1
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
2
|
Gao YY, Gao ZY. Extracellular Adenosine Diphosphate Stimulates CXCL10-Mediated Mast Cell Infiltration Through P2Y1 Receptor to Aggravate Airway Inflammation in Asthmatic Mice. Front Mol Biosci 2021; 8:621963. [PMID: 34291079 PMCID: PMC8287885 DOI: 10.3389/fmolb.2021.621963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Asthma is an inflammatory disease associated with variable airflow obstruction and airway inflammation. This study aimed to explore the role and mechanism of extracellular adenosine diphosphate (ADP) in the occurrence of airway inflammation in asthma. The expression of ADP in broncho-alveolar lavage fluid (BALF) of asthmatic patients was determined by enzyme linked immunosorbent assay (ELISA) and the expression of P2Y1 receptor in lung tissues was determined by reverse transcription-quantitative polymerase chain reaction. Asthmatic mouse model was induced using ovalbumin and the mice were treated with ADP to assess its effects on the airway inflammation and infiltration of mast cells (MCs). Additionally, alveolar epithelial cells were stimulated with ADP, and the levels of interleukin-13 (IL-13) and C-X-C motif chemokine ligand 10 (CXCL10) were measured by ELISA. We finally analyzed involvement of NF-κB signaling pathway in the release of CXCL10 in ADP-stimulated alveolar epithelial cells. The extracellular ADP was enriched in BALF of asthmatic patients, and P2Y1 receptor is highly expressed in lung tissues of asthmatic patients. In the OVA-induced asthma model, extracellular ADP aggravated airway inflammation and induced MC infiltration. Furthermore, ADP stimulated alveolar epithelial cells to secrete chemokine CXCL10 by activating P2Y1 receptor, whereby promoting asthma airway inflammation. Additionally, ADP activated the NF-κB signaling pathway to promote CXCL10 release. As a “danger signal” extracellular ADP could trigger and maintain airway inflammation in asthma by activating P2Y1 receptor. This study highlights the extracellular ADP as a promising anti-inflammatory target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan-Yan Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zeng-Yan Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
3
|
Alfarouk KO, AlHoufie STS, Ahmed SBM, Shabana M, Ahmed A, Alqahtani SS, Alqahtani AS, Alqahtani AM, Ramadan AM, Ahmed ME, Ali HS, Bashir A, Devesa J, Cardone RA, Ibrahim ME, Schwartz L, Reshkin SJ. Pathogenesis and Management of COVID-19. J Xenobiot 2021; 11:77-93. [PMID: 34063739 PMCID: PMC8163157 DOI: 10.3390/jox11020006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Sari T. S. AlHoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mona Shabana
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali S. Alqahtani
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Najran University, Najran 66446, Saudi Arabia;
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - AbdelRahman M. Ramadan
- Department of Preventive Dental Sciences, Ibn Sina National College, Jeddah 22421, Saudi Arabia;
| | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Department of Surgery, Faculty of Medicine Al-Neelain University, Khartoum 11111, Sudan
| | - Heyam S. Ali
- Faculty of Pharmacy, University of Khartoum, P. O. Box 321, Khartoum 11111, Sudan;
| | - Adil Bashir
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | | | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
4
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
5
|
Ghosh S, Luo D, He W, Chen J, Su X, Huang H. Diabetes and calcification: The potential role of anti-diabetic drugs on vascular calcification regression. Pharmacol Res 2020; 158:104861. [PMID: 32407954 DOI: 10.1016/j.phrs.2020.104861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification (VC) has been well-established as an independent and strong predictor of cardiovascular diseases (CVD) as well as major cardiac adverse events (MACE). VC is associated with increased mortality in patients with CVD. Pathologically, VC is now believed to be a multi-directional active process ultimately resulting in ectopic calcium deposition in vascular beds. On the other hand, prevalence of diabetes mellitus (DM) is gradually increasing thus making the current population more prone to future CVD. Although the mechanisms involved in development and progression of VC in DM patients are not fully understood, a series of evidences demonstrated positive association between DM and VC. It has been highlighted that different cellular pathways are involved in this process. These intermediates such as tumor necrosis factor alpha (TNF-α), various interleukins (ILs) and different cell-signaling pathways are over-expressed in DM patients leading to development of VC. Thus, considering the burden and significance of VC it is of great importance to find a therapeutic approach to prevent or minimize the development of VC in DM patients. Over the past few years various anti diabetic drugs (ADDs) have been introduced and many of them showed desired glucose control. But no study demonstrated the effects of these medications on regression of VC. In this review, we will briefly discuss the current understanding on DM and VC and how commonly used ADDs modulate the development or progression of VC.
Collapse
Affiliation(s)
- Sounak Ghosh
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongling Luo
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanbing He
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Seidel P, Sun Q, Costa L, Lardinois D, Tamm M, Roth M. The MNK-1/eIF4E pathway as a new therapeutic pathway to target inflammation and remodelling in asthma. Cell Signal 2016; 28:1555-62. [PMID: 27418099 DOI: 10.1016/j.cellsig.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 01/31/2023]
Abstract
Therapeutic targets in asthma are reduction of airway inflammation and remodelling, the latter is not affected by available drugs. Here we present data that inhibition of MAPK-activated protein kinase (MNK)-1 reduces inflammation and remodelling. MNK-1 regulates protein expression by controlling mRNA stability, nuclear export and translation through the eukaryotic initiation factor 4E (eIF4E). Airway smooth muscle cells were derived from asthmatic and non-asthmatic donors. Cells were pre-treated with CGP57380 (MNK-1 inhibitor) or MNK-1 siRNA, before TNF-α stimulation. Cytokine and protein expression was analysed by ELISA, real time PCR and immunoblotting. Proliferation was monitored by cell counts. TNF-α activated MNK-1 phosphorylation between 15 and 30min. and subsequently eIF4E between 15 and 60min. EIF4E activity was inhibited by CGP57380 dose-dependently. Inhibition of MNK-1 by CGP57380 or MNK-1 siRNA significantly reduced TNF-α induced CXCL10 and eotaxin mRNA expression and secretion, but had no effect on IL-8. However, CXCL10 mRNA stability or NF-κB activity were not affected by MNK-1 inhibition. Furthermore, eIF4E was detected in the cytosol and the nucleus, but TNF-α did not affected its export from the nucleus. Cytokine array assessment showed that in addition to eotaxin and CXCL10, asthma relevant GRO α and RANTES were down-regulated by MNK-1 inhibition. In addition, MNK-1 inhibition significantly reduced FCS and PDGF-BB induced cell proliferation. We are the first to report that MNK-1 controls chemokine secretion and proliferation in human airway smooth muscle cells. Therefore we suggest that MNK-1 inhibition may present a new target to limit inflammation and remodelling in asthmatic airways.
Collapse
Affiliation(s)
- Petra Seidel
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Qingzhu Sun
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Biochemistry and Molecular Biology, School of Basic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Luigi Costa
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Didier Lardinois
- Thoracic Surgery, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Pneumology Clinic, Internal Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Pneumology Clinic, Internal Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
7
|
Abstract
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of 'off-label' use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 0YN, UK
| |
Collapse
|
8
|
Donovan C, Bailey SR, Tran J, Haitsma G, Ibrahim ZA, Foster SR, Tang MLK, Royce SG, Bourke JE. Rosiglitazone elicits in vitro relaxation in airways and precision cut lung slices from a mouse model of chronic allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1219-28. [PMID: 26386117 DOI: 10.1152/ajplung.00156.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) ligand, is a novel dilator of small airways in mouse precision cut lung slices (PCLS). In this study, relaxation to RGZ and β-adrenoceptor agonists were compared in trachea from naïve mice and guinea pigs and trachea and PCLS from a mouse model of chronic allergic airways disease (AAD). Airways were precontracted with methacholine before addition of PPARγ ligands [RGZ, ciglitazone (CGZ), or 15-deoxy-(Δ12,14)-prostaglandin J2 (15-deoxy-PGJ2)] or β-adrenoceptor agonists (isoprenaline and salbutamol). The effects of T0070907 and GW9662 (PPARγ antagonists) or epithelial removal on relaxation were assessed. Changes in force of trachea and lumen area in PCLS were measured using preparations from saline-challenged mice and mice sensitized (days 0 and 14) and challenged with ovalbumin (3 times/wk, 6 wk). RGZ and CGZ elicited complete relaxation with greater efficacy than β-adrenoceptor agonists in mouse airways but not guinea pig trachea, while 15-deoxy-PGJ2 did not mediate bronchodilation. Relaxation to RGZ was not prevented by T0070907 or GW9662 or by epithelial removal. RGZ-induced relaxation was preserved in the trachea and increased in PCLS after ovalbumin-challenge. Although RGZ was less potent than β-adrenoceptor agonists, its effects were additive with salbutamol and isoprenaline and only RGZ maintained potency and full efficacy in maximally contracted airways or after allergen challenge. Acute PPARγ-independent, epithelial-independent airway relaxation to RGZ is resistant to functional antagonism and maintained in both trachea and PCLS from a model of chronic AAD. These novel efficacious actions of RGZ support its therapeutic potential in asthma when responsiveness to β-adrenoceptor agonists is limited.
Collapse
Affiliation(s)
- Chantal Donovan
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia; Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Parkville, Australia; and
| | - Jenny Tran
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Gertruud Haitsma
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Zaridatul A Ibrahim
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Simon R Foster
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mimi L K Tang
- Department of Allergy and Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Simon G Royce
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia; Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia; Department of Allergy and Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia; Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia;
| |
Collapse
|
9
|
Rinne ST, Feemster LC, Collins BF, Au DH, Perkins M, Bryson CL, O’Riordan TG, Liu CF. Thiazolidinediones and the risk of asthma exacerbation among patients with diabetes: a cohort study. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2014; 10:34. [PMID: 25024717 PMCID: PMC4094895 DOI: 10.1186/1710-1492-10-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thiazolidinediones are oral diabetes medications that selectively activate peroxisome proliferator-activated receptor gamma and have potent anti-inflammatory properties. While a few studies have found improvements in pulmonary function with exposure to thiazolidinediones, there are no studies of their impact on asthma exacerbations. Our objective was to assess whether exposure to thiazolidinediones was associated with a decreased risk of asthma exacerbation. METHODS We performed a cohort study of diabetic Veterans who had a diagnosis of asthma and were taking oral diabetes medications during the period of 10/1/2005 - 9/30/2006. The risk of asthma exacerbations and oral steroid use during 10/1/2006 - 9/30/2007 was compared between patients who were prescribed thiazolidinediones and patients who were on alternative oral diabetes medications. Multivariable logistic regression and negative binomial regression analyses were used to characterize this risk. A sensitivity analysis was performed, restricting our evaluation to patients who were adherent to diabetes therapy. RESULTS We identified 2,178 patients who were on thiazolidinediones and 10,700 who were not. Exposure to thiazolidinediones was associated with significant reductions in the risk of asthma exacerbation (OR = 0.79, 95% CI, 0.62 - 0.99) and oral steroid prescription (OR = 0.73, 95% CI 0.63 - 0.84). Among patients who were adherent to diabetes medications, there were more substantial reductions in the risks for asthma exacerbation (OR = 0.64, 95% CI 0.47 - 0.85) and oral steroid prescription (OR = 0.68, 95% CI 0.57 - 0.81). CONCLUSIONS Thiazolidinediones may provide a novel anti-inflammatory approach to asthma management by preventing exacerbations and decreasing the use of oral steroids.
Collapse
Affiliation(s)
- Seppo T Rinne
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Department of Pulmonary and Cri Care, University of Washington, Seattle, WA, USA
| | - Laura C Feemster
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Department of Pulmonary and Cri Care, University of Washington, Seattle, WA, USA
| | - Bridget F Collins
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Department of Pulmonary and Cri Care, University of Washington, Seattle, WA, USA
| | - David H Au
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Department of Pulmonary and Cri Care, University of Washington, Seattle, WA, USA
| | - Mark Perkins
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
| | - Christopher L Bryson
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Chuan-Fen Liu
- Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs, 1100 Olive Way Suite 1400, 98104-3801 Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels. J Allergy (Cairo) 2014; 2014:875105. [PMID: 24648846 PMCID: PMC3933026 DOI: 10.1155/2014/875105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3+ mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1β, TNF-α, and/or IFNγ and treated with histamine (1–100 μM) ± chlorpheniramine (H1R antagonist; 1 μM) or ranitidine (H2R antagonist; 50 μM) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50 μM), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1β/TNF-α-induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF-α and amplified IFNγ-induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma.
Collapse
|
11
|
Anti-inflammatory dimethylfumarate: a potential new therapy for asthma? Mediators Inflamm 2013; 2013:875403. [PMID: 23606796 PMCID: PMC3625606 DOI: 10.1155/2013/875403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC) bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the disease—only symptoms are controlled. Dimethylfumarate (DMF) is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs.
Collapse
|