1
|
Miller JM, Ozyck RG, Pagano PL, Hernandez EF, Davis ME, Karam AQ, Malek JB, Mara AB, Tulman ER, Szczepanek SM, Geary SJ. Rationally designed Mycoplasma gallisepticum vaccine using a recombinant subunit approach. NPJ Vaccines 2024; 9:178. [PMID: 39341840 PMCID: PMC11438903 DOI: 10.1038/s41541-024-00978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is an avian respiratory pathogen causing significant global economic losses to the poultry industries. Current live-attenuated and bacterin vaccines provide some measures of protective immunity but exhibit suboptimal efficacy, utility, or safety. To address these shortcomings, we utilized knowledge of MG biology and virulence to develop a subunit vaccine containing recombinantly produced primary adhesin GapA, cytadhesin-related molecule CrmA, and four early-phase-expressed variable lipoprotein hemagglutinins (VlhAs) (3.03, 3.06, 4.07, 5.05) of the virulent strain Rlow. The vaccine was tested in chickens using a subcutaneous dose of 50 µg per protein, a prime-boost schedule, and strain Rlow challenge in multiple studies to compare adjuvant formulations. While different adjuvants resulted in variable levels of protection, only CpG oligodeoxynucleotide (CpG ODN 2007) resulted in significant reductions of both MG recovery and tracheal pathology. These results demonstrate that a rationally designed and safe subunit vaccine is efficacious against MG disease.
Collapse
Affiliation(s)
- Jeremy M Miller
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Rosemary Grace Ozyck
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Patrick L Pagano
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Esmeralda F Hernandez
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Megan E Davis
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Anton Q Karam
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Jessica B Malek
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Arlind B Mara
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Steven M Szczepanek
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA.
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA.
| |
Collapse
|
2
|
Kamathewatta KI, Condello AK, Kulappu Arachchige SN, Young ND, Shil PK, Noormohammadi AH, Tivendale KA, Wawegama NK, Browning GF. Characterisation of the tracheal transcriptional response of chickens to chronic infection with Mycoplasma synoviae. Vet Microbiol 2024; 294:110119. [PMID: 38772075 DOI: 10.1016/j.vetmic.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.
Collapse
Affiliation(s)
- Kanishka I Kamathewatta
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Liu Y, Wang Y, Zheng SJ. Immune Evasion of Mycoplasma gallisepticum: An Overview. Int J Mol Sci 2024; 25:2824. [PMID: 38474071 DOI: 10.3390/ijms25052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Mycoplasma gallisepticum is one of the smallest self-replicating organisms. It causes chronic respiratory disease, leading to significant economic losses in poultry industry. Following M. gallisepticum invasion, the pathogen can persist in the host owing to its immune evasion, resulting in long-term chronic infection. The strategies of immune evasion by mycoplasmas are very complex and recent research has unraveled these sophisticated mechanisms. The antigens of M. gallisepticum exhibit high-frequency changes in size and expression cycle, allowing them to evade the activation of the host humoral immune response. M. gallisepticum can invade non-phagocytic chicken cells and also regulate microRNAs to modulate cell proliferation, inflammation, and apoptosis in tracheal epithelial cells during the disease process. M. gallisepticum has been shown to transiently activate the inflammatory response and then inhibit it by suppressing key inflammatory mediators, avoiding being cleared. The regulation and activation of immune cells are important for host response against mycoplasma infection. However, M. gallisepticum has been shown to interfere with the functions of macrophages and lymphocytes, compromising their defense capabilities. In addition, the pathogen can cause immunological damage to organs by inducing an inflammatory response, cell apoptosis, and oxidative stress, leading to immunosuppression in the host. This review comprehensively summarizes these evasion tactics employed by M. gallisepticum, providing valuable insights into better prevention and control of mycoplasma infection.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Limpavithayakul K, Charoenvisal N, Pakpinyo S. Molecular assay for detecting MS-H vaccine strain and immune response mechanisms in chickens receiving one or two doses of live MS-H vaccine. Avian Pathol 2024; 53:33-43. [PMID: 37791564 DOI: 10.1080/03079457.2023.2267022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
The MS-H vaccine, containing a live strain of Mycoplasma synoviae, is a feasible option for controlling M. synoviae infection in poultry flocks. A comprehensive understanding of vaccinated chickens, including strain differentiation and immune response mechanisms, is required to optimize vaccination strategy. This study aimed to verify the PCR-RFLP molecular assay as a convenient technique for detecting the MS-H vaccine strain and to characterize the immune response mechanisms in experimental layer-type chickens receiving one of three different vaccination programmes; a single dose at either 9 or 12 weeks of age or two doses at both 9 and 12 weeks of age. The PCR-RFLP assay, using restriction enzyme TasI to digest vlhA gene-targeted PCR amplicons, was performed to evaluate vaccine administration by detecting the MS-H vaccine strain in vaccinated chickens and differentiating it from non-vaccine strains such as WVU1853 reference strain and Thai M. synoviae field strains. Results demonstrated that vaccination in layer-type chickens, whether as one or two doses, stimulated immune response mechanisms with no significant advantages of two administrations over a single administration. Serological responses in vaccinated chickens, examined by RPA test and ELISA, were initially detected at 2 weeks post-vaccination, continuously increased, and then remained at the baseline levels from 6 to 9 weeks post-vaccination. Cellular immune responses against both homologous and heterologous antigens, examined by the MTS tetrazolium assay, were similar in the early period post-vaccination, whereas cellular immune response against the homologous MS-H antigen was improved in the late period post-vaccination.
Collapse
Affiliation(s)
- Kriengwich Limpavithayakul
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nataya Charoenvisal
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somsak Pakpinyo
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.
Collapse
|
6
|
Fiddaman SR, Vinkler M, Spiro SG, Levy H, Emerling CA, Boyd AC, Dimopoulos EA, Vianna JA, Cole TL, Pan H, Fang M, Zhang G, Hart T, Frantz LAF, Smith AL. Adaptation and cryptic pseudogenization in penguin Toll-like Receptors. Mol Biol Evol 2021; 39:6460345. [PMID: 34897511 PMCID: PMC8788240 DOI: 10.1093/molbev/msab354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
Collapse
Affiliation(s)
- Steven R Fiddaman
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University Prague, Czech Republic
| | - Simon G Spiro
- Wildlife Health Services, Zoological Society of London Regent's Park, London, UK
| | - Hila Levy
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | | | - Amy C Boyd
- Jenner Institute, University of Oxford Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford Oxford, UK
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Theresa L Cole
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark
| | - Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tom Hart
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Fogg Building, Queen Mary University of London Mile End Rd, Bethnal Green, London E1 4DQ, UK.,Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
7
|
Transcriptional profiling of the chicken tracheal and splenic response to virulent Mycoplasma synoviae. Poult Sci 2021; 101:101660. [PMID: 35077920 PMCID: PMC8792283 DOI: 10.1016/j.psj.2021.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 10/25/2022] Open
Abstract
Mycoplasma synoviae (MS), an important avian pathogen, can cause chronic respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, leading serious economic losses in the global poultry industry. To date, studies have shown significant different transcript profiles using various chicken cells after MS infection. However, in vitro cell models cannot fully represent the complex in vivo regulations after adventitious infection. The objective of this study was to explore the nature of the host-pathogen interaction during MS infection. The tracheal and spleen tissues of chickens were collected at d 0, 1, 3, and 5 postinoculation, and samples were analyzed for differential gene expression using Illumina RNA sequencing. A lot of significantly differentially expressed genes (DEGs) were observed in this analysis, and 861 DEGs were observed in trachea tissues and 753 DEGs were observed in spleen samples. Many of DEGs in trachea tissues participate in a variety of cellular activities, especially cellular metabolism. Immune-related DEGs were mainly enriched at d 3, and 5 postinfection in trachea tissues. While, DEGs in spleen tissues were significantly and mainly enriched into immune-related pathways. The results of this study show the direct interactions between MS and the chicken trachea and spleen for the first time. Early dysregulation of tissue-wide gene expression as observed here set the stage for persistent infection of MS.
Collapse
|
8
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
9
|
Dual RNA-Seq transcriptome analysis of chicken macrophage-like cells (HD11) infected in vitro with Eimeria tenella. Parasitology 2021; 148:712-725. [PMID: 33536090 PMCID: PMC8056837 DOI: 10.1017/s0031182021000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2–4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.
Collapse
|
10
|
Xu B, Liu R, Ding M, Zhang J, Sun H, Liu C, Lu F, Zhao S, Pan Q, Zhang X. Interaction of Mycoplasma synoviae with chicken synovial sheath cells contributes to macrophage recruitment and inflammation. Poult Sci 2020; 99:5366-5377. [PMID: 33142453 PMCID: PMC7647830 DOI: 10.1016/j.psj.2020.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/13/2020] [Accepted: 08/15/2020] [Indexed: 11/21/2022] Open
Abstract
Mycoplasma synoviae (MS) is an important avian pathogen causing considerable economic hardship in the poultry industry. A major inflammation caused by MS is synovitis that occurs in the synovial tendon sheath and joint synovium. However, the overall appearance of pathological changes in the tendon sheath and surrounding tissues caused by MS infection at the level of pathological tissue sections was poor. Studies on the role of MS and synovial sheath cells (SSCs) interaction in the development of synovitis have not been carried out. Through histopathological observation, our study found that a major MS-induced pathological change of the tendon sheath synovium was extensive scattered and focal inflammatory cell infiltration of the tendon sheath synovial layer. In vitro research experiments revealed that the CFU numbers of MS adherent and invading SSC, the levels of expression of various pattern recognition receptors, inflammatory cytokines, and chemokines coding genes, such as IL-1β, IL-6, IL-8, CCL-20, RANTES, MIP-1β, TLR7, and TLR15 in SSCs, and chemotaxis of macrophages were significantly increased when the multiplicity of infection (MOI) of MS to SSC were increased tenfold. The expression level of IL-12p40 in SSC was significantly higher when the MOIs of MS to SSC were increased by a factor of 100. The interaction between MS and SSC can activate macrophages, which was manifested by a significant increase in the expression of IL-1β, IL-6, IL-8, CCL-20, RANTES, MIP-1β, and CXCL-13. This study systematically demonstrated that the interaction of MS with chicken SSC contributes to the inflammatory response caused by the robust expression of related cytokines and macrophage chemotaxis. These findings are helpful in elucidating the molecular mechanism of MS-induced synovitis in chickens.
Collapse
Affiliation(s)
- Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meijuan Ding
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sha Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
11
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Jang HJ, Song KD. Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:385-395. [PMID: 32568266 PMCID: PMC7288226 DOI: 10.5187/jast.2020.62.3.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 µg/mL to 100 µg/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
13
|
Liu R, Xu B, Yu S, Zhang J, Sun H, Liu C, Lu F, Pan Q, Zhang X. Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae. Front Microbiol 2020; 11:576. [PMID: 32318048 PMCID: PMC7147270 DOI: 10.3389/fmicb.2020.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
15
|
Transcriptional and Pathological Host Responses to Coinfection with Virulent or Attenuated Mycoplasma gallisepticum and Low-Pathogenic Avian Influenza A Virus in Chickens. Infect Immun 2019; 88:IAI.00607-19. [PMID: 31591166 DOI: 10.1128/iai.00607-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
The avian pathogen Mycoplasma gallisepticum, the etiological agent of chronic respiratory disease in chickens, exhibits enhanced pathogenesis in the presence of a copathogen such as low-pathogenic avian influenza virus (LPAIV). To further investigate the intricacies of this copathogenesis, chickens were monoinfected or coinfected with either virulent M. gallisepticum strain Rlow or LPAIV H3N8 (A/duck/Ukraine/1963), with assessment of tracheal histopathology, pathogen load, and transcriptomic host responses to infection by RNA sequencing. Chickens coinfected with M. gallisepticum Rlow followed by LPAIV H3N8 exhibited significantly more severe tracheal lesions and mucosal thickening than chickens infected with LPAIV H3N8 alone and greater viral loads than chickens infected first with H3N8 and subsequently with M. gallisepticum Rlow Recovery of live M. gallisepticum was significantly higher in chickens infected first with LPAIV H3N8 and then with M. gallisepticum Rlow, compared to chickens given a mock infection followed by M. gallisepticum Rlow The transcriptional responses to monoinfection and coinfection with M. gallisepticum and LPAIV highlighted the involvement of differential expression of genes such as Toll-like receptor 15, Toll-like receptor 21, and matrix metallopeptidase 1. Pathway and gene ontology analyses of these differentially expressed genes suggest that coinfection with virulent M. gallisepticum and LPAIV induces decreases in the expression of genes related to ciliary activity in vivo and alters multiple immune-related signaling cascades. These data aid in the understanding of the relationship between M. gallisepticum and LPAIV during copathogenesis in the natural host and may contribute to further understanding of copathogen infections of humans and other animals.
Collapse
|
16
|
Gong X, Chen Q, Ferguson-Noel N, Stipkovits L, Szathmary S, Liu Y, Zheng F. Evaluation of protective efficacy of inactivated Mycoplasma synoviae vaccine with different adjuvants. Vet Immunol Immunopathol 2019; 220:109995. [PMID: 31877484 DOI: 10.1016/j.vetimm.2019.109995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Mycoplasma synoviae (MS) is a poultry pathogen with a reported distribution throughout the world. Vaccination is utilized as an important component of MS control programs for MS infection. The aim of this study was to evaluate protection efficacy of an inactivated MS vaccine (MS bacterin) with different adjuvants in broilers against a Chinese field isolate (CHN-BZJ2-2015). Vaccination with adjuvants ISA 71 VG and chitosan, respectively, enhanced specific lymphocyte proliferation responses and upregulated the expression of IL-1β, IL-6, IL-2 and IFN-γ prior to challenge. Furthermore, vaccination with adjuvant ISA 71 VG elicited the highest antibody titers, exhibited significantly lower air sac, foot pad and tracheal lesions than the other groups (P < 0.05), and decreased MS colonization. These results demonstrated that inactivated MS vaccine with ISA 71 VG is able to induce both cellular and humoral immune response in broilers and confers a high level of protection upon challenge, demonstrating a potential application in the field.
Collapse
Affiliation(s)
- Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Naola Ferguson-Noel
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, 30602, USA
| | | | | | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
17
|
Interaction Differences of the Avian Host-Specific Salmonella enterica Serovar Gallinarum, the Host-Generalist S. Typhimurium, and the Cattle Host-Adapted S. Dublin with Chicken Primary Macrophage. Infect Immun 2019; 87:IAI.00552-19. [PMID: 31548317 DOI: 10.1128/iai.00552-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022] Open
Abstract
Most Salmonella serovars cause disease in many host species, while a few serovars have evolved to be host specific. Very little is known about the mechanisms that contribute to Salmonella host specificity. We compared the interactions between chicken primary macrophages (CDPM) and host-generalist serovar Salmonella enterica serovar Typhimurium, host-adapted Salmonella enterica serovar Dublin, and avian host-specific Salmonella enterica serovar Gallinarum. S Gallinarum was taken up in lower numbers by CDPM than S Typhimurium and S Dublin; however, a higher survival rate was observed for this serovar. In addition, S Typhimurium and S Dublin caused substantially higher levels of cell death to the CDPM, while significantly higher concentrations of NO were produced by S Gallinarum-infected cells. Global transcriptome analysis performed 2 h postinfection showed that S Gallinarum infection triggered a more comprehensive response in CDPM with 1,114 differentially expressed genes (DEGs) compared to the responses of S Typhimurium (625 DEGs) and S Dublin (656 DEGs). Comparable levels of proinflammation responses were observed in CDPM infected by these three different serovars at the initial infection phase, but a substantially quicker reduction in levels of interleukin-1β (IL-1β), CXCLi1, and CXCLi2 gene expression was detected in the S Gallinarum-infected macrophages than that of two other groups as infections proceeded. KEGG cluster analysis for unique DEGs after S Gallinarum infection showed that the JAK-STAT signaling pathway was top enriched, indicating a specific role for this pathway in response to S Gallinarum infection of CDPM. Together, these findings provide new insights into the interaction between Salmonella and the host and increase our understanding of S Gallinarum host specificity.
Collapse
|
18
|
Immunologic Pathways in Protective versus Maladaptive Host Responses to Attenuated and Pathogenic Strains of Mycoplasma gallisepticum. Infect Immun 2019; 87:IAI.00613-18. [PMID: 30559221 DOI: 10.1128/iai.00613-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Mycoplasmas are small bacterial commensals or pathogens that commonly colonize host mucosal tissues and avoid rapid clearance, in part by stimulating inflammatory, immunopathogenic responses. We previously characterized a wide array of transcriptomic perturbations in avian host tracheal mucosae infected with virulent, immunopathologic Mycoplasma gallisepticum; however, mechanisms delineating these from protective responses, such as those induced upon vaccination, have not been thoroughly explored. In this study, host transcriptomic responses to two experimental M. gallisepticum vaccines were assessed during the first 2 days of infection. Relative to virulent infection, host metabolic and immune gene responses to both vaccines were greatly decreased, including early innate immune responses critical to disease development and subsequent adaptive immunity. These data specify host genes and potential mechanisms contributing to maladaptive versus beneficial host responses-information critical for design of vaccines efficacious in both limiting inflammation and enabling pathogen clearance.
Collapse
|
19
|
Arslan M, Yang X, Santhakumar D, Liu X, Hu X, Munir M, Li Y, Zhang Z. Dynamic Expression of Interferon Lambda Regulated Genes in Primary Fibroblasts and Immune Organs of the Chicken. Genes (Basel) 2019; 10:genes10020145. [PMID: 30769908 PMCID: PMC6409627 DOI: 10.3390/genes10020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines that establish a first line of defense against viral infections in vertebrates. Several types of IFN have been identified; however, limited information is available in poultry, especially using live animal experimental models. IFN-lambda (IFN-λ) has recently been shown to exert a significant antiviral impact against viral pathogens in mammals. In order to investigate the in vivo potential of chicken IFN-λ (chIFN-λ) as a regulator of innate immunity, and potential antiviral therapeutics, we profiled the transcriptome of chIFN-λ-stimulated chicken immune organs (in vivo) and compared it with primary chicken embryo fibroblasts (in vitro). Employing the baculovirus expression vector system (BEVS), recombinant chIFN-λ3 (rchIFN-λ3) was produced and its biological activities were demonstrated. The rchIFNλ3 induced a great array of IFN-regulated genes in primary chicken fibroblast cells. The transcriptional profiling using RNA-seq and subsequent bioinformatics analysis (gene ontology, differential expressed genes, and KEGGs analysis) of the bursa of Fabricious and the thymus demonstrated an upregulation of crucial immune genes (viperin, IKKB, CCL5, IL1β, and AP1) as well as the antiviral signaling pathways. Interestingly, this experimental approach revealed contrasting evidence of the antiviral potential of chIFN-λ in both in vivo and in vitro models. Taken together, our data signifies the potential of chIFN-λ as a potent antiviral cytokine and highlights its future possible use as an antiviral therapeutic in poultry.
Collapse
Affiliation(s)
- Mehboob Arslan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Diwakar Santhakumar
- Division of Biomedical and Life sciences, Faculty of Health and Medicine, Lancaster University,LA1 4YG, Lancaster, UK.
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyuan Hu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Munir
- Division of Biomedical and Life sciences, Faculty of Health and Medicine, Lancaster University,LA1 4YG, Lancaster, UK.
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, Baybayan P, Muehling J, Gu J, Kingan S, Masuda BM, Ryder OA. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species. Genes (Basel) 2018; 9:genes9080393. [PMID: 30071683 PMCID: PMC6115840 DOI: 10.3390/genes9080393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022] Open
Abstract
Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ʻAlalā (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawaiʻi, the ʻAlalā survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ʻAlalā genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.
Collapse
Affiliation(s)
- Jolene T Sutton
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Martin Helmkampf
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Cynthia C Steiner
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| | - M Renee Bellinger
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | | | | | | | | | - Jenny Gu
- Pacific Biosciences, Menlo Park, CA 94025, USA.
| | | | - Bryce M Masuda
- Institute for Conservation Research, San Diego Zoo Global, Volcano, HI 96785, USA.
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| |
Collapse
|
21
|
Transcriptional Profiling of the Chicken Tracheal Response to Virulent Mycoplasma gallisepticum Strain R low. Infect Immun 2017; 85:IAI.00343-17. [PMID: 28739827 DOI: 10.1128/iai.00343-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/16/2017] [Indexed: 01/14/2023] Open
Abstract
Mycoplasma gallisepticum, the primary etiologic agent of chronic respiratory disease (CRD) in poultry, leads to prolonged recruitment and activation of inflammatory cells in the respiratory mucosa. This is consistent with the current model of immune dysregulation that ostensibly allows the organism to evade clearance mechanisms and establish chronic infection. To date, studies using quantitative reverse transcription-PCR (qRT-PCR) and microarrays have shown a significant transient upregulation of cytokines and chemokines from tracheal epithelial cells (TECs) in vitro and tracheal tissue ex vivo in response to virulent strain Rlow that contributes to the infiltration of inflammatory cells into the tracheal mucosa. To expand upon these experiments, RNA was isolated from tracheas of 20 chickens infected with M. gallisepticum Rlow and 20 mock-infected animals at days 1, 3, 5, and 7 postinoculation, and samples were analyzed for differential gene expression using Illumina RNA sequencing. A rapid host response was observed 24 h postinfection, with over 2,500 significantly differentially expressed genes on day 3, the peak of infection. Many of these genes have immune-related functions involved in signaling pathways, including Toll-like receptor (TLR), mitogen-activated protein kinase, Jak-STAT, and the nucleotide oligomerization domain-like receptor pathways. Of interest was the increased expression of numerous cell surface receptors, including TLR4 and TLR15, which may contribute to the production of cytokines. Metabolic pathways were also activated on days 1 and 3 postinfection, ostensibly due to epithelial cell distress that occurs upon infection. Early perturbations in tissue-wide gene expression, as observed here, may underpin a profound immune dysregulation, setting the stage for disease manifestations characteristic of M. gallisepticum infection.
Collapse
|
22
|
Interaction of Mycoplasma hominis PG21 with Human Dendritic Cells: Interleukin-23-Inducing Mycoplasmal Lipoproteins and Inflammasome Activation of the Cell. J Bacteriol 2017; 199:JB.00213-17. [PMID: 28559291 DOI: 10.1128/jb.00213-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hominis lacks a cell wall, and lipoproteins anchored to the extracellular side of the plasma membrane are in direct contact with the host components. A Triton X-114 extract of M. hominis enriched with lipoproteins was shown to stimulate the production of interleukin-23 (IL-23) by human dendritic cells (hDCs). The inflammasome activation of the host cell has never been reported upon M. hominis infection. We studied here the interaction between M. hominis PG21 and hDCs by analyzing both the inflammation-inducing mycoplasmal lipoproteins and the inflammasome activation of the host cell. IL-23-inducing lipoproteins were determined using a sequential extraction strategy with two nondenaturing detergents, Sarkosyl and Triton X-114, followed by SDS-PAGE separation and mass spectrometry identification. The activation of the hDC inflammasome was assessed using PCR array and enzyme-linked immunosorbent assay (ELISA). We defined a list of 24 lipoproteins that could induce the secretion of IL-23 by hDCs, 5 with a molecular mass between 20 and 35 kDa and 19 with a molecular mass between 40 and 100 kDa. Among them, lipoprotein MHO_4720 was identified as potentially bioactive, and a synthetic lipopeptide corresponding to the N-terminal part of the lipoprotein was subsequently shown to induce IL-23 release by hDCs. Regarding the hDC innate immune response, inflammasome activation with caspase-dependent production of IL-1β was observed. After 24 h of coincubation of hDCs with M. hominis, downregulation of the NLRP3-encoding gene and of the adaptor PYCARD-encoding gene was noticed. Overall, this study provides insight into both protagonists of the interaction of M. hominis and hDCs.IMPORTANCEMycoplasma hominis is a human urogenital pathogen involved in gynecologic and opportunistic infections. M. hominis lacks a cell wall, and its membrane contains many lipoproteins that are anchored to the extracellular side of the plasma membrane. In the present study, we focused on the interaction between M. hominis and human dendritic cells and examined both sides of the interaction, the mycoplasmal lipoproteins involved in the activation of the host cell and the immune response of the cell. On the mycoplasmal side, we showed for the first time that M. hominis lipoproteins with high molecular mass were potentially bioactive. On the cell side, we reported an activation of the inflammasome, which is involved in the innate immune response.
Collapse
|
23
|
Gilroy DL, Phillips KP, Richardson DS, van Oosterhout C. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'. J Evol Biol 2017; 30:1276-1287. [PMID: 28370771 DOI: 10.1111/jeb.13077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations.
Collapse
Affiliation(s)
- D L Gilroy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - K P Phillips
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - D S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Mahe, Republic of Seychelles
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
24
|
Hu Y, Chen WW, Liu HX, Shan YJ, Zhu CH, Li HF, Zou JM. Genetic differences in ChTLR15 gene polymorphism and expression involved in Salmonella enterica natural and artificial infection respectively, of Chinese native chicken breeds, with a focus on sexual dimorphism. Avian Pathol 2017; 45:13-25. [PMID: 26488442 DOI: 10.1080/03079457.2015.1110849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chicken Toll-like receptor 15 (ChTLR15) has been shown to participate in immune activation in response to various pathogens and in the innate defence against infection. Two genetically distinct Chinese breeds of chicken (Qinyuan Partridge and Baier breeds) were used to study the correlation between ChTLR15 single nucleotide polymorphisms and the natural infection status of salmonella in hens, and also to examine genetic and sex-specific effects on ChTLR15 mRNA expression in heterophils and spleen during acute infection with Salmonella enterica serovar Enteritidis (SE) from 1 to 10 days after experimental infection. Three single-nucleotide polymorphisms (G168A, C726T and A1166G) in a single exon of ChTLR15 were identified in the two breeds, but only C726T showed a significant association with salmonella infection. Compared with layer-type Baier chicks, meat-type Qingyuan chicks showed a higher tolerance for capture stress and (SE) infection, as measured, respectively, by the modified body weight of chicks in the control group and in the infection group. Meanwhile, ChTLR15 down-regulation in heterophils and up-regulation in spleen were involved in the response to pathogenic SE colonization during the acute infection period. These significant genetic effects in females led to greater differences in both innate and adaptive immune responses than those exhibited in males. These results suggest that genetics, time and gender play important roles in the modulation of ChTLR15 mRNA level elicited by the SE-mediated immune response differentially in the two genetically distinct breeds, with a focus on sexual dimorphism.
Collapse
Affiliation(s)
- Y Hu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , P.R. China
| | - W W Chen
- c Luoyang Pu-like Bio-engineering Co., Ltd , Luoyang , Henan 471000 , P.R. China
| | - H X Liu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - Y J Shan
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - C H Zhu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - H F Li
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - J M Zou
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , P.R. China
| |
Collapse
|
25
|
Kalaiyarasu S, Bhatia S, Mishra N, Sood R, Kumar M, SenthilKumar D, Bhat S, Dass Prakash M. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation. Cytokine 2016; 85:140-7. [PMID: 27344111 DOI: 10.1016/j.cyto.2016.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022]
Abstract
The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India.
| | - Sandeep Bhatia
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - Niranjan Mishra
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - Richa Sood
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - Manoj Kumar
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - D SenthilKumar
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - Sushant Bhat
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| | - M Dass Prakash
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh 462 022, India
| |
Collapse
|
26
|
Wang J, Zhang Z, Chang F, Yin D. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15. PeerJ 2016; 4:e2079. [PMID: 27257554 PMCID: PMC4888287 DOI: 10.7717/peerj.2079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein-protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation.
Collapse
Affiliation(s)
- Jinlan Wang
- Institute of Developmental Biology, School of Life Science, Shandong University , Jinan , China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan , China
| | - Fen Chang
- Institute of Developmental Biology, School of Life Science, Shandong University , Jinan , China
| | - Deling Yin
- School of Pharmacy, Central South University, Changsha, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson, TN, USA
| |
Collapse
|
27
|
Analysis of the early immune response to infection by infectious bursal disease virus in chickens differing in their resistance to the disease. J Virol 2014; 89:2469-82. [PMID: 25505077 PMCID: PMC4325706 DOI: 10.1128/jvi.02828-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chicken whole-genome gene expression arrays were used to analyze the host response to infection by infectious bursal disease virus (IBDV). Spleen and bursal tissue were examined from control and infected birds at 2, 3, and 4 days postinfection from two lines that differ in their resistance to IBDV infection. The host response was evaluated over this period, and differences between susceptible and resistant chicken lines were examined. Antiviral genes, including IFNA, IFNG, MX1, IFITM1, IFITM3, and IFITM5, were upregulated in response to infection. Evaluation of this gene expression data allowed us to predict several genes as candidates for involvement in resistance to IBDV. IMPORTANCE Infectious bursal disease (IBD) is of economic importance to the poultry industry and thus is also important for food security. Vaccines are available, but field strains of the virus are of increasing virulence. There is thus an urgent need to explore new control solutions, one of which would be to breed birds with greater resistance to IBD. This goal is perhaps uniquely achievable with poultry, of all farm animal species, since the genetics of 85% of the 60 billion chickens produced worldwide each year is under the control of essentially two breeding companies. In a comprehensive study, we attempt here to identify global transcriptomic differences in the target organ of the virus between chicken lines that differ in resistance and to predict candidate resistance genes.
Collapse
|
28
|
Phenotypic characterization of Mycoplasma synoviae induced changes in the metabolic and sensitivity profile of in vitro infected chicken chondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613730. [PMID: 25243158 PMCID: PMC4160629 DOI: 10.1155/2014/613730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/09/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022]
Abstract
In infectious synovitis caused by Mycoplasma synoviae chicken chondrocytes (CCH) may come into direct contact with these bacteria that are also capable of invading CCH in vitro. In this study, phenotype microarrays were used to evaluate the influence of Mycoplasma synoviae on the global metabolic activity of CCH. Therefore, CCH were cultured in the presence of 504 individual compounds, spotted in wells of 11 phenotype microarrays for eukaryotic cells, and exposed to Mycoplasma synoviae membranes or viable Mycoplasma synoviae. Metabolic activity and sensitivity of normal cells versus infected cells were evaluated. Metabolic profiles of CCH treated with viable Mycoplasma synoviae or its membranes were significantly different from those of CCH alone. CCH treated with Mycoplasma synoviae membranes were able to use 48 carbon/nitrogen sources not used by CCH alone. Treatment also influenced ion uptake in CCH and intensified the sensitivity to 13 hormones, 5 immune mediators, and 29 cytotoxic chemicals. CCH were even more sensitive to hormones/immune mediators when exposed to viable Mycoplasma synoviae. Our results indicate that exposure to Mycoplasma synoviae or its membranes induces a wide range of metabolic and sensitivity modifications in CCH that can contribute to pathological processes in the development of infectious synovitis.
Collapse
|