1
|
Liu W, Zhang L, Liao W, Liu H, Liang W, Yan J, Huang Y, Jiang T, Wang Q, Zhang C. Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging. Chin Med J (Engl) 2024:00029330-990000000-01345. [PMID: 39647991 DOI: 10.1097/cm9.0000000000003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 12/10/2024] Open
Abstract
ABSTRACT Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wukaiyang Liang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
3
|
Li Y, Wang Y. Obstructive Sleep Apnea-hypopnea Syndrome as a Novel Potential Risk for Aging. Aging Dis 2021; 12:586-596. [PMID: 33815884 PMCID: PMC7990365 DOI: 10.14336/ad.2020.0723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder, negatively influencing individuals' quality of life and socioeconomic burden. In recent years, OSAHS has been reported in not only constituting an aging-associated disease, but also in accelerating and/or potentiating aging mechanisms. However, the negative impacts of OSAHS on aging are underestimated because of low level of public awareness about this disease and high rates of undiagnosed cases, which are more critical in developing countries or economically disadvantaged regions. Hence, reviewing previously reported observations may assist scholars to better indicate that OSAHS is likely a novel potential risk for aging. Further understanding of the pathophysiological mechanism of OSAHS and its role in procession of aging may markedly highlight the importance of this common sleep disorder.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
4
|
Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis 2020; 13:1753466619895229. [PMID: 31852426 PMCID: PMC6923690 DOI: 10.1177/1753466619895229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep resulting in impaired blood gas exchange, namely intermittent
hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress
and systemic inflammation. Among a myriad of potential associated morbidities,
OSA has been particularly implicated as mechanistically contributing to the
prevalence and severity of cardiovascular diseases (CVD). However, the benefits
of continuous positive airway pressure (CPAP), which is generally employed in
OSA treatment, to either prevent or improve CVD outcomes remain unconvincing,
suggesting that the pathophysiological mechanisms underlying the incremental CVD
risk associated with OSA are not clearly understood. One of the challenges in
development of non-invasive diagnostic assays is the ability to identify
clinically and mechanistically relevant biomarkers. Circulating extracellular
vesicles (EVs) and their cargos reflect underlying changes in cellular
homeostasis and can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs,
mRNAs, proteins, and lipids that are packaged in the EVs under normal as well as
diseased states, such as OSA. EVs can not only provide unique insights into
coordinated cellular responses at the organ or systemic level, but can also
serve as reporters of the effects of OSA in CVD, either by their properties
enabling regeneration and repair of injured vascular cells or by damaging them.
Here, we highlight recent progress in the pathological CVD consequences of OSA,
and explore the putative roles of EVs in OSA-associated CVD, along with emerging
diagnostic and therapeutic opportunities. The reviews of this paper are available via the supplemental material
section.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Anabel L Castro-Grattoni
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and MU Women's and Children's Hospital, University of Missouri School of Medicine, 400 N. Keene Street, Suite 010, Columbia, MO 65201, USA
| |
Collapse
|
5
|
Similar Population of CD133+ and DDX4+ VSEL-Like Stem Cells Sorted from Human Embryonic Stem Cell, Ovarian, and Ovarian Cancer Ascites Cell Cultures: The Real Embryonic Stem Cells? Cells 2019; 8:cells8070706. [PMID: 31336813 PMCID: PMC6678667 DOI: 10.3390/cells8070706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
A population of small stem cells with diameters of up to 5 μm resembling very small embryonic-like stem cells (VSELs) were sorted from human embryonic stem cell (hESC) cultures using magnetic-activated cell sorting (MACS) based on the expression of a stem-cell-related marker prominin-1 (CD133). These VSEL-like stem cells had nuclei that almost filled the whole cell volume and expressed stem-cell-related markers (CD133, SSEA-4) and markers of germinal lineage (DDX4/VASA, PRDM14). They were comparable to similar populations of small stem cells sorted from cell cultures of normal ovaries and were the predominant cells in ascites of recurrent ovarian cancer. The sorted populations of CD133+ VSEL-like stem cells were quiescent in vitro, except for ascites, and were highly activated after exposure to valproic acid and follicle-stimulating hormone (FSH), indicating a new tool to study these cells in vitro. These VSEL-like stem cells spontaneously formed clusters resembling tumour-like structures or grew into larger, oocyte-like cells and were differentiated in vitro into adipogenic, osteogenic and neural lineages after sorting. We propose the population of VSEL-like stem cells from hESC cultures as potential original embryonic stem cells, which are present in the human embryo, persist in adult human ovaries from the embryonic period of life and are involved in cancer manifestation.
Collapse
|
6
|
Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive Sleep Apnea and Hallmarks of Aging. Trends Mol Med 2017; 23:675-692. [PMID: 28739207 DOI: 10.1016/j.molmed.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep disorders. Since aging is a risk factor for OSA development, it is expected that its prevalence will increase with the current increase in life span. In recent years, several studies have shown that OSA potentially contributes to functional decline, mainly prompted by chronic intermittent hypoxia and sleep fragmentation. Here, we propose that OSA might anticipate/aggravate aging by inducing cellular and molecular impairments that characterize the aging process, such as stem cell exhaustion, telomere attrition and epigenetic changes. We suggest that further knowledge on the impact of OSA on aging mechanisms might contribute to a better understanding of how OSA might putatively accelerate aging and aging-related diseases.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea. Front Physiol 2016; 7:319. [PMID: 27524971 PMCID: PMC4965455 DOI: 10.3389/fphys.2016.00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Laura Schaedel
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - Blai Casals
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - David Gozal
- Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
8
|
Virant-Klun I. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans. Stem Cells Dev 2015; 25:101-13. [PMID: 26494182 DOI: 10.1089/scd.2015.0275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Center Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
9
|
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L129-40. [PMID: 24838748 DOI: 10.1152/ajplung.00089.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent hypoxia (IH) has been extensively studied during the last decade, primarily as a surrogate model of sleep apnea. However, IH is a much more pervasive phenomenon in human disease, is viewed as a potential therapeutic approach, and has also been used in other disciplines, such as in competitive sports. In this context, adverse outcomes involving cardiovascular, cognitive, metabolic, and cancer problems have emerged in obstructive sleep apnea-based studies, whereas beneficial effects of IH have also been identified. Those a priori contradictory findings may not be as contradictory as initially thought. Indeed, the opposite outcomes triggered by IH can be explained by the specific characteristics of the large diversity of IH patterns applied in each study. The balance between benefits and injury appears to primarily depend on the ability of the organism to respond and activate adaptive mechanisms to IH. In this context, the adaptive or maladaptive responses can be generally predicted by the frequency, severity, and duration of IH. However, the presence of underlying conditions such as hypertension or obesity, as well as age, sex, or genotypic variance, may be important factors tilting the balance between an appropriate homeostatic response and decompensation. Here, the two possible facets of IH as derived from human and experimental animal settings will be reviewed.
Collapse
Affiliation(s)
- Isaac Almendros
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Yang Wang
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Tan HL, Kheirandish-Gozal L, Gozal D. The promise of translational and personalised approaches for paediatric obstructive sleep apnoea: an 'Omics' perspective. Thorax 2014; 69:474-80. [PMID: 24550060 DOI: 10.1136/thoraxjnl-2013-204640] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnoea (OSA) can result in significant morbidities including the cardiovascular, metabolic and neurocognitive systems. These effects are purportedly mediated via activation of inflammatory cascades and the induction of oxidative stress, ultimately resulting in cellular injury and dysfunction. While great advances have been made in sleep medicine research in the past decades, there are still wide gaps in our knowledge concerning the exact underlying pathophysiological mechanisms of OSA and consequences. Without resolving these issues, the reasons why patients with a similar severity of OSA can have markedly different clinical presentation and end-organ morbidity, that is, phenotype, will continue to remain elusive. This review aims to highlight the recent exciting discoveries in genotype-phenotype interactions, epigenetics, genomics and proteomics related to OSA. Just as PCR revolutionised the field of genetics, the potential power of 'Omics' promises to transform the field of sleep medicine, and provide critical insights into the downstream pathological cascades inherent to OSA, thereby enabling personalised diagnosis and management for this highly prevalent sleep disorder.
Collapse
Affiliation(s)
- Hui-Leng Tan
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, , London, UK
| | | | | |
Collapse
|
11
|
Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T. Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovarian Res 2013; 6:24. [PMID: 23570331 PMCID: PMC3660272 DOI: 10.1186/1757-2215-6-24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/24/2013] [Indexed: 01/06/2023] Open
Abstract
Background It has already been found that very small embyronic-like stem cells (VSELs) are present in adult human tissues and organs. The aim of this study was to find if there exists any similar population of cells in cell cultures of reproductive tissues and embryonic stem cells, and if these cells have any relation to pluripotency and germinal lineage. Methods and results Here we report that a population of small SSEA-4-positive cells with diameters of up to 4 μm was isolated by fluorescence-activated cell sorting (FACS) from the human ovarian cell cultures after enzymatic degradation of adult cortex tissues. These small cells – putative ovarian stem cells – were also observed during cell culturing of up to 6 months and more. In general, small putative ovarian stem cells, isolated by FACS, showed a relatively low gene expression profile when compared to human embryonic stem cells (hESCs) and human adult fibroblasts; this may reflect the quiescent state of these cells. In spite of that, small putative ovarian stem cells expressed several genes related to primordial germ cells (PGCs), pluripotency and germinal lineage, including VASA. The PGC-related gene PRDM1 was strongly expressed in small putative ovarian stem cells; in both hESCs and fibroblasts it was significantly down-regulated. In addition, putative ovarian stem cells expressed other PGC-related genes, such as PRDM14 and DPPA3. Most of the pluripotency and germinal lineage-related genes were up-regulated in hESCs (except VASA). When compared to fibroblasts, there were several pluripotency-related genes, which were up-regulated in small putative ovarian stem cells. Similar populations of small cells were also isolated by FACS from human testicular and hESC cultures. Conclusions Our results confirm the potential embryonic-like character of small putative stem cells isolated from human adult ovaries and their possible relation to germinal lineage.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Branko Cvjeticanin
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| |
Collapse
|
12
|
Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690415. [PMID: 23509763 PMCID: PMC3590614 DOI: 10.1155/2013/690415] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/27/2012] [Indexed: 12/02/2022]
Abstract
The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched.
Collapse
|
13
|
Almendros I, Carreras A, Montserrat JM, Gozal D, Navajas D, Farre R. Potential role of adult stem cells in obstructive sleep apnea. Front Neurol 2012; 3:112. [PMID: 22807922 PMCID: PMC3394100 DOI: 10.3389/fneur.2012.00112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/22/2012] [Indexed: 12/22/2022] Open
Abstract
Adult stem cells are undifferentiated cells that can be mobilized from the bone marrow or other organs, home into injured tissues, and differentiate into different cell phenotypes to serve in a repairing capacity. Furthermore, these cells can respond to inflammation and oxidative stress by exhibiting immunomodulatory properties. The protective and reparative roles of mesenchymal stem cells (MSCs), very small embryonic-like stem cells (VSELs), and endothelial progenitor cells (EPCs) have primarily been examined and characterized in auto-immune and cardiovascular diseases. Obstructive sleep apnea (OSA) is a very prevalent disease (4-5% of adult population and 2-3% of children) characterized by an abnormal increase in upper airway collapsibility. Recurrent airway obstructions elicit arterial oxygen desaturations, increased inspiratory efforts, and sleep fragmentation, which have been associated with important long-term neurocognitive, metabolic, and cardiovascular consequences. Since inflammation, oxidative stress and endothelial dysfunction are key factors in the development of the morbid consequences of OSA, bone marrow-derived stem cells could be important modulators of the morbid phenotype by affording a protective role. This mini-review is focused on the recent data available on EPCs, VSELs, and MSCs in both animal models and patients with OSA.
Collapse
|