1
|
Polgar G, Iaia M, Righi T, Volta P. The Italian Alpine and Subalpine trouts: Taxonomy, Evolution, and Conservation. BIOLOGY 2022; 11:biology11040576. [PMID: 35453775 PMCID: PMC9026872 DOI: 10.3390/biology11040576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In a great part of the world, trout fishing has long inspired human spiritual ideals of immersion into nature and recreation, far removed from the fast-encroaching urbanization. Concurrently, these values and emotions fueled a white-hot business, establishing a florid market of outdoor recreation. Since the 20th century, the trout-culture industry strived to provide anglers with fishing entertainment by stocking massive amounts of non-native trouts in dozens of countries, irrespective of the lakes’ and rivers’ carrying capacity. This had dire consequences on the structural and functional diversity of these ecosystems. “Trout wars” sparked throughout the world between the promoters of stocking activities and the promoters of “wild trout management” and ethics. The “Italian trout war” has been fought on the harsh battleground of trout taxonomy, ecology, distribution, and native vs. non-native interfertile species. Northern Italy, home to the Italian Alpine and subalpine trouts and economic center of the national trout-culture and stocking industry, was particularly affected by this clash. We review here the state of art of this ongoing debate, outlining our scientific view of the taxonomy, evolution, distribution, and sustainable management of the native Italian trouts of northern Italy. Abstract During the last 150 years, the trout-culture industry focused on enhancing trout populations by stocking, in response to the growing anglers’ demand and the habitat degradation associated to the rapid urbanization and hydropower development. The industrialized north of Italy, home to the Italian Alpine and subalpine trout populations, is the source of most of the revenues of the national trout-culture industry. Its rapid growth, and the massive introduction of non-native interfertile trouts eroded the genetic diversity of native lineages, leading to harsh confrontations between scientists, institutions, and sportfishing associations. We review here the state of the art of the taxonomy and distribution of the northern Italian native trouts, presenting both scientific results and historical documentation. We think the only native trouts in this region are Salmo marmoratus, widespread in this region, plus small and fragmented populations of S. ghigii, present only in the South-western Alps. We strongly recommend the interruption of stocking of domesticated interfertile non-native trouts in this area, and recommend the adoption of Evolutionary Significant Units for salmonid fishery management. We further propose future research directions for a sustainable approach to the conservation and ecosystem management of the fishery resources and inland waters of northern Italy.
Collapse
|
2
|
Genetic and Phenotypic Characteristics of the Salmo trutta Complex in Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salmonid fish have become ecological and research models of study in the field of conservation genetics and genomics. Over the last decade, brown trout have received a high level of interest in research and publications. The term Salmo trutta complex is used to indicate the large number of geographic forms present in the species Salmo trutta. In Europe, the S. trutta complex consists (based on mitochondrial DNA control region analysis) of seven major evolutionary lineages: Atlantic (AT), Mediterranean (ME), Adriatic (AD), Danubian (DA), Marmoratus (MA), Duero (DU) and Tigris (TI). In several nations, the difficulty of identifying some lineages derives from their wide phenotypic and geographic plasticity and the presence of mixed lineages (due to introgressive hybridization with domestic AT populations). In Italy, the S. trutta complex populations living in the Tyrrhenian area and on the main islands (Sicily, Sardinia and Corsica) showed high genetic diversity. Currently, on the Italian Red List, the protected (near threatened) populations are the AD and ME lineages. Recent studies based on traditional (mitochondrial and nuclear markers) and NGS (next-generation sequencing) analyses have clarified some genetic differences between the populations of the Tyrrhenian region, Sicily, Sardinia and Corsica. Native populations in Sardinia belong to the AD lineage, while those living in Corsica are mainly characterized by the AD, MA and ME haplotypes. In Sicily, in the area of the Iblei mountains, an AT lineage (North African) exists. According to some authors, the term Salmo macrostigma should only be used for populations in North Africa. The use of genotyping methods based on mtDNA and nuclear markers and the latest generation sequencing techniques can improve the study of populations and evolutionary lineages in areas where there are overlaps and hybridization phenomena.
Collapse
|
3
|
Berrebi P, Jesenšek D, Laporte M, Crivelli AJ. Restoring marble trout genes in the Soča River (Slovenia). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud AL, Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 2021; 162:107204. [PMID: 34015446 DOI: 10.1016/j.ympev.2021.107204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
There are particular challenges in defining the taxonomic status of recently radiated groups due to the low level of phylogenetic signal. Members of the Salmo trutta species-complex, which mostly evolved during and following the Pleistocene, show high morphological and ecological diversity that, along with their very wide geographic distribution, have led to morphological description of 47 extant nominal species. However, many of these species have not been supported by previous phylogenetic studies, which could be partly due to lack of significant genetic differences among them, the limited resolution offered by molecular methods previously used, as well as the often local scale of these studies. The development of next-generation sequencing (NGS) and related analytical tools have enhanced our ability to address such challenging questions. In this study, Genotyping-by-Sequencing (GBS) of 15,169 filtered SNPs and mitochondrial DNA (mtDNA) D-loop sequences were combined to assess the phylogenetic relationships among 166 brown trouts representing 21 described species and three undescribed groups collected from 84 localities throughout their natural distribution in Europe, west Asia, and North Africa. The data were analysed using different clustering algorithms (admixture analysis and discriminant analysis of principal components-DAPC), a Bayes Factor Delimitation (BFD) test, species tree reconstruction, gene flow tests (three- and four-population tests), and Rogue taxa identification tests. Genomic contributions of the Atlantic lineage brown trout were found in all major sea basins excluding the North African and Aral Sea basins, suggesting introgressive hybridization of native brown trouts driven by stocking using strains of the Atlantic lineage. After removing the phylogenetic noise caused by the Atlantic brown trout, admixture clusters and DAPC clustering based on GBS data, respectively, resolved 11 and 13 clusters among the previously described brown trout species, which were also supported by BFD test results. Our results suggest that natural hybridization between different brown trout lineages has probably played an important role in the origin of several of the putative species, including S. marmoratus, S. carpio, S. farioides, S. pellegrini, S. caspius (in the Kura River drainage) and Salmo sp. in the Danube River basin. Overall, our results support a multi-species taxonomy for brown trouts. They also resolve some species in the Adriatic-Mediterranean and Black Sea drainages as members of very closely related genomic clusters that may need taxonomic revision. However, any final conclusions pertaining to the taxonomy of the brown trout complex should be based on an integrative approach combining genomic, morphological, and ecological data. To avoid challenges in taxonomy and conservation of species complexes like brown trouts, it is suggested to describe species based on genomic clusters of populations instead of describing species based only on morphologically differentiated single type populations.
Collapse
Affiliation(s)
- Iraj Hashemzadeh Segherloo
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iran; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
| | - Jörg Freyhof
- Museum für Naturkunde Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Patrick Berrebi
- Genome - Research & Diagnostic, 697 avenue de Lunel, 34400 Saint-Just, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Matthias Geiger
- Zoologisches Forschungsmuseum Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, 53133 Bonn, Germany
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia & Cherepovets State University, Cherepovets, Vologda Region, Russia
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
5
|
Splendiani A, Berrebi P, Tougard C, Righi T, Reynaud N, Fioravanti T, Lo Conte P, Delmastro GB, Baltieri M, Ciuffardi L, Candiotto A, Sabatini A, Caputo Barucchi V. The role of the south-western Alps as a unidirectional corridor for Mediterranean brown trout (Salmo truttacomplex) lineages. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractThe role of the south-western Alps as a corridor for Mediterranean trout (Salmo trutta complex Linnaeus, 1758) was evaluated in order to understand the influence of the last glacial events in shaping the spatial distribution of the genetic diversity of this salmonid. For this, the allochthonous hypothesis of a man-mediated French origin (19th century) of the Mediterranean trout inhabiting the Po tributaries in the Italian side of the south-western Alps was tested. A total of 412 individuals were analysed at the mitochondrial control region. The phylogenetic classification was carried out by using a Median-Joining Network analysis. Mismatch pair-wise analysis, molecular dating and Kernel density distribution analysis of the main mitochondrial lineages were evaluated to compare past demographic dynamics with the current spatial distribution of genetic diversity. The main outcomes resulted strongly in agreement with a biogeographic scenario where the south-western Alps acted as a unidirectional corridor that permitted the colonization of the upper Durance (Rhône River basin) by trout from the Po River basin. Therefore, the Mediterranean trout should be considered as native also along the Italian side of the south-western Alps and the allochthonous hypothesis should be rejected.
Collapse
Affiliation(s)
- Andrea Splendiani
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Patrick Berrebi
- Genome - R&D, Saint-Just, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Tommaso Righi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Nathalie Reynaud
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Tatiana Fioravanti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Lo Conte
- Funzione Specializzata Tutela Fauna e Flora, Città Metropolitana di Torino, Torino, Italy
| | - Giovanni B Delmastro
- Laboratorio di Ittiologia e Biol. Acque, Museo Civico di Storia Naturale, Carmagnola, Italy
| | - Marco Baltieri
- ATAAI-Associazione Tutela Ambienti Acquatici e Ittiofauna, Luserna San Giovanni, Italy
| | | | | | - Andrea Sabatini
- Department of Life and Environmental Science, University of Cagliari, Cagliari, Italy
| | - Vincenzo Caputo Barucchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Splendiani A, Palmas F, Sabatini A, Caputo Barucchi V. The name of the trout: considerations on the taxonomic status of the Salmo trutta L., 1758 complex (Osteichthyes: Salmonidae) in Italy. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1686544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A. Splendiani
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - F. Palmas
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - A. Sabatini
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - V. Caputo Barucchi
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
7
|
Ősz Á, Horváth Á, Hoitsy G, Kánainé Sipos D, Keszte S, Sáfrány AJ, Marić S, Palkó C, Tóth B, Urbányi B, Kovács B. The genetic status of the Hungarian brown trout populations: exploration of a blind spot on the European map of Salmo trutta studies. PeerJ 2018; 6:e5152. [PMID: 30258703 PMCID: PMC6152457 DOI: 10.7717/peerj.5152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Analyses of the control region sequences of European brown trout populations' mitrochondrial DNA have revealed five main evolutionary lineages (Atlantic, Danubian, Mediterranean, Adriatic, Marble) mostly relating to the main water basins; however, the hybridization between lineages were increasingly reported. Due to the hydrogeography of Hungary, wild populations should theoretically belong to the Danubian lineage, however, this has not been verified by genetic studies. METHODS In our study multiple molecular marker sets (mitochondrial sequence, microsatellites, PCR-RFLP of nuclear markers and sex marker) were used to investigate the genetic composition and population genetics of the brown trout populations in two broodstocks, six wild streams in Hungary and one Serbian population. RESULTS The admixture of Atlantic and Danubian lineages in these populations, except the Serbian population with pure Danubian origin, was observed by control region sequences of mitochondrial DNA and PCR-RFLP markers in the nuclear genome, and one unpublished Danubian haplotype was found in Hungarian populations. A sex-specific marker revealed equal gender ratio in broodstocks and Kemence stream, whereas in other wild streams the proportion of female individuals were less than 50%. Structure and principal component analyses based on the alleles of microsatellite loci also revealed overlapping populations, however the populations were still significantly different from each other and were mostly in Hardy-Weinberg equilibrium. DISCUSSION Stocking and migration can have a significant genetic impact on trout populations of wild streams, however there are no guidelines or common practices for stocking of small streams in Hungary, thus the genetic background of these populations should be considered when developing conservation actions.
Collapse
Affiliation(s)
- Ágnes Ősz
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | | | - Dóra Kánainé Sipos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Szilvia Keszte
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Anna Júlia Sáfrány
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Saša Marić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Csaba Palkó
- Department of Animal Nutrition, Institute of Animal Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, Mosonmagyaróvár, Hungary
| | - Balázs Tóth
- Danube-Ipoly National Park Directorate, Budapest, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Balázs Kovács
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| |
Collapse
|
8
|
Pujolar JM, Vincenzi S, Zane L, Crivelli AJ. Temporal changes in allele frequencies in a small marble trout Salmo marmoratus population threatened by extreme flood events. JOURNAL OF FISH BIOLOGY 2016; 88:1175-1190. [PMID: 26832308 DOI: 10.1111/jfb.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
The effect of extreme floods on the genetic composition of marble trout Salmo marmoratus living in Lipovscek, a tributary of the Soca River in Slovenia, which has been affected by multiple destructive flood events for centuries was investigated. By monitoring genetic variability during the period 2004-2011, apparent signatures of genetic erosion including a decline in observed and expected heterozygosities and allelic richness were observed. Contemporary effective population size was estimated between 11 and 55 individuals, which is congruent with census data. The data suggest asymmetric gene flow between the two sections of the river. The existence of substantial downstream migration (15-19%) was confirmed by paternity analysis. A small (1-3%) upstream migration was also suggested, which was confirmed by tagging data. Overall, low genetic diversity has not prevented the survival of the Lipovscek population, which might be a common feature of salmonid freshwater populations.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
| | - S Vincenzi
- Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA, 95064, U.S.A
- Department of Environmental Sciences, University of Parma, 43100, Parma, Italy
| | - L Zane
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - A J Crivelli
- Station Biologique de la Tour du Valat, 13200, Arles, France
| |
Collapse
|
9
|
Perea S, Doadrio I. Phylogeography, historical demography and habitat suitability modelling of freshwater fishes inhabiting seasonally fluctuating Mediterranean river systems: a case study using the Iberian cyprinid Squalius valentinus. Mol Ecol 2015; 24:3706-22. [PMID: 26085305 DOI: 10.1111/mec.13274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid-Pliocene. Freshwater species in Mediterranean-type climates will likely constitute genetically well-differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean-type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean-type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of freshwater species inhabiting seasonally fluctuating river systems.
Collapse
Affiliation(s)
- S Perea
- Museo Nacional de Ciencias Naturales, CSIC, Biodiversity and Evolutionary Biology Department, C/José Gutiérrez Abascal, 2. 28006, Madrid, Spain
| | - I Doadrio
- Museo Nacional de Ciencias Naturales, CSIC, Biodiversity and Evolutionary Biology Department, C/José Gutiérrez Abascal, 2. 28006, Madrid, Spain
| |
Collapse
|
10
|
Hahn C, Weiss SJ, Stojanovski S, Bachmann L. Co-Speciation of the Ectoparasite Gyrodactylus teuchis (Monogenea, Platyhelminthes) and Its Salmonid Hosts. PLoS One 2015; 10:e0127340. [PMID: 26080029 PMCID: PMC4469311 DOI: 10.1371/journal.pone.0127340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Co-speciation is a fundamental concept of evolutionary biology and intuitively appealing, yet in practice hard to demonstrate as it is often blurred by other evolutionary processes. We investigate the phylogeographic history of the monogenean ectoparasites Gyrodactylus teuchis and G. truttae on European salmonids of the genus Salmo. Mitochondrial cytochrome oxidase subunit 1 and the nuclear ribosomal internal transcribed spacer 2 were sequenced for 189 Gyrodactylus individuals collected from 50 localities, distributed across most major European river systems, from the Iberian- to the Balkan Peninsula. Despite both anthropogenic and naturally caused admixture of the principal host lineages among major river basins, co-phylogenetic analyses revealed significant global congruence for host and parasite phylogenies, providing firm support for co-speciation of G. teuchis and its salmonid hosts brown trout (S. trutta) and Atlantic salmon (S. salar). The major split within G. teuchis, coinciding with the initial divergence of the hosts was dated to ~1.5 My BP, using a Bayesian framework based on an indirect calibration point obtained from the host phylogeny. The presence of G. teuchis in Europe thus predates some of the major Pleistocene glaciations. In contrast, G. truttae exhibited remarkably low intraspecific genetic diversity. Given the direct life cycle and potentially high transmission potential of gyrodactylids, this finding is interpreted as indication for a recent emergence (<60 ky BP) of G. truttae via a host-switch. Our study thus suggests that instances of two fundamentally different mechanisms of speciation (co-speciation vs. host-switching) may have occurred on the same hosts in Europe within a time span of less than 1.5 My in two gyrodactylid ectoparasite species.
Collapse
Affiliation(s)
- Christoph Hahn
- Natural History Museum, University of Oslo, 0318, Oslo, Norway
- School for Biological, Biomedical and Environmental Science, University of Hull, Hull, HU6 7RX, United Kingdom
- * E-mail:
| | - Steven J. Weiss
- Institute of Zoology, Karl-Franzens University of Graz, 8010, Graz, Austria
| | - Stojmir Stojanovski
- Department of Fish Parasitology, Hydrobiological Institute, 6000, Ohrid, R. Macedonia
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, 0318, Oslo, Norway
| |
Collapse
|
11
|
Gratton P, Allegrucci G, Sbordoni V, Gandolfi A. The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach. Mol Phylogenet Evol 2014; 79:292-304. [PMID: 24997330 DOI: 10.1016/j.ympev.2014.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
Mediterranean trout populations display a diversity of phenotypes, representing a valuable model for the study of adaptation and a puzzling dilemma for taxonomists and biogeographers, which is further entangled by the widespread introgression of allochthonous genes. In this paper we analysed DNA polymorphism at multiple loci (sequence variation of the mitochondrial control region and eight nuclear fragments and length variation at eleven nuclear microsatellite loci) in representative samples of the autochthonous taxonomic diversity described in Italian trout populations (Salmo marmoratus, S. carpio, S. cenerinus, S. cettii and S. fibreni) and in samples from hatchery-originated strains of Atlantic S. trutta. We employed model-based clustering and Approximate Bayesian Computation in order to: (i) describe the phylogeographic structure of Italian autochthonous trout populations; (ii) evaluate a set of evolutionary/biogeographic models. The inclusion of hatchery-originated strains allowed to account for man-mediated allochthonous introgression in Italian populations. Our results (i) showed that the analysed sample consists of two main autochthonous evolutionary lineages, including the marble trout populations on one side ('marble' lineage) and the three peninsular populations of S. cettii, S. cenerinus and S. fibreni on the other side ('peninsular' lineage); (ii) indicated that S. carpio originated from a 'peninsular' population, with a possible, limited contribution from the 'marble' lineage; (iii) pointed out that the 'marble' lineage started diverging before the separation of the 'peninsular' lineage from Atlantic S. trutta; (iv) suggested that a model of divergence involving gene flow from the 'peninsular' population into the ancestral gene pool of 'marble' trout is most consistent with the genetic data; (v) provided evidence that the autochthonous trout gene pools in the Tyrrhenian and Adriatic basins of the Italian peninsula started diverging very recently (most likely after the last glacial maximum).
Collapse
Affiliation(s)
- Paolo Gratton
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, I-38010 S. Michele all'Adige, Italy; Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy.
| | - Giuliana Allegrucci
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy
| | - Valerio Sbordoni
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy
| | - Andrea Gandolfi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, I-38010 S. Michele all'Adige, Italy
| |
Collapse
|
12
|
Pustovrh G, Snoj A, Bajec SS. Molecular phylogeny of Salmo of the western Balkans, based upon multiple nuclear loci. Genet Sel Evol 2014; 46:7. [PMID: 24490816 PMCID: PMC3915233 DOI: 10.1186/1297-9686-46-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Classification of species within the genus Salmo is still a matter of discussion due to their high level of diversity and to the low power of resolution of mitochondrial (mt)DNA-based phylogeny analyses that have been traditionally used in evolutionary studies of the genus. We apply a new marker system based on nuclear (n)DNA loci to present a novel view of the phylogeny of Salmo representatives and we compare it with the mtDNA-based phylogeny. Methods Twenty-two nDNA loci were sequenced for 76 individuals of the brown trout complex: Salmo trutta (Danubian, Atlantic, Adriatic, Mediterranean and Duero mtDNA lineages), Salmo marmoratus (marble trout), Salmo obtusirostris (softmouth trout), and Salmo ohridanus (Ohrid belvica or belushka). Sequences were phylogenetically analyzed using maximum-likelihood and Bayesian Inference methods. The divergence time of the major clades was estimated using the program BEAST. Results The existence of five genetic units i.e. S. salar, S. ohridanus, S. obtusirostris, S. marmoratus and the S. trutta complex, including its major phylogenetic lineages was confirmed. Contrary to previous observations, S. obtusirostris was found to be sister to the S. trutta complex and the S. marmoratus clade rather than to the S. ohridanus clade. Reticulate evolution of S. obtusirostris was confirmed and a time for its pre-glacial origin suggested. S. marmoratus was found to be a separate species as S. trutta and S. obtusirostris. Relationships among lineages within the S. trutta complex were weakly supported and remain largely unresolved. Conclusions Nuclear DNA-based results showed a fairly good match with the phylogeny of Salmo inferred from mtDNA analyses. The comparison of nDNA and mtDNA data revealed at least four cases of mitochondrial–nuclear DNA discordance observed that were all confined to the Adriatic basin of the Western Balkans. Together with the well-known extensive morphological and genetic variability of Balkan trouts, this observation highlights an interesting and variegated evolutionary history of Salmo in this area.
Collapse
Affiliation(s)
| | | | - Simona Sušnik Bajec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 DomŽale, Slovenia.
| |
Collapse
|
13
|
Berrebi P, Tougard C, Dubois S, Shao Z, Koutseri I, Petkovski S, Crivelli AJ. Genetic diversity and conservation of the Prespa trout in the Balkans. Int J Mol Sci 2013; 14:23454-70. [PMID: 24287917 PMCID: PMC3876056 DOI: 10.3390/ijms141223454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/11/2013] [Accepted: 11/19/2013] [Indexed: 11/30/2022] Open
Abstract
The Balkans are known to have a high level of biodiversity and endemism. No less than 15 taxa have been recorded in salmonids of the Salmo genus. Among them, the Prespa trout is found in only four river systems flowing into Lake Macro Prespa, three in the Former Yugoslav Republic of Macedonia and one in Greece. This is the first comprehensive survey of all streams located within the Macro Prespa Basin, encompassing the whole taxon range. A large genetic sample of 536 Prespa trout was collected mainly between 2005 and 2007. The sampling included 59 individuals from the Golema river system, 93 from the Kranska, 260 from the Brajcinska, 119 from the Agios Germanos, and five individuals from the lake itself. These specimens were analyzed with six microsatellite markers and by sequencing the mitochondrial control region. Nuclear data were examined through multidimensional analysis and assignment tests. Five clusters were detected by assignment: Golema, Kranska, Brajcinska upstream, Rzanska Brajcinska tributary and Brajcinska downstream. Most of these river systems thus hosted differentiated Prespa trout populations (with past gene flows likely dating before the construction of dams), except Agios Germanos, which was found to be composed of 5% to 32% of each cluster. Among the five trout individuals from the lake, four originated from Kranska River and one was admixed. Supported parsimonious hypotheses are proposed to explain these specificities. Conservation of this endemic taxon should take these results into account. No translocation should be performed between different tributaries of the lake and preservation of the Brajcinska populations should address the upstream-downstream differentiation described.
Collapse
Affiliation(s)
- Patrick Berrebi
- Institut des Sciences de l’Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, Place Eugène Bataillon, Montpellier cedex 05 34095, France; E-Mails: (C.T.); (S.D.); (Z.S.)
| | - Christelle Tougard
- Institut des Sciences de l’Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, Place Eugène Bataillon, Montpellier cedex 05 34095, France; E-Mails: (C.T.); (S.D.); (Z.S.)
| | - Sophie Dubois
- Institut des Sciences de l’Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, Place Eugène Bataillon, Montpellier cedex 05 34095, France; E-Mails: (C.T.); (S.D.); (Z.S.)
| | - Zhaojun Shao
- Institut des Sciences de l’Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, Place Eugène Bataillon, Montpellier cedex 05 34095, France; E-Mails: (C.T.); (S.D.); (Z.S.)
| | - Irene Koutseri
- Society for the Protection of Prespa, Agios Germanos, Prespa 530 77, Greece; E-Mail:
| | - Svetozar Petkovski
- Society for the Investigation and Conservation of Biodiversity and the Sustainable Development of Natural Ecosystems-BIOECO, Briselska 12, Skopje 1000, FYR of Macedonia; E-Mail:
| | - Alain J. Crivelli
- Station Biologique de la Tour du Valat, Le Sambuc, Arles 13200, France; E-Mail:
| |
Collapse
|
14
|
Genetic diversity and phylogenetic origin of brown trout Salmo trutta populations in eastern Balkans. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0271-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hashemzadeh Segherloo I, Farahmand H, Abdoli A, Bernatchez L, Primmer CR, Swatdipong A, Karami M, Khalili B. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach. JOURNAL OF FISH BIOLOGY 2012; 81:1479-1500. [PMID: 23020557 DOI: 10.1111/j.1095-8649.2012.03428.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interrelationships, origin and phylogenetic affinities of brown trout Salmo trutta populations from the southern Caspian Sea basin, Orumieh and Namak Lake basins in Iran were analysed from complete mtDNA control region sequences, 12 microsatellite loci and morphological characters. Among 129 specimens from six populations, seven haplotypes were observed. Based on mtDNA haplotype data, the Orumieh and southern Caspian populations did not differ significantly, but the Namak basin-Karaj population presented a unique haplotype closely related to the haplotypes of the other populations (0·1% Kimura two-parameter, K2P divergence). All Iranian haplotypes clustered as a distinct group within the Danube phylogenetic grouping, with an average K2P distance of 0·41% relative to other Danubian haplotypes. The Karaj haplotype in the Namak basin was related to a haplotype (Da26) formerly identified in the Tigris basin in Turkey, to a Salmo trutta oxianus haplotype from the Aral Sea basin, and to haplotype Da1a with two mutational steps, as well as to other Iranian haplotypes with one to two mutational steps, which may indicate a centre of origin in the Caspian basin. In contrast to results of the mtDNA analysis, more pronounced differentiation was observed among the populations studied in the morphological and microsatellite DNA data, except for the two populations from the Orumieh basin, which were similar, possibly due to anthropogenic causes.
Collapse
|
16
|
Apostolidis AP, Stoumboudi MT, Kalogianni E, Cote G, Bernatchez L. Genetic divergence among native trout Salmo trutta populations from southern Balkans based on mitochondrial DNA and microsatellite variation. JOURNAL OF FISH BIOLOGY 2011; 79:1950-1960. [PMID: 22141897 DOI: 10.1111/j.1095-8649.2011.03136.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genetic structure and the phylogenetic relationships among five Balkan populations of trout Salmo trutta that have been classified earlier into five different taxa were studied, using microsatellite and mitochondrial DNA (mtDNA) analyses. The pattern of population differentiation observed at microsatellites differed to that depicted by mtDNA variation, yet both methods indicated a very strong partitioning of the genetic variation among sampling locations. Results thus suggest that conservation strategies should be directed towards preserving the genetic integrity and uniqueness of each population.
Collapse
Affiliation(s)
- A P Apostolidis
- Lab of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
17
|
Pustovrh G, Sušnik Bajec S, Snoj A. Evolutionary relationship between marble trout of the northern and the southern Adriatic basin. Mol Phylogenet Evol 2011; 59:761-6. [DOI: 10.1016/j.ympev.2011.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/15/2011] [Accepted: 03/20/2011] [Indexed: 11/28/2022]
|
18
|
Lo Brutto S, Hristovski N, Arculeo M. Genetic divergence between morphological forms of brown trout Salmo trutta L. in the Balkan region of Macedonia. JOURNAL OF FISH BIOLOGY 2010; 76:1220-1227. [PMID: 20409173 DOI: 10.1111/j.1095-8649.2010.02595.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this study was to characterize the genetic structure of two Balkan brown trout morphotypes, Salmo macedonicus and Salmo pelagonicus, and to test whether molecular traits support the species' status proposed by traditional morphological identification. The mitochondrial DNA 12S-rDNA, cyt b and control region genes were sequenced in 15 specimens collected from three localities in the Former Yugoslav Republic of Macedonia. The results of these markers did not support the taxonomic category of species but confirmed the existence of two morphotypes, Salmo trutta macedonicus and Salmo trutta pelagonicus, in the Aegean-Adriatic lineages of the Salmo trutta species complex.
Collapse
Affiliation(s)
- S Lo Brutto
- Dipartimento di Biologia Animale G. Reverberi, Università di Palermo, Palermo, Italy.
| | | | | |
Collapse
|