mineral density values in the lumbar spine and total hip, and the presence of the T allele was significantly associated with the osteoporosis. Women carrying the CC genotype in LRP5 rs3736228 tend to have lower bone mineral density values in the femoral neck and total hip. No significant association was found for the genotypes of SOST rs1234612 or VKORC1 rs9934438. CONCLUSIONS Our study showed a strong association between bone mineral density and polymorphisms in the FDPS gene, and a borderline association with LRP5 and SOST polymorphisms in postmenopausal Romanian women with osteoporosis. No association was found for VKORC1.
Collapse
Affiliation(s)
- Alina Deniza Ciubean
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
- * E-mail: (RAU); (LI)
| | - Laszlo Irsay
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
- * E-mail: (RAU); (LI)
| | - Viorela Mihaela Ciortea
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Gabriela Bombonica Dogaru
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Adrian Pavel Trifa
- Department of Genetics, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Stefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| |
Collapse
|
12
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU BG, TRIFA AP, BUZOIANU AD. Genetic polymorphisms and their influence on therapeutic response to alendronate-a pilot study. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteoporosis has a strong genetic contribution, and several genes have been shown to influence bone mineral density. Variants in the human genome are considered important causes of differences in drug responses observed in clinical practice. In terms of bone mineral density, about 26–53% of patients do not respond to amino-bisphosphonate therapies, of which alendronate is the most widely used.
Material and method: The current study is prospective, observational, analytical, longitudinal and cohort type. It included 25 postmenopausal women treated with alendronate for 1 year. Bone mineral density at lumbar spine and proximal femur was measured and bone turnover markers (C-terminal telopeptide of type I collagen and procollagen 1N-terminal propeptide) were evaluated at 0 and 12 months of treatment. Six single nucleotide polymorphisms in osteoporosis-candidate genes were genotyped (FDPS rs2297480, LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438, GGPS1 rs10925503 and RANKL rs2277439). Treatment response was evaluated by percentage changes in bone mineral density and bone turnover markers.
Results: The heterozygous CT of FDPS rs2297480 showed lower increases in BMD values in the lumbar spine region and the homozygous CC of the GGPS1 rs10925503 showed lower increases in terms of BMD at the total hip region. No association was found for LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438 and RANKL rs2277439.
Conclusions: Romanian postmenopausal women with osteoporosis carrying the CT genotype of FDPS rs2297480 or the CC genotype of GGPS1 rs10925503 could have an unsatisfactory response to alendronate treatment.
Key words: osteoporosis; genetic polymorphism; alendronate; bone mineral density; bone turnover markers,
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
13
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU 1, BG, TRIFA AP, BUZOIANU AD. Association between polymorphisms in GGPS1 and RANKL genes and postmenopausal osteoporosis in Romanian women. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: This study aimed to assess the relationship between bone mineral density, fragility fractures, fracture risk and polymorphisms of two osteoporosis-candidate genes (GGPS1 and RANKL) in Romanian women with postmenopausal osteoporosis.
Methods: An analytical, prospective, transversal, observational, case-control study on 364 postmenopausal women, of which 228 were previously diagnosed with osteoporosis, was carried out between June 2016 and August 2017 in Cluj Napoca, Romania. Clinical data and blood samples were collected from all study participants. Polymorphisms in GGPS1 and RANKL genes were genotyped using TaqMan SNP Genotyping assays, run on a QuantStudio 3 real-time PCR machine.
Results: The CT genotype in GGPS1 rs10925503 was associated with significant lower bone mineral density values at lumbar spine and femoral neck sites and a higher fracture risk compared to controls. No significant association was found between genotypes of RANKL rs2277439 with bone mineral density or fracture risk compared to the healthy controls.
Conclusions: Our study showed a strong association between low bone mineral density and genotype CT of GGPS1 rs10925503 polymorphisms. No association was found for RANKL rs2277439 polymorphism.
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU 1,
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Marozik P, Alekna V, Rudenko E, Tamulaitiene M, Rudenka A, Mastaviciute A, Samokhovec V, Cernovas A, Kobets K, Mosse I. Bone metabolism genes variation and response to bisphosphonate treatment in women with postmenopausal osteoporosis. PLoS One 2019; 14:e0221511. [PMID: 31437227 PMCID: PMC6705789 DOI: 10.1371/journal.pone.0221511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Long-term treatment is used in patients with osteoporosis, and bisphosphonates (BPs) are the most commonly prescribed medications. However, in some patients this therapy is not effective, cause different side effects and complications. Unfortunately, at least one year is needed to identify and confirm an ineffectiveness of BPs therapy on bone mineral density (BMD). Among other factors, a response to BPs therapy may also be explained by genetic factors. The aim of this study was to analyze the influence of SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 gene variants on the response to treatment with aminobisphosphonates. Materials and methods Women with postmenopausal osteoporosis were included to this study if they used aminobisphosphonates for at least 12 months. Exclusion criteria were: persistence on BPs therapy less than 80%, bone metabolic diseases, diseases deemed to affect bone metabolism, malignant tumours, using of any medications influencing BMD. The study protocol was approved by the local ethics committee. The BMD at the lumbar spine and femoral neck were measured using dual x-ray absorptiometry (GE Lunar) before and at least 12 months after treatment with BPs. According to BMD change, patients were divided in two groups–responders and non-responders to BPs terapy. Polymorphic variants in SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 genes were determined using PCR analysis with TaqMan probes (Thermo Scientific). Results In total, 201 women with BPs therapy were included in the study. No statistically significant differences were observed in age, age at menopause, weight, height, BMI and baseline BMD levels between responders (122 subjects) and non-responders (79 subjects). As single markers, the SOST rs1234612 T/T (OR = 2.3; P = 0.02), PTH rs7125774 T/T (OR = 2.8, P = 0.0009), FDPS rs2297480 G/G (OR = 29.3, P = 2.2×10−7), and GGPS1 rs10925503 C/C+C/T (OR = 2.9; P = 0.003) gene variants were over-represented in non-responders group. No significant association between FGF2 rs6854081 and LRP5 rs3736228 gene variants and response to BPs treatment was observed. The carriers of T-T-G-C allelic combination (constructed from rs1234612, rs7125774, rs2297480, and rs10925503) were predisposed to negative response to BPs treatment (OR = 4.9, 95% CI 1.7–14.6, P = 0.005). The C-C-T-C combination was significantly over-represented in responders (OR = 0.1, 95% CI 0.1–0.5, P = 0.006). Conclusions Our findings highlight the importance of identified single gene variants and their allelic combinations for pharmacogenetics of BPs therapy of osteoporosis. Complex screening of these genetic markers could be used as a new strategy for personalized antiresorptive therapy.
Collapse
Affiliation(s)
- Pavel Marozik
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
- Department of General Ecology, Biology, and Environmental Genetics, International Sakharov Environmental Institute of the Belarusian State University, Minsk, Belarus
- * E-mail:
| | | | - Ema Rudenko
- Department of Cardiology and Internal Diseases, Belarusian State Medical University, Minsk, Belarus
| | | | - Alena Rudenka
- Department of Cardiology and Rheumatology, Belarusian Medical Academy of Post-Graduate Education, Minsk, Belarus
| | | | - Volha Samokhovec
- Department of Cardiology and Rheumatology, Belarusian Medical Academy of Post-Graduate Education, Minsk, Belarus
| | | | - Katsiaryna Kobets
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irma Mosse
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
- Department of General Ecology, Biology, and Environmental Genetics, International Sakharov Environmental Institute of the Belarusian State University, Minsk, Belarus
| |
Collapse
|
15
|
Yang G, Singh S, Chen Y, Hamadeh IS, Langaee T, McDonough CW, Holliday LS, Lamba JK, Moreb JS, Katz J, Gong Y. Pharmacogenomics of osteonecrosis of the jaw. Bone 2019; 124:75-82. [PMID: 31022475 DOI: 10.1016/j.bone.2019.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/20/2019] [Indexed: 01/18/2023]
Abstract
Osteonecrosis of the jaw (ONJ) is a rare but serious drug induced adverse event, mainly associated with the use of antiresorptive medications, such as intravenous (IV) bisphosphonates (BPs) in cancer patients. In this review, we evaluated all the pharmacogenomic association studies for ONJ published up to December 2018. To date, two SNPs (CYP2C8 rs1934951 and RBMS3 rs17024608) were identified to be associated with ONJ by two genome-wide association studies (GWAS). However, all six subsequent candidate gene studies failed to replicate these results. In addition, six discovery candidate gene studies tried to identify the genetic markers in several genes associated with bone remodeling, bone mineral density, or osteoporosis. After evaluating the results of these 6 studies, none of the SNPs was significantly associated with ONJ. Recently, two whole-exome sequencing (WES) analysis (including one from our group) were performed to identify variants associated with ONJ. So far, only our study successfully replicated discovery result indicating SIRT1 SNP rs7896005 to be associated with ONJ. However, this SNP also did not reach genome-wide significance. The major limitations of these studies include lack of replication phases and limited sample sizes. Even though some studies had larger sample sizes, they recruited healthy individuals as controls, not subjects treated with BPs. We conclude that a GWAS with a larger sample size followed by replication phase will be needed to fully investigate the pharmacogenomic markers of ONJ.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yiqing Chen
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Issam S Hamadeh
- Cancer Pharmacology Department, Levine Cancer Institute, Charlotte, NC, USA
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - L Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, Gainesville, FL, USA
| | - Jan S Moreb
- Novant Health Forsyth Medical Center, Hematology, Transplantation and Cellular Therapy Division, Winston-Salem, NC, USA
| | - Joseph Katz
- Department of Oral Medicine, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
16
|
Kharazmi M, Michaëlsson K, Schilcher J, Eriksson N, Melhus H, Wadelius M, Hallberg P. A Genome-Wide Association Study of Bisphosphonate-Associated Atypical Femoral Fracture. Calcif Tissue Int 2019; 105:51-67. [PMID: 31006051 DOI: 10.1007/s00223-019-00546-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Atypical femoral fracture is a well-documented adverse reaction to bisphosphonates. It is strongly related to duration of bisphosphonate use, and the risk declines rapidly after drug withdrawal. The mechanism behind bisphosphonate-associated atypical femoral fracture is unclear, but a genetic predisposition has been suggested. With the aim to identify common genetic variants that could be used for preemptive genetic testing, we performed a genome-wide association study. Cases were recruited mainly through reports of adverse drug reactions sent to the Swedish Medical Products Agency on a nation-wide basis. We compared atypical femoral fracture cases (n = 51) with population-based controls (n = 4891), and to reduce the possibility of confounding by indication, we also compared with bisphosphonate-treated controls without a current diagnosis of cancer (n = 324). The total number of single-nucleotide polymorphisms after imputation was 7,585,874. A genome-wide significance threshold of p < 5 × 10-8 was used to correct for multiple testing. In addition, we performed candidate gene analyses for a panel of 29 genes previously implicated in atypical femoral fractures (significance threshold of p < 5.7 × 10-6). Compared with population controls, bisphosphonate-associated atypical femoral fracture was associated with four isolated, uncommon single-nucleotide polymorphisms. When cases were compared with bisphosphonate-treated controls, no statistically significant genome-wide association remained. We conclude that the detected associations were either false positives or related to the underlying disease, i.e., treatment indication. Furthermore, there was no significant association with single-nucleotide polymorphisms in the 29 candidate genes. In conclusion, this study found no evidence of a common genetic predisposition for bisphosphonate-associated atypical femoral fracture. Further studies of larger sample size to identify possible weakly associated genetic traits, as well as whole exome or whole-genome sequencing studies to identify possible rare genetic variation conferring a risk are warranted.
Collapse
Affiliation(s)
- Mohammad Kharazmi
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jörg Schilcher
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 2018; 14:2029-2049. [PMID: 30464484 PMCID: PMC6225907 DOI: 10.2147/tcrm.s138000] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a bone disorder with remarkable changes in bone biologic material and consequent bone structural distraction, affecting millions of people around the world from different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long term therapy and medical management, especially in the elderly. Many involved genes including environmental factors have been introduced as the disease risk factors so far, of which genes should be considered as effective early diagnosis biomarkers, especially for the individuals from high-risk families. In this review, a number of important criteria involved in osteoporosis are addressed and discussed.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Behnam Kamalidehghan
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
- Medical Genetics Center, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | - Maryam Kamarehei
- Department of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran,
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
18
|
López-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol 2016; 12:389-98. [PMID: 26891809 DOI: 10.1517/17425255.2016.1154533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics 2016; 26:12-9. [DOI: 10.1097/fpc.0000000000000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
ZOFKOVA I, NEMCIKOVA P, KUKLIK M. Polymorphisms Associated With Low Bone Mass and High Risk of Atraumatic Fracture. Physiol Res 2015; 64:621-31. [DOI: 10.33549/physiolres.932973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a serious disease characterized by high morbidity and mortality due to atraumatic fractures. In the pathogenesis of osteoporosis, except environment and internal factors, such as hormonal imbalance and genetic background, are also in play. In this study candidate genes for osteoporosis were classified according to metabolic or hormonal pathways, which regulate bone mineral density and bone quality (estrogen, RANKL/RANK/OPG axis, mevalonate, the canonical circuit and genes regulating the vitamin D system). COL1A1 and/or COL1A2 genes, which encode formation of the procollagen 1 molecule, were also studied. Mutations in these genes are well-known causes of the inborn disease ‘osteogenesis imperfecta’. In addition to this, polymorphisms in COL1A1 and/or COL1A2 have been found to be associated with parameters of bone quality in adult subjects. The authors discuss the perspectives for the practical utilization of pharmacogenetics (identification of single candidate genes using PCR) and pharmacogenomics (using genome wide association studies (GWAS) to choose optimal treatment for osteoporosis). Potential predictors of antiresorptive therapy efficacy include the following well established genes: ER, FDPS, Cyp19A1, VDR, Col1A1, and Col1A2, as well as the gene for the canonical (Wnt) pathway. Unfortunately, the positive outcomes seen in most association studies have not been confirmed by other researchers. The controversial results could be explained by the use of different methodological approaches in individual studies (different sample size, homogeneity of investigated groups, ethnic differences, or linkage disequilibrium between genes). The key pitfall of association studies is the low variability (7-10 %) of bone phenotypes associated with the investigated genes. Nevertheless, the identification of new genes and the verification of their association with bone density and/or quality (using both PCR and GWAS), remain a great challenge in the optimal prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
21
|
Bratanic N, Dzodan B, Trebusak Podkrajsek K, Bertok S, Ostanek B, Marc J, Battelino T, Avbelj Stefanija M. Childhood Osteoporosis and Presentation of Two Cases with Osteogenesis Imperfecta Type V. Zdr Varst 2015; 54:119-25. [PMID: 27646918 PMCID: PMC4820164 DOI: 10.1515/sjph-2015-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is etiologically heterogeneous disorder characterized by childhood osteoporosis. A subtype OI type V is caused by the same c.-14C>T mutation in the IFITM5 gene. Nevertheless, there is a marked interindividual phenotypic variability in clinical presentation; however, response to bisphosphonates is reported to be good. Methods Two individuals with OI type V had multiple recurrent fractures with hypertrophic calluses, scoliosis and ossifications of the forearm interosseous membranes. Sequencing of IFITM5, genotyping of variants rs2297480 in farnesyl diphosphate synthase gene (FDPS), and rs3840452 in geranylgeranyl diphosphate synthase 1 gene (GGPS1), both involved in bisphosphonate metabolism, was performed. Results In patient 1 BMD reached normal values during bisphosphonate treatment and remained normal four years after the treatment discontinuation. In patient 2 no increase in BMD after five years of bisphosphonate treatment was observed and callus formation continued. The c.-14C>T IFITM5 mutation in heterozygous state was detected in both individuals. Additionally, both patients carried FDPS variant rs2297480 in homozygous state, and were heterozygous for GGPS 1 variant rs3840452. Conclusions The paper presents a short overview of childhood osteoporosis with a special emphasis on OI type V by presenting two cases. Both OI type V patients had identical disease-causing mutation, but marked interindividual phenotypic variability. The striking failure in response to bisphosphonate treatment in one of the patients could not be explained by the variants in genes involved in bisphosphonate metabolism.
Collapse
Affiliation(s)
- Nina Bratanic
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Bojana Dzodan
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- University Medical Centre Ljubljana, University Children's Hospital, Unit for Special Laboratory Diagnostics, Vrazov trg 1, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sara Bertok
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Farmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Farmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Abstract
The challenge of personalized medicine is to move away from the traditional 'one-size-fits-all' pharmacology to genotype-based individualized therapies. As an individual's response to drugs is under the control of genes, personal genetic profiles could help clinicians to predict individual drug response and prescribe the right drug and dose, thereby optimising efficacy and avoiding risk of adverse effects. Currently, the concrete application of pharmacogenetics into clinical practice is limited to a few drugs, and the genetic prediction of drug response is far from clear for many of thve principal complex disorders. This is even more evident in the field of osteoporosis and metabolic bone disorders, for which few pharmacogenetic studies have been conducted, and no conclusive results are available. In this chapter, we review recent research on pharmacogenetics of osteoporosis, evaluate criticisms, and offer possible suggestions for improvements in this field and for possible future applications into clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
23
|
Genetic polymorphisms in the mevalonate pathway affect the therapeutic response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. THE PHARMACOGENOMICS JOURNAL 2014; 15:158-64. [DOI: 10.1038/tpj.2014.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/15/2014] [Accepted: 08/13/2014] [Indexed: 11/08/2022]
|
24
|
Abstract
Osteoporosis is a prevalent disease that typically reduces bone strength and predisposes to fractures. It is a multifactorial disorder resulting from the interaction of genetic and acquired factors. Candidate gene studies and, more recently, genome-wide studies have identified a number of polymorphisms significantly associated with bone mass and fractures. Anti-resorptive drugs, which inhibit the differentiation and activity of osteoclasts, are frequently used to treat patients with osteoporosis.Several candidate gene studies have explored the association of genetic factors with drug response, including some common polymorphisms of the gene encoding FDPS (Farnesyl diphosphate synthase), an enzyme that is the main target of aminobisphosphonates. Although scarce data are available, interesting opportunities are open for a better understanding of the pharmacogenetics of osteoporosis and osteoporotic fractures. They include the reanalysis of data already available from epidemiological studies and clinical trials, as well as obtaining pharmacogenetic data in new studies. However, based upon the experience with previous genome-wide association studies, large collaborative efforts would be likely needed to obtain meaningful results.
Collapse
Affiliation(s)
- José A Riancho
- Bone Laboratory, Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, Av. Valdecilla s/n, Santander, 39008, Spain,
| | | |
Collapse
|
25
|
Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:435-48. [PMID: 23807838 PMCID: PMC3686324 DOI: 10.2147/dddt.s31504] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/12/2022]
Abstract
Postmenopausal osteoporosis is the most common bone disease, associated with low bone mineral
density (BMD) and pathological fractures which lead to significant morbidity. It is defined
clinically by a BMD of 2.5 standard deviations or more below the young female adult mean (T-score
=−2.5). Osteoporosis was a huge global problem both socially and economically
– in the UK alone, in 2011 £6 million per day was spent on treatment and social care
of the 230,000 osteoporotic fracture patients – and therefore viable preventative and
therapeutic approaches are key to managing this problem within the aging population of today. One of
the main issues surrounding the potential of osteoporosis management is diagnosing patients at risk
before they develop a fracture. We discuss the current and future possibilities for identifying
susceptible patients, from fracture risk assessment to shape modeling and in relation to the high
heritability of osteoporosis now that a plethora of genes have been associated with low BMD and
osteoporotic fracture. This review highlights the current therapeutics in clinical use (including
bisphosphonates, anti-RANKL [receptor activator of NF-κB ligand],
intermittent low dose parathyroid hormone, and strontium ranelate) and some of those in development
(anti-sclerostin antibodies and cathepsin K inhibitors). By highlighting the intimate relationship
between the activities of bone forming (osteoblasts) and bone-resorbing (osteoclasts) cells, we
include an overview and comparison of the molecular mechanisms exploited in each therapy.
Collapse
Affiliation(s)
- Subhajit Das
- Musculoskeletal Research Programme, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
26
|
Rojo Venegas K, Aguilera Gómez M, Cañada Garre M, Sánchez AG, Contreras-Ortega C, Calleja Hernández MA. Pharmacogenetics of osteoporosis: towards novel theranostics for personalized medicine? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 16:638-51. [PMID: 23215803 DOI: 10.1089/omi.2011.0150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteoporosis is a complex multifactorial bone disorder with a strong genetic basis. It is the most common, severe, progressive skeletal illness that has been increasing, particularly in developed countries. Osteoporosis will no doubt constitute a serious clinical burden in healthcare management in the coming decades. The genetics of osteoporosis should be analyzed from both the disease susceptibility and the pharmacogenetic treatment perspectives. The former has been widely studied and discussed, while the latter still requires much more information and research. This article provides a synthesis of the literature on the genetics of osteoporosis and an update on progress made in pharmacogenetics of osteoporosis in recent years, specifically regarding the new molecular targets for antiresorptive drugs. In-depth translation of osteoporosis pharmacogenetics approaches to clinical practice demands a new vision grounded on the concept of "theranostics," that is, the integration of diagnostics for both disease susceptibility testing, as well as for prediction of health intervention outcomes. In essence, theranostics signals a broadening in the scope of inquiry in diagnostics medicine. The upcoming wave of theranostics medicine also suggests more distributed forms of science and knowledge production, both by experts and end-users of scientific products. Both the diagnosis and personalized treatment of osteoporosis could conceivably benefit from the emerging postgenomics field of theranostics.
Collapse
Affiliation(s)
- Karen Rojo Venegas
- Pharmacy Service, Virgen de las Nieves University Hospital, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14:641-53. [DOI: 10.2217/pgs.13.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Riancho JA, Hernández JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics 2012; 13:815-29. [PMID: 22594513 DOI: 10.2217/pgs.12.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is frequent in postmenopausal women and old men. As with other prevalent disorders, it is the consequence of complex interactions between genetic and acquired factors. Candidate gene and genome-wide association studies have pointed to several genes as determinants of the risk of osteoporosis. Some of them were previously unsuspected and may help to find new therapeutic targets. Several drugs already available are very effective in increasing bone mass and decreasing fracture risk. However, not all patients respond properly and some of them suffer fragility fractures despite therapy. Investigators have tried to identify the genetic features influencing the response to antiosteoporotic therapy. In this article we will review recent data providing insight into new genes involved in osteoporosis and the pharmacogenetic data currently available.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital UM Valdecilla-IFIMAV, University of Cantabria, Av Valdecilla s/n, Santander 39008, Spain.
| | | |
Collapse
|
29
|
Massart F, Marini F, Bianchi G, Minisola S, Luisetto G, Pirazzoli A, Salvi S, Micheli D, Miccoli M, Baggiani A, Giusti F, Brandi ML. Genetic predictors of skeletal outcomes in healthy fertile women: the Bonturno study. Joint Bone Spine 2012; 80:414-9. [PMID: 23238007 DOI: 10.1016/j.jbspin.2012.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Skeletal traits as height (Ht) or bone mineral density (BMD) are strongly inherited. Low-density lipoprotein receptor-related protein 5 (LRP5) and farnesyl diphosphonate synthase (FDPS) are candidate genes for bone phenotypes. From Bonturno study, we genotyped 570 healthy Caucasian women aged 20 to 50 years (yrs) for LRP5 rs4988321 (A/G) and rs3736228 (C/T) and FDPS rs2297480 (A/C) single nucleotide polymorphisms. Serum C-telopeptide of type I collagen (CTX), osteocalcin (OC), and N-terminal propeptide of type I procollagen (P1NP) were measured in BMD-evaluated subjects at lumbar spine (LS), total hip (TH) and femoral neck (FN) sites. LRP5 rs4988321 locus correlated with FN-BMD (P = 0.0230), while LRP5 rs3736228 genotypes differed in LS-BMD (P = 0.0428). When clustered by age, lower FN-BMD was detected in LRP5 GG (P = 0.030) subjects of 41 to 50 years but not in younger. Both LRP5 GG and CC genotypes showed higher age-adjusted values of OC, CTX and P1NP. Increased CTX values were in LRP5 GGCC subjects than in those having at least one LRP5 A plus T alleles (P = 0.0190). LRP5 CC, GG or GGCC subjects with at least one FDPS C allele showed higher levels of CTX and OC in 31 to 40 yrs or older subjects. In conclusion, LRP5 and FDPS loci age-specifically affect skeletal traits in healthy fertile women.
Collapse
Affiliation(s)
- Francesco Massart
- Pediatric Unit, Santa Chiara University Hospital of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The early genetic prediction of personal drug therapy outcome, both in terms of identification of poor responders or nonresponders, as well as of subjects at risk of developing adverse reactions, and its translation into the clinical practice are the main challenges of personalized medicine. The application of pharmacogenetic predictive tests will be very useful mostly in cases of chronic disorders, as in metabolic bone diseases, that require long-term treatments and for whom exist effective differently acting drugs to be alternatively chosen. Pharmacogenetic tests, prior to drug administration, would hypothetically grant the optimization of drug therapy, based on patient's genotype, to ensure maximum efficacy with minimal adverse effects. This review aims to offer an overview on the principal findings in the field of pharmacogenetics of osteoporosis, and it will discuss future perspectives and possible clinical applications of pharmacogenetic tests for antiresorptive drugs.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | |
Collapse
|
31
|
Weivoda MM, Hohl RJ. The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem 2011; 112:1506-13. [PMID: 21503955 DOI: 10.1002/jcb.23087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. These effects have been attributed to the depletion of geranylgeranyl pyrophosphate (GGPP). In this study, we tested whether specific inhibition of GGPP synthase (GGPPS) with digeranyl bisphosphonate (DGBP) would similarly lead to increased osteoblast differentiation. DGBP concentration dependently decreased intracellular GGPP levels in MC3T3-E1 pre-osteoblasts and primary rat calvarial osteoblasts, leading to impaired Rap1a geranylgeranylation. In contrast to our hypothesis, 1 µM DGBP inhibited matrix mineralization in the MC3T3-E1 pre-osteoblasts. Consistent with this, DGBP inhibited the expression of alkaline phosphatase and osteocalcin in primary osteoblasts. By inhibiting GGPPS, DGBP caused an accumulation of the GGPPS substrate farnesyl pyrophosphate (FPP). This effect was observed throughout the time course of MC3T3-E1 pre-osteoblast differentiation. Interestingly, DGBP treatment led to activation of the glucocorticoid receptor in MC3T3-E1 pre-osteoblast cells, consistent with recent findings that FPP activates nuclear hormone receptors. These findings demonstrate that direct inhibition of GGPPS, and the resulting specific depletion of GGPP, does not stimulate osteoblast differentiation. This suggests that in addition to depletion of GGPP, statin-stimulated osteoblast differentiation may depend on the depletion of upstream isoprenoids, including FPP.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Pharmacology, 2-471 Bowen Science Building, 51 Newton Road, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
32
|
|
33
|
Rojo Venegas K, Aguilera Gómez M, Eisman JA, García Sánchez A, Faus Dader MJ, Calleja Hernández MA. Pharmacogenetics of osteoporosis-related bone fractures: moving towards the harmonization and validation of polymorphism diagnostic tools. Pharmacogenomics 2011; 11:1287-303. [PMID: 20860468 DOI: 10.2217/pgs.10.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is one of the most common skeletal chronic conditions in developed countries, hip fracture being one of its major healthcare outcomes. There is considerable variation in the implementation of current pharmacological treatment and prevention, despite consistent recommendations and guidelines. Many studies have reported conflicting findings of genetic associations with bone density and turnover that might predict fracture risk. Moreover, it is not clear whether genetic differences exist in relation to the morbidity and efficiency of the pharmacotherapy treatments. Clinical response, including beneficial and adverse events associated with osteoporosis treatments, is highly variable among individuals. In this context, the present article intends to summarize putative candidate genes and genome-wide association studies that have been related with BMD and fracture risk, and to draw the attention to the need for pharmacogenetic methodology that could be applicable in clinical translational research after an adequate validation process. This article mainly compiles analysis of important polymorphisms in osteoporosis documented previously, and it describes the simple molecular biology tools for routine genotype acquisition. Validation of methods for the easy, fast and accessible identification of SNPs is necessary for evolving pharmacogenetic diagnostic tools in order to contribute to the discovery of clinically relevant genetic variation with an impact on osteoporosis and its personalized treatment.
Collapse
Affiliation(s)
- Karen Rojo Venegas
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, CP:18014, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. THE PHARMACOGENOMICS JOURNAL 2010; 12:227-32. [PMID: 21151198 DOI: 10.1038/tpj.2010.88] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Farnesyl diphosphate synthase (FDPS) is necessary for osteoclast survival and activity and is considered as a major molecular target of aminobisphosphonates. Our objective was to analyze the influence of FDPS polymorphisms on bone mineral density (BMD) and the response to antiresortive drugs. Three single-nucleotide polymorphisms of FDPS were analyzed in 1186 postmenopausal women. There was only a marginally significant association of baseline hip BMD with rs11264359 alleles (P=0.043). However, among 191 women receiving antiresortive therapy, there was a very significant association between rs2297480 or rs11264359 alleles and the BMD changes after aminobisphosphonate therapy for an average period of 2.5 years (P=0.001). The genotype explained 7.2% of the variance in the BMD response. On the other hand, there was no association between the BMD changes after raloxifene therapy and any of the polymorphisms studied. These results suggest that common polymorphisms of the FDPS gene influence the response to aminobisphosphonates.
Collapse
|
35
|
Abstract
Osteoporosis is the most common and serious skeletal disorder of the elderly; it is characterized by reduced bone mass and deterioration of bone microarchitecture, with an increased risk of low-trauma fractures. Genetic factors are important predisposing elements influencing individual bone strength variability and susceptibility to osteoporosis and related complications. The genetics of osteoporosis encompasses two main areas: disease susceptibility and pharmacogenetics of drug response. The former has been widely studied while the latter is still largely untouched. Pharmacogenetics is the study of relationships between genetic variations and inter-individual differences in drug response in terms of efficacy and adverse effects, representing an opportunity to identify new biomarkers for drug development and drug response. However, pharmacogenetic approaches to osteoporosis are still in their infancy, needing to be developed further and combined with functional studies. This article provides an overview on the current basic research applications in the pharmacogenetics of osteoporosis and their implications for clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- a Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6 50139 Florence, Italy
| | - Maria Luisa Brandi
- a Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6 50139 Florence, Italy
- b
| |
Collapse
|
36
|
Abstract
Osteoporosis is a complex bone disorder with a strong genetic basis. The genetics of osteoporosis encompasses two main areas: genetics of disease susceptibility and pharmacogenetics of drug response. The former has been widely studied in the past few decades, while the latter is still largely untouched. This review will provide an overview of the pharmacogenetics of osteoporosis, focusing on the major recent advances in the past two years.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence Viale Pieraccini 6, 50139 Florence Italy
| | | |
Collapse
|
37
|
Marini F, Brandi ML. Genetic determinants of osteoporosis: common bases to cardiovascular diseases? Int J Hypertens 2010; 2010:394579. [PMID: 20948561 PMCID: PMC2949079 DOI: 10.4061/2010/394579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/07/2010] [Indexed: 01/18/2023] Open
Abstract
Osteoporosis is the most common and serious age-related skeletal disorder, characterized by a low bone mass and bone microarchitectural deterioration, with a consequent increase in bone fragility and susceptibility to spontaneous fractures, and it represents a major worldwide health care problem with important implications for health care costs, morbidity and mortality. Today is well accepted that osteoporosis is a multifactorial disorder caused by the interaction between environment and genes that singularly exert modest effects on bone mass and other aspects of bone strength and fracture risk. The individuation of genetic factors responsible for osteoporosis predisposition and development is fundamental for the disease prevention and for the setting of novel therapies, before fracture occurrence. In the last decades the interest of the Scientific Community has been concentrated in the understanding the genetic bases of this disease but with controversial and/or inconclusive results. This review tries to summarize data on the most representative osteoporosis candidate genes. Moreover, since recently osteoporosis and cardiovascular diseases have shown to share common physiopathological mechanisms, this review also provides information on the current understanding of osteoporosis and cardiovascular diseases common genetic bases.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | | |
Collapse
|
38
|
|
39
|
Marini F, Brandi ML. Pharmacogenetics of osteoporosis: future perspectives. Calcif Tissue Int 2009; 84:337-47. [PMID: 19271099 DOI: 10.1007/s00223-009-9226-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Drug response is known to be highly variable among treated patients and affected by many factors, such as age, sex, ethnicity, concomitant diseases, and pharmacological therapy. However, sequence variants in the human genome are now considered an important cause of differences in drug responses. Pharmacogenetics, which is the utilization of individual genetic data to predict the outcome of drug treatment with respect to both beneficial and adverse effects, represents an emerging field of genetics with the potential to become useful for the identification of the most effective drug and the most beneficial dose for a given individual. On the basis of these considerations and thanks to recent advances in genetics and molecular biology, pharmacogenetics is becoming a flowering field in both basic and clinical research. Nevertheless, to date the opportunity to apply pharmacogenetic approaches to drug response and the possibility to use genetic screenings to tailor decisions about pharmacological treatments have limited applications. And this is even truer in the field of osteoporosis, in which pharmacogenetic studies are in their infancy. In this paper we review the most recent data on pharmacogenetics of osteoporosis, highlighting the presentations at the Second International Meeting on Pharmacogenetics of Osteoarticular Disorders held in Florence in April 2008.
Collapse
Affiliation(s)
- Francesca Marini
- Mineral and Bone Metabolism Unit, Department of Internal Medicine, University of Florence, Florence, Italy.
| | | |
Collapse
|