1
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Sen S, Udaya P, Jeya Maheshwari J, Kohli P, Parida H, Kannan NB, Ramasamy K, Dharmalingam K. Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways. Indian J Ophthalmol 2023; 71:3069-3079. [PMID: 37530283 PMCID: PMC10538831 DOI: 10.4103/ijo.ijo_276_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To explore the vitreous humor proteome from type 2 diabetes subjects with proliferative diabetic retinopathy (PDR) in the Indian population. Methods We performed mass spectrometry-based label-free quantitative analysis of vitreous proteome of PDR (n = 13) and idiopathic macular hole (IMH; control) subjects (n = 14). Nine samples of PDR and 10 samples of IMH were pooled as case and control, respectively, and compared. Four samples each of PDR and IMH were analyzed individually without pooling to validate the results of the pooled analysis. Comparative quantification was performed using Scaffold software which calculated the fold changes of differential expression. Bioinformatics analysis was performed using DAVID and STRING software. Results We identified 469 proteins in PDR and 517 proteins in IMH vitreous, with an overlap of 172 proteins. Also, 297 unique proteins were identified in PDR and 345 in IMH. In PDR vitreous, 37 proteins were upregulated (P < 0.05) and 19 proteins were downregulated compared to IMH. Protein distribution analysis clearly demonstrated a separation of protein expression in PDR and IMH. Significantly upregulated proteins included fibrinogen gamma chain, fibrinogen beta chain, and carbonic anhydrase 1 and downregulated proteins included alpha-1-antitrypsin, retinol-binding protein 3, neuroserpin, cystatin C, carboxypeptidase E and cathepsin-D. Conclusion Diabetic retinopathy pathogenesis involves proteins which belong to inflammation, visual transduction, and extracellular matrix pathways. Validation-based experiments using enzyme-linked immunosorbent assay (ELISA) or western blotting are needed to establish cause and effect relationships of these proteins to the disease state, to develop them as biomarkers or drug molecules.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Prithviraj Udaya
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Piyush Kohli
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Haemoglobin Parida
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Naresh Babu Kannan
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Kim Ramasamy
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
3
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
4
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
5
|
Luo H, Wu P, Chen X, Wang B, Chen G, Su X. Novel insights into the relationship between α-1 anti-trypsin with the pathological development of cardio-metabolic disorders. Int Immunopharmacol 2022; 111:109077. [PMID: 35907338 DOI: 10.1016/j.intimp.2022.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
According to the previous studies, chronic low-grade systemic inflammatory response has been shown to be significantly associated with the pathological development of cardio-metabolic disorder diseases, including atherosclerosis, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). On the other hand, auto-immunity process could also facilitate the pathogenesis of type 1 diabetes mellitus importantly. Concerning on this notion, the anti-inflammatory therapeutic strategy is demonstrated to embrace an essential function in those cardio-metabolic disorders in clinical practice. The α-1 anti-trypsin, also named Serpin-A1 and as an acute phase endogenous protein, has been verified to have several modulatory effects such as anti-inflammatory response, anti-apoptosis, and immunomodulatory functions. In addition, it is also used for therapeutic strategy of a rare genetic disease caused by the deficiency of α-1 anti-trypsin. Recent emerging evidence has indicated that the serum concentrations of α-1 anti-trypsin levels and its biological activity are significantly changed in those inflammatory and immune related cardio-metabolic disorder diseases. Nevertheless, the underlying mechanism is still not elucidated. In the current review, the basic experiments and clinical trials which provided the evidence revealing the potential therapeutic function of the α-1 anti-trypsin in cardio-metabolic disorder diseases were well-summarized. Furthermore, the results which indicated that the α-1 anti-trypsin presented the possibility as a novel serum biomarker in humans to predict those cardio-metabolic disorder diseases were also elucidated.
Collapse
Affiliation(s)
- Haizhen Luo
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China
| | - Penglong Wu
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Geng Chen
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China.
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Zhang X, Ostrov DA, Tian H. Alpha-1 antitrypsin: A novel biomarker and potential therapeutic approach for metabolic diseases. Clin Chim Acta 2022; 534:71-76. [PMID: 35810800 DOI: 10.1016/j.cca.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
It is well recognized that chronic low-grade systemic inflammation and autoimmunity contribute to the pathogenesis of metabolic syndrome, its associated diseases (e.g. type 2 diabetes, non-alcoholic fatty liver disease) and type 1 diabetes, respectively. Consequently, anti-inflammatory agents might play a role in managing these immune associated metabolic diseases. Alpha-1 antitrypsin (AAT), an endogenous acute phase protein being used for treatment of AAT deficiency (a rare genetic disease), has multiple functions including anti-inflammatory, immunomodulatory, anti-apoptosis and cytoprotective effects. In this review, we summarized basic and clinical studies that reported potential therapeutic role of AAT in metabolic syndrome associated diseases and type 1 diabetes. Studies that demonstrated AAT had the possibility to be used as a novel biomarker to predict these immune associated metabolic diseases were also included.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
9
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
López-Bernal Á, García-Tejera O, Testi L, Villalobos FJ. Genotypic variability in radial resistance to water flow in olive roots and its response to temperature variations. TREE PHYSIOLOGY 2020; 40:445-453. [PMID: 32031664 DOI: 10.1093/treephys/tpaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
As radial root resistance (Rp) represents one of the key components of the soil-plant-atmosphere continuum resistance catena modulating water transport, understanding its control is essential for physiologists, modelers and breeders. Reports of Rp, however, are still scarce and scattered in the scientific literature. In this study, we assessed genetic variability in Rp and its dependence on temperature in five widely used olive cultivars. In a first experiment, cultivar differences in Rp at 25 °C were evaluated from flow-pressure measurements in excised roots and subsequent analysis of root traits. In a second experiment, similar determinations were performed continually over a 5-h period in which temperature was gradually increased from 12 to 32 °C, enabling the assessment of Rp response to changing temperature. Despite some variability, our results did not show statistical differences in Rp among cultivars in the first experiment. In the second, cultivar differences in Rp were not significant at 12 °C, but they became so as temperature increased. Furthermore, the changes in Rp between 12 and 32 °C were higher than those expected by the temperature-driven decrease in water viscosity, with the degree of that change differing among cultivars. Also, Rp at 25 °C reached momentarily in the second experiment was consistently higher than in the first at that same, but fixed, temperature. Overall, our results suggest that there is limited variability in Rp among the studied cultivars when plants have been exposed to a given temperature for sufficient time. Temperature-induced variation in Rp might thus be partly explained by changes in membrane permeability that occur slowly, which explains why our values at 25 °C differed between experiments. The observed cultivar differences in Rp with warming also indicate faster acclimation of Rp to temperature changes in some cultivars than others.
Collapse
Affiliation(s)
- Á López-Bernal
- Departamento de Agronomía, Universidad de Córdoba, Campus de Rabanales, Edificio C4, 14071 Córdoba, Spain
| | - O García-Tejera
- Efficient Use of Water Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain
| | - L Testi
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Menéndez Pidal s/n, 14080 Córdoba, Spain
| | - F J Villalobos
- Departamento de Agronomía, Universidad de Córdoba, Campus de Rabanales, Edificio C4, 14071 Córdoba, Spain
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Menéndez Pidal s/n, 14080 Córdoba, Spain
| |
Collapse
|
11
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
12
|
Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS One 2020; 15:e0228895. [PMID: 32032388 PMCID: PMC7006930 DOI: 10.1371/journal.pone.0228895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alpha-1-antitrypsin is a protein involved in avoidance of different processes that are seen in diabetic retinopathy pathogenesis. These processes include apoptosis, extracellular matrix remodeling and damage of vessel walls and capillaries. Furthermore, because of its anti-inflammatory effects, alpha-1-antitrypsin has been proposed as a possible therapeutic approach for diabetic retinopathy. Our group tested alpha-1-antitrypsin in a type 1 diabetes mouse model and observed a reduction of inflammation and retinal neurodegeneration. Thus, shedding light on the mechanism of action of alpha-1-antitrypsin at molecular level may explain how it works in the diabetic retinopathy context and show its potential for use in other retinal diseases. METHODS In this work, we evaluated alpha-1-antitrypsin in an ARPE-19 human cell line exposed to high glucose. We explored the expression of different mediators on signaling pathways related to pro-inflammatory cytokines production, glucose metabolism, epithelial-mesenchymal transition and other proteins involved in the normal function of retinal pigment epithelium by RT-qPCR and Western Blot. RESULTS We obtained different expression patterns for evaluated mediators altered with high glucose exposure and corrected with the use of alpha-1-antitrypsin. CONCLUSIONS The expression profile obtained in vitro for the evaluated proteins and mRNA allowed us to explain our previous results obtained on mouse models and to hypothesize how alpha-1-antitrypsin hinder diabetic retinopathy progression on a complex network between different signaling pathways. GENERAL SIGNIFICANCE This network helps to understand the way alpha-1-antitrypsin works in diabetic retinopathy and its scope of action.
Collapse
|
13
|
High Serum Level of IL-17 in Patients with Chronic Obstructive Pulmonary Disease and the Alpha-1 Antitrypsin PiZ Allele. Pulm Med 2020; 2020:9738032. [PMID: 32089881 PMCID: PMC7011399 DOI: 10.1155/2020/9738032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is multifactorial disease, which is characterized by airflow limitation and can be provoked by genetic factors, including carriage of the PiZ allele of the protease inhibitor (Pi) gene, encoding alpha-1 antitrypsin (A1AT). Both homozygous and heterozygous PiZ allele carriers can develop COPD. It was found recently that normal A1AT regulates cytokine levels, including IL-17, which is involved in COPD progression. The aim of this study was to determine whether homozygous or heterozygous PiZ allele carriage leads to elevated level of IL-17 and other proinflammatory cytokines in COPD patients. Materials and Methods. Serum samples and clinical data were obtained from 44 COPD patients, who included 6 PiZZ, 8 PiMZ, and 30 PiMM A1AT phenotype carriers. Serum concentrations of IL-17, IL-6, IL-8, IFN-γ, and TNF-α were measured by the enzyme-linked immunosorbent assay (ELISA). All A1AT phenotypes were verified by narrow pH range isoelectrofocusing with selective A1AT staining. A turbidimetric method was used for quantitative A1AT measurements. Results. COPD patients with both PiZZ and PiMZ phenotypes demonstrated elevated IL-17 and decreased IFN-γ levels in comparison to patients with the PiMM phenotype of A1AT. Thereafter, the ratio IL-17/IFN-γ in PiZZ and PiMZ groups greatly exceeded the values of the PiMM group. Homozygous PiZ allele carriers also had significantly higher levels of IL-6 and lower levels of IL-8, and IL-6 values correlated negatively with A1AT concentrations. Conclusions. The presence of the PiZ allele in both homozygous and heterozygous states is associated with altered serum cytokine levels, including elevated IL-17, IL-17/IFN-γ ratio, and IL-6 (only PiZZ), but lower IFN-γ and IL-8.
Collapse
|
14
|
Coelho‐Landell CA, Salomão RG, Almada MORDV, Mathias MG, Toffano RBD, Hillesheim E, Barros TT, Camarneiro JM, Camelo‐Junior JS, Rosa JC, Izumi C, Czernisz É, Moco S, Kaput J, Monteiro JP. Metabo groups in response to micronutrient intervention: Pilot study. Food Sci Nutr 2020; 8:683-693. [PMID: 31993192 PMCID: PMC6977437 DOI: 10.1002/fsn3.1357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Micronutrients and their metabolites are cofactors in proteins involved in lipid metabolism. The present study was a subproject of the Harmonized Micronutrient Project (ClinTrials.gov # NCT01823744). Twenty participants were randomly selected from 136 children and adolescents that consumed a daily dose of 12 vitamins and 5 minerals supplementation for 6 weeks. The 20 individuals were divided into two pools of 10 individuals, according to their lipid profile at baseline (Pool 1 with lower triglycerides, LDL, and VLDL). The individuals were analyzed at baseline, after 6 weeks of daily supplementation, and after 6 weeks of a washout period in relation to anthropometric, body composition, food intake, lipid profile, micronutrient levels, and iTRAQ proteomic data. Genetic ancestry and its association with vitamin serum levels were also determined. After supplementation, LDL levels decreased while alpha-tocopherol and pantothenic acid levels increased in pool 2; lipid profiles in pool 1 did not change but had higher plasma levels of pantothenic acid, pyridoxal, and pyridoxic acid. In pool 2, expression of some proteins increased, and expression of other ones decreased after intervention, while in pool 1, the same proteins responded inversely or did not change their levels. Plasma alpha-tocopherol and Native American genetic ancestry explained a significant fraction of LDL plasma levels at baseline and in response to the intervention. After intervention, changes in expression of alpha-1 antitrypsin, haptoglobin, Ig alpha-1 chain C region, plasma protease C1 inhibitor, alpha-1-acid glycoprotein 1, fibrinogen alpha, beta, and gamma-chain in individuals in pool 2 may be associated with levels of LDL and vitamin E. Vitamin E and Native American genetic ancestry may also be implicated in changes of vitamin E and LDL levels. The results of this pilot study must be validated in future studies with larger sample size or in in vitro studies.
Collapse
Affiliation(s)
- Carolina Almeida Coelho‐Landell
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Roberta Garcia Salomão
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | | | - Mariana Giaretta Mathias
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Roseli Borges Donega Toffano
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Elaine Hillesheim
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Tamiris Trevisan Barros
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Joyce Moraes Camarneiro
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - José Simon Camelo‐Junior
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - José Cesar Rosa
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Clarice Izumi
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Érika Czernisz
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Sofia Moco
- Nestlé Institute of Health SciencesNestle ResearchEPFL Innovation ParkLausanneSwitzerland
| | - Jim Kaput
- Nestlé Institute of Health SciencesNestle ResearchEPFL Innovation ParkLausanneSwitzerland
- Present address:
VydiantSacramentoCAUSA
| | - Jacqueline Pontes Monteiro
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| |
Collapse
|
15
|
Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent Developments in Diabetic Retinal Neurodegeneration: A Literature Review. J Diabetes Res 2020; 2020:5728674. [PMID: 34151902 PMCID: PMC7787838 DOI: 10.1155/2020/5728674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegeneration plays a significant role in the complex pathology of diabetic retinopathy. Evidence suggests the onset of neurodegeneration occurs early on in the disease, and so a greater understanding of the process is essential for prompt detection and targeted therapies. Neurodegeneration is a common pathway of assorted processes, including activation of inflammatory pathways, reduction of neuroprotective factors, DNA damage, and apoptosis. Oxidative stress and formation of advanced glycation end products amplify these processes and are elevated in the setting of hyperglycemia, hyperlipidemia, and glucose variability. These key pathophysiologic mechanisms are discussed, as well as diagnostic modalities and novel therapeutic avenues, with an emphasis on recent discoveries. The aim of this article is to highlight the crucial role of neurodegeneration in diabetic retinopathy and to review the molecular basis for this neuronal dysfunction, its diagnostic features, and the progress currently made in relevant therapeutic interventions.
Collapse
Affiliation(s)
- Shani Pillar
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Moisseiev
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| |
Collapse
|
16
|
Solanki A, Bhatt LK, Johnston TP, Prabhavalkar KS. Targeting Matrix Metalloproteinases for Diabetic Retinopathy: The Way Ahead? Curr Protein Pept Sci 2019; 20:324-333. [DOI: 10.2174/1389203719666180914093109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is a severe sight-threatening complication of diabetes. It causes
progressive damage to the retina and is the most common cause of vision impairment and blindness
among diabetic patients. DR develops as a result of various changes in the ocular environment. Such
changes include accelerated mitochondrial dysfunction, apoptosis, reactive oxygen species production,
and formation of acellular capillaries. Matrix metalloproteinases (MMPs) are one of the major culprits in
causing DR. Under physiological conditions, MMPs cause remodeling of the extracellular matrix in the
retina, while under pathological conditions, they induce retinal cell apoptosis. This review focuses on
the roles of various MMPs, primarily MMP-2 and MMP-9 in DR and also their participation in oxidative
stress, mitochondrial dysfunction, and apoptosis, along with their involvement in various signaling
pathways. This review also underscores different strategies to inhibit MMPs, thus suggesting that MMPs
may represent a putative therapeutic target in the treatment of DR.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K. Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kedar S. Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
17
|
He F, Ai B, Tian L. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. Biomed Rep 2018; 9:305-312. [PMID: 30233782 PMCID: PMC6142036 DOI: 10.3892/br.2018.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is one of the most common subtypes of esophageal cancer, and is associated with a low 5-year survival rate. The present study aimed to identify key genes and pathways associated with EAC using bioinformatics analysis. The gene expression profiles of GSE92396, which includes 12 EAC samples and 9 normal esophageal samples, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the EAC and normal samples were identified using the limma package in R language. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the identified DEGs were conducted using the online analysis tool, the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. Finally, module analysis was conducted for the PPI network using the MCODE plug-in in Cytoscape. Of the 386 DEGs identified, the 150 upregulated genes were mainly enriched in the KEGG pathways of complement and coagulation cascades, maturity onset diabetes of the young and protein digestion and absorption; and the 236 downregulated genes were mainly enriched in amoebiasis, retinol metabolism and drug metabolism-cytochrome P450. Based on information from the STRING database, a PPI network comprising of 369 nodes and 534 edges was constructed in Cytoscape. The top 10 hub nodes with the highest degrees were determined as interleukin-8, involucrin, tissue inhibitor of metalloproteinase 1, fibronectin 1, serpin family E member 1, serpin family A member 1, cystic fibrosis transmembrane conductance regulator, secreted phosphoprotein 1, collagen type I alpha 1 chain and angiotensinogen. A total of 6 modules were detected from the PPI network that satisfied the criteria of MCODE score >4 and number of nodes >4. KEGG pathways enriched for the module DEGs were mainly within arachidonic acid metabolism, complement and coagulation cascades and rheumatoid arthritis. In conclusion, identification of these key genes and pathways may improve understanding of the mechanisms underlying the development of EAC, and may be used as diagnostic and therapeutic targets in EAC.
Collapse
Affiliation(s)
- Feng He
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
18
|
Luo J, Zhang M, Huang H, Wang Y, Yuan X, Ma S, Liu J, Zhou S, Zhang S. Matrilin-2 regulates proliferation, apoptosis and cell cycle during radiation-induced injury in HPAEpiC cell. Biochem Biophys Res Commun 2016; 485:577-583. [PMID: 27923659 DOI: 10.1016/j.bbrc.2016.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/03/2016] [Indexed: 12/14/2022]
Abstract
Radiation pulmonary injury is related to the accumulation of extracellular matrix proteins in the alveolar interstitial space. Matrilin-2 as a component of extracellular filamentous networks, present higher level in the lung tissue from irradiated mice and irradiated pulmonary epithelial cell line, HPAEpiC cells. Knockdown of endogenous matrilin-2 prevents the apoptosis of HPAEpiC cell induced by the irradiation injury. Consistently, over-expression of matrilin-2 reduced the proliferation and induced apoptosis of HPAEpiC cells. Matrilin-2 promotes the expression of p21 via increasing the transcriptional activity of p53, by which induces the G1 phase arresting in HPAEpiC cells. In summary, matrilin-2, increased by irradiation, reduced the proliferation and induces apoptosis of pulmonary epithelial cells via p53/p21 pathway.
Collapse
Affiliation(s)
- Junming Luo
- Department of Pathology, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Menglan Zhang
- Department of Pathology, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Hong Huang
- Department of Pathology, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Yichun Wang
- Department of Anesthesiology, Hunan Provincial Tumor Hospital, Central South University, Changsha 410013, Hunan Province, People's Republic of China
| | - Xin Yuan
- Department of Internal Medicine, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Siqing Ma
- Department of Critical Care Medicine, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Jingshi Liu
- Department of Anesthesiology, Hunan Provincial Tumor Hospital, Central South University, Changsha 410013, Hunan Province, People's Republic of China
| | - Shiying Zhou
- Department of Pathology, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China
| | - Shukun Zhang
- Department of Pathology, Qinghai People's Provincial Hospital, Xining 810007, Qinghai Province, People's Republic of China.
| |
Collapse
|
19
|
Capitão M, Soares R. Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J Cell Biochem 2016; 117:2443-53. [PMID: 27128219 DOI: 10.1002/jcb.25575] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent microvascular complications of diabetes and one of the most frequent causes of blindness in active age. Etiopathogenesis behind this important complication is related to several biochemical, hemodynamic and endocrine mechanisms with a preponderant initial role assumed by polyol pathways, increment of growth factors, accumulation of advanced glycation end products (AGE), activation of protein kinase C (PKC), activation of the renin-angiotensin-aldosterone system (RAAS), and leukostasis. Chronic and sustained hyperglycemia works as a trigger to the early alterations that culminate in vascular dysfunction. Hypoxia also plays an essential role in disease progression with promotion of neovascularization and vascular dystrophies with vitreous hemorrhages induction. Thus, the accumulation of fluids and protein exudates in ocular cavities leads to an opacity augmentation of the cornea that associated to neurodegeneration results in vision loss, being this a devastating characteristic of the disease final stage. During disease progression, inflammatory molecules are produced and angiogenesis occur. Furthermore, VEGF is overexpressed by the maintained hyperglycemic environment and up-regulated by tissue hypoxia. Also pro-inflammatory mediators regulated by cytokines, such as tumor necrosis factor (TNF-α) and interleukin-1 beta (IL-1β), and growth factors leads to the progression of these processes, culminating in vasopermeability (diabetes macular edema) and/or pathological angiogenesis (proliferative diabetic retinopathy). It was found a mutual contribution between inflammation and angiogenesis along the process. J. Cell. Biochem. 117: 2443-2453, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margarida Capitão
- Department of Biochemistry, Faculty of Medicine, University of Porto, Portugal
| | - Raquel Soares
- Department of Biochemistry, Faculty of Medicine, University of Porto, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| |
Collapse
|
20
|
Bhat S, Jagadeeshaprasad MG, Patil YR, Shaikh ML, Regin BS, Mohan V, Giri AP, Balasubramanyam M, Boppana R, Kulkarni MJ. Proteomic Insight Reveals Elevated Levels of Albumin in Circulating Immune Complexes in Diabetic Plasma. Mol Cell Proteomics 2016; 15:2011-20. [PMID: 27056913 DOI: 10.1074/mcp.m116.058008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
A Hyperglycemic condition in diabetes promotes formation of advanced glycation end products, which are known to elicit immune response and form complexes with immunoglobulins called circulating immune complexes. To investigate the involvement of advanced glycation end product (AGE)-modified proteins in the elicitation of an immune response, circulating immune complexes were isolated and proteins associated were identified and characterized. Label-free-based mass spectrometric analysis of circulating immune complexes in clinical plasma of prediabetic, newly diagnosed diabetes, and diabetic microalbuminurea revealed elevated levels of serum albumin in the circulating immune complexes, which were also observed to be AGE modified. Further, to examine the role of glycation, circulating immune complexeswere analyzed in the streptozotocin-induced diabetic mice treated with or without aminoguanidine, a prototype glycation inhibitor. Mass spectrometric analysis of circulating immune complexes showed elevated levels of serum albumin in plasma from diabetic mice over that of control animals. Aminoguanidine-treated diabetic mice displayed decreased AGE modification of plasma albumin, accompanied by a reduced level of albumin in the circulating immune complexes. In addition, elevated levels of proinflammatory cytokines such as IL-1b, IL-2, and TNF-alpha were observed in diabetes, which were reduced with aminoguanidine treatment, suggesting the involvement of glycation in the immune response.
Collapse
Affiliation(s)
- Shweta Bhat
- From the ‡Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India, and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mashanipalya G Jagadeeshaprasad
- From the ‡Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India, and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Yugendra R Patil
- From the ‡Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India, and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | | | | | - Ashok P Giri
- From the ‡Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India, and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | | | - Mahesh J Kulkarni
- From the ‡Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India, and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India;
| |
Collapse
|