1
|
Gaudin C, Ghinnagow R, Lemaire F, Villeret B, Sermet-Gaudelus I, Sallenave JM. Abnormal functional lymphoid tolerance and enhanced myeloid exocytosis are characteristics of resting and stimulated PBMCs in cystic fibrosis patients. Front Immunol 2024; 15:1360716. [PMID: 38469306 PMCID: PMC10925672 DOI: 10.3389/fimmu.2024.1360716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Cystic Fibrosis (CF) is the commonest genetically inherited disease (1 in 4,500 newborns) and 70% of people with CF (pwCF) harbour the F508Del mutation, resulting in misfolding and incorrect addressing of the channel CFTR to the epithelial membrane and subsequent dysregulation of fluid homeostasis. Although studies have underscored the importance and over-activation of myeloid cells, and in particular neutrophils in the lungs of people with CF (pwCF), relatively less emphasis has been put on the potential immunological bias in CF blood cells, at homeostasis or following stimulation/infection. Methods Here, we revisited, in an exhaustive fashion, in pwCF with mild disease (median age of 15, median % FEV1 predicted = 87), whether their PBMCs, unprimed or primed with a 'non specific' stimulus (PMA+ionomycin mix) and a 'specific' one (live P.a =PAO1 strain), were differentially activated, compared to healthy controls (HC) PBMCs. Results 1) we analysed the lymphocytic and myeloid populations present in CF and Control PBMCs (T cells, NKT, Tgd, ILCs) and their production of the signature cytokines IFN-g, IL-13, IL-17, IL-22. 2) By q-PCR, ELISA and Luminex analysis we showed that CF PBMCs have increased background cytokines and mediators production and a partial functional tolerance phenotype, when restimulated. 3) we showed that CF PBMCs low-density neutrophils release higher levels of granule components (S100A8/A9, lactoferrin, MMP-3, MMP-7, MMP-8, MMP-9, NE), demonstrating enhanced exocytosis of potentially harmful mediators. Discussion In conclusion, we demonstrated that functional lymphoid tolerance and enhanced myeloid protease activity are key features of cystic fibrosis PBMCs.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Reem Ghinnagow
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Flora Lemaire
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| |
Collapse
|
2
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
3
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
4
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
5
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
6
|
Tur-Torres J, Traversi L, Martínez-Gallo M, Assante G, Romero Mesones CE, Clofent Alarcon D, Chang-Macchiu P, Alvarez A, Polverino E. Can we Train the Immune System of Patients With Cystic Fibrosis? Arch Bronconeumol 2021; 57:708-710. [PMID: 35699016 DOI: 10.1016/j.arbr.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/28/2020] [Indexed: 06/15/2023]
Affiliation(s)
- Jordi Tur-Torres
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain
| | - Letizia Traversi
- Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy
| | - Mónica Martínez-Gallo
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - David Clofent Alarcon
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain; Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy; Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Personal trainer DIR, Barcelona, Spain; Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain
| | - Patricia Chang-Macchiu
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain
| | - Antoni Alvarez
- Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain
| | - Eva Polverino
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain; Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy; Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Personal trainer DIR, Barcelona, Spain; Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain.
| |
Collapse
|
7
|
Wirtz S, Schulz-Kuhnt A, Neurath MF, Atreya I. Functional Contribution and Targeted Migration of Group-2 Innate Lymphoid Cells in Inflammatory Lung Diseases: Being at the Right Place at the Right Time. Front Immunol 2021; 12:688879. [PMID: 34177944 PMCID: PMC8222800 DOI: 10.3389/fimmu.2021.688879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, group-2 innate lymphoid cells (ILC2s) have been discovered and successfully established as crucial mediators of lung allergy, airway inflammation and fibrosis, thus affecting the pathogenesis and clinical course of many respiratory diseases, like for instance asthma, cystic fibrosis and chronic rhinosinusitis. As an important regulatory component in this context, the local pulmonary milieu at inflammatory tissue sites does not only determine the activation status of lung-infiltrating ILC2s, but also influences their motility and migratory behavior. In general, many data collected in recent murine and human studies argued against the former concept of a very strict tissue residency of innate lymphoid cells (ILCs) and instead pointed to a context-dependent homing capacity of peripheral blood ILC precursors and the inflammation-dependent capacity of specific ILC subsets for interorgan trafficking. In this review article, we provide a comprehensive overview of the so far described molecular mechanisms underlying the pulmonary migration of ILC2s and thereby the numeric regulation of local ILC2 pools at inflamed or fibrotic pulmonary tissue sites and discuss their potential to serve as innovative therapeutic targets in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Haydar D, Gonzalez R, Garvy BA, Garneau-Tsodikova S, Thamban Chandrika N, Bocklage TJ, Feola DJ. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia. Immunobiology 2020; 226:152034. [PMID: 33278710 DOI: 10.1016/j.imbio.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Regulatory properties of macrophages associated with alternative activation serve to limit the exaggerated inflammatory response during pneumonia caused by Pseudomonas aeruginosa infection. Arginase-1 is an important effector of these macrophages believed to play an essential role in decreasing injury and promoting repair. We investigated the role of arginase-1 in the control of inflammatory immune responses to P. aeruginosa pneumonia in mice that exhibit different immunologic phenotypes. C57BL/6 mice with conditional knockout of the arginase-1 (Arg1) gene from myeloid cells (Arg1ΔM) or BALB/c mice treated with small molecule inhibitors of arginase were infected intratracheally with P. aeruginosa. Weight loss, mortality, bacterial clearance, and lung injury were assessed and compared, as were the characterization of immune cell populations over time post-infection. Myeloid arginase-1 deletion resulted in greater morbidity along with more severe inflammatory responses compared to littermate control mice. Arg1ΔM mice had greater numbers of neutrophils, macrophages, and lymphocytes in their airways and lymph nodes compared to littermate controls. Additionally, Arg1ΔM mice recovered from inflammatory lung injury at a significantly slower rate. Conversely, treatment of BALB/c mice with the arginase inhibitor S-(2-boronoethyl)-l-cysteine hydrochloride (BEC) did not change morbidity as defined by weight loss, but mice at day 10 post-infection treated with BEC had gained significantly more weight back than controls. Neutrophil and macrophage infiltration were similar between groups in the lung parenchyma, and neutrophil migration into the airways was reduced by BEC treatment. Differences seem to lie in the impact on T cell subset disposition. Arg1ΔM mice had increased total CD4+ T cell expansion in the lymph nodes, and increased T cell activation, IFNγ production, and IL-17 production in the lymph nodes, lung interstitium, and airways, while treatment with BEC had no impact on T cell activation or IL-17 production, but reduced the number of T cells producing IFNγ in the lungs. Lung injury scores were increased in the Arg1ΔM mice, but no differences were observed in the mice treated with pharmacologic arginase inhibitors. Overall, myeloid arginase production was demonstrated to be essential for control of damaging inflammatory responses associated with P. aeruginosa pneumonia in C57BL/6 mice, in contrast to a protective effect in the Th2-dominant BALB/c mice when arginase activity is globally inhibited.
Collapse
Affiliation(s)
- Dalia Haydar
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Rene Gonzalez
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Beth A Garvy
- University of Kentucky, College of Medicine, Department of Microbiology, Immunology and Molecular Genetics, 800 Rose Street, Lexington, KY 40536, USA.
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Nishad Thamban Chandrika
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Therese J Bocklage
- University of Kentucky Healthcare, Pathology and Laboratory Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | - David J Feola
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Tur-Torres J, Traversi L, Martínez-Gallo M, Assante G, Romero Mesones CE, Clofent Alarcon D, Chang-Macchiu P, Alvarez A, Polverino E. Can we Train the Immune System of Patients With Cystic Fibrosis? Arch Bronconeumol 2020; 57:S0300-2896(20)30397-5. [PMID: 33328136 DOI: 10.1016/j.arbres.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Jordi Tur-Torres
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain
| | - Letizia Traversi
- Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy
| | - Mónica Martínez-Gallo
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - David Clofent Alarcon
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain; Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy; Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Personal trainer DIR, Barcelona, Spain; Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain
| | - Patricia Chang-Macchiu
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain
| | - Antoni Alvarez
- Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain
| | - Eva Polverino
- Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron (HUVH), Universitat Autònoma de Barcelona, Spain; Department of Medicine and Surgery, Respiratory Diseases, Università dell'Insubria, Varese-Como, Italy; Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Personal trainer DIR, Barcelona, Spain; Pneumology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), CIBER, Barcelona, Spain.
| |
Collapse
|
10
|
Patergnani S, Vitto VAM, Pinton P, Rimessi A. Mitochondrial Stress Responses and "Mito-Inflammation" in Cystic Fibrosis. Front Pharmacol 2020; 11:581114. [PMID: 33101035 PMCID: PMC7554583 DOI: 10.3389/fphar.2020.581114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated to mutations in the cystic fibrosis transmembrane conductance regulator gene, which results in the alteration of biological fluid and electrolyte homeostasis. The characteristic pathological manifestation is represented by exaggerated proinflammatory response in lung of CF patients, driven by recurrent infections and worsen by hypersecretion of proinflammatory mediators and progressive tissue destruction. Treating inflammation remains a priority in CF. However, current anti-inflammatory treatments, including non-steroidal agents, are poorly effective and present dramatic side effects in CF patients. Different studies suggest an intimate relationship between mitochondria and CF lung disease, supporting the hypothesis that a decline in mitochondrial function endorses the development of the hyperinflammatory phenotype observed in CF lung. This allowed the implementation of a new concept: the "mito-inflammation," a compartmentalization of inflammatory process, related to the role of mitochondria in engage and sustain the inflammatory responses, resulting a druggable target to counteract the amplification of inflammatory signals in CF. Here, we will offer an overview of the contribution of mitochondria in the pathogenesis of CF lung disease, delving into mitochondrial quality control responses, which concur significantly to exacerbation of CF lung inflammatory responses. Finally, we will discuss the new therapeutic avenues that aim to target the mito-inflammation, an alternative therapeutic advantage for mitochondrial quality control that improves CF patient's inflammatory state.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Airway Inflammation and Host Responses in the Era of CFTR Modulators. Int J Mol Sci 2020; 21:ijms21176379. [PMID: 32887484 PMCID: PMC7504341 DOI: 10.3390/ijms21176379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The arrival of cystic fibrosis transmembrane conductance regulator (CFTR) modulators as a new class of treatment for cystic fibrosis (CF) in 2012 represented a pivotal advance in disease management, as these small molecules directly target the upstream underlying protein defect. Further advancements in the development and scope of these genotype-specific therapies have been transformative for an increasing number of people with CF (PWCF). Despite clear improvements in CFTR function and clinical endpoints such as lung function, body mass index (BMI), and frequency of pulmonary exacerbations, current evidence suggests that CFTR modulators do not prevent continued decline in lung function, halt disease progression, or ameliorate pathogenic organisms in those with established lung disease. Furthermore, it remains unknown whether their restorative effects extend to dysfunctional CFTR expressed in phagocytes and other immune cells, which could modulate airway inflammation. In this review, we explore the effects of CFTR modulators on airway inflammation, infection, and their influence on the impaired pulmonary host defences associated with CF lung disease. We also consider the role of inflammation-directed therapies in light of the widespread clinical use of CFTR modulators and identify key areas for future research.
Collapse
|
12
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Manti S, Parisi GF, Papale M, Mulè E, Aloisio D, Rotolo N, Leonardi S. Cystic Fibrosis: Fighting Together Against Coronavirus Infection. Front Med (Lausanne) 2020; 7:307. [PMID: 32582746 PMCID: PMC7295902 DOI: 10.3389/fmed.2020.00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sara Manti
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Fabio Parisi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Papale
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enza Mulè
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Donatella Aloisio
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Novella Rotolo
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Leonardi
- Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Meeker SM, Mears KS, Sangwan N, Brittnacher MJ, Weiss EJ, Treuting PM, Tolley N, Pope CE, Hager KR, Vo AT, Paik J, Frevert CW, Hayden HS, Hoffman LR, Miller SI, Hajjar AM. CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathog 2020; 16:e1008251. [PMID: 31961914 PMCID: PMC6994172 DOI: 10.1371/journal.ppat.1008251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/31/2020] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome. It has been difficult to establish causal relationships between host genetics and the selection of the vast multitude of micro-organisms that live in and on us (i.e. the microbiota). Cystic fibrosis has been shown to be associated with changes in the fecal microbiome (the genetic constitution of the microbiota) although it was not evident whether mutation of CFTR, the gene mutated in CF, could drive this selection or whether the frequent use of antibiotics in this population was at fault. Here, by using a germfree (i.e. sterile, lacking all microbiota) mouse model of CF we clearly demonstrate that mutated CFTR alone can alter the microbiome. We also show an increase in an adaptive immune cell type (TH17 cells) in the mesenteric lymph nodes and spleens of CF mice compared to control mice. Our study provides new insights into the dominant role that CFTR plays in microbiome determination and suggests that therapies restoring CFTR function could also correct the microbial dysbiosis observed in CF.
Collapse
Affiliation(s)
- Stacey M. Meeker
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kevin S. Mears
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Naseer Sangwan
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | | | - Eli J. Weiss
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Nicholas Tolley
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Christopher E. Pope
- Department Pediatrics, University of Washington, Seattle, WA, United States of America
| | - Kyle R. Hager
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Anh T. Vo
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Hillary S. Hayden
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Department Pediatrics, University of Washington, Seattle, WA, United States of America
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Departments of Medicine, Allergy and Infectious Disease, and Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
15
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Recchiuti A, Mattoscio D, Isopi E. Roles, Actions, and Therapeutic Potential of Specialized Pro-resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis. Front Pharmacol 2019; 10:252. [PMID: 31001110 PMCID: PMC6454233 DOI: 10.3389/fphar.2019.00252] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Non-resolving inflammation is the main mechanism of morbidity and mortality among patients suffering from cystic fibrosis (CF), the most common life-threatening human genetic disease. Resolution of inflammation is an active process timely controlled by endogenous specialized pro-resolving lipid mediators (SPMs) produced locally in inflammatory loci to restrain this innate response, prevent further damages to the host, and permit return to homeostasis. Lipoxins, resolvins, protectins, and maresins are SPM derived from polyunsaturated fatty acids that limit excessive leukocyte infiltration and pro-inflammatory signals, stimulate innate microbial killing, and enhance resolution. Their unique chemical structures, receptors, and bioactions are being elucidated. Accruing data indicate that SPMs carry protective functions against unrelenting inflammation and infections in preclinical models and human CF systems. Here, we reviewed their roles and actions in controlling resolution of inflammation, evidence for their impairment in CF, and proofs of principle for their exploitation as innovative, non-immunosuppressive drugs to address inflammation and infections in CF.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
17
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
18
|
Xiu F, Sabz Ali Z, Palaniyar N, Sweezey N. A dual neutrophil-T cell purification procedure and methodological considerations in studying the effects of estrogen on human Th17 cell differentiation. J Immunol Methods 2019; 467:1-11. [PMID: 30771291 DOI: 10.1016/j.jim.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022]
Abstract
New procedures are required to optimize the use of blood samples to study different cell types. The purification of neutrophils and T cells from the same blood sample is not commonly described. We have previously used PolymorphPrep™ (P) or LymphoPrep™ (L) for purifying neutrophils or T cells, respectively. In this study, we describe a new method for purifying both of these cells using P and L from the same sample, and methodological considerations required to obtain consistent Th17 differentiation results. For T cell studies, we first isolated mononuclear cells from peripheral blood of healthy humans using either P alone, L alone or sequential isolation with P and then L (P + L). CD3+ lymphocytes comprise up to 73% of peripheral blood mononuclear cells (PBMCs) obtained by sequential isolation, with 29% and 36% for P and L, respectively. T lymphocyte subsets, Th1, Th17 or double-positive (Th17/1), were then amplified. Four days of amplification culture after isolation by P alone led to over-expression of Th17/1 cells and of Th17 cells in comparison to cells isolated by L or by sequential P + L. Th17/1 cells comprised 11.0 ± 6.8% (P alone) vs 1.2 ± 0.28% (L alone) vs 0.45 ± 0.11% (P + L) and Th17 cells comprised 2.8 ± 0.4% (P alone) 0.88 ± 0.15% (L alone) vs 0.86 ± 0.14% (P + L). As the second step, we examined T cell purification and differentiation. A higher purity of 97.1 ± 0.44% naïve CD4+ T cell was reached after P + L followed by immunomagnetic bead sorting in comparison to 70 ± 9.3% (L) vs 21.0 ± 8.5% (P). These cells grew well in the density range of 25, 000 to 100, 000 cells per well in 96-well plates during Th17 cell differentiation; higher or lower cell density did not support Th17 cell differentiation. Lastly, to investigate the effect of estrogen on Th17 cell differentiation, serum-free AIM V medium without phenol red was chosen to minimize the hormonal effects of the medium. We found that exogenous estrogen (1 nM) inhibited Th17 cell differentiation in this medium. Taken together, we devised a method to isolate both neutrophils and T cells from the same blood sample and show that high PBMC purity, selected culture medium and an optimal cell density of the initial cell culture produced the most robust and consistent results for Th17 differentiation.
Collapse
Affiliation(s)
- Fangming Xiu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada
| | - Zubair Sabz Ali
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Neil Sweezey
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Departments of Paediatrics and Physiology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada.
| |
Collapse
|
19
|
Mulcahy EM, Cooley MA, McGuire H, Asad S, Fazekas de St Groth B, Beggs SA, Roddam LF. Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunol Cell Biol 2019; 97:416-426. [PMID: 30633378 DOI: 10.1111/imcb.12230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 11/26/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations to the CF transmembrane conductance regulator (CFTR) gene. CFTR is known to be expressed on multiple immune cell subtypes, dendritic cells, monocytes/macrophages, neutrophils and lymphocytes. We hypothesized that the lack of CFTR expression on peripheral blood innate immune cells would result in an altered cell profile in the periphery and that this profile would reflect lung pathology. We performed a flow cytometric phenotypic investigation of innate immune cell proportions in peripheral blood collected from 17 CF patients and 15 age-matched healthy controls. We observed significant differences between CF patients and controls in the relative proportions of natural killer (NK) cells, monocytes and their subsets, with significant correlations observed between proportions of NK and monocyte cell subsets and lung function (forced expiratory volume in 1 sec, % predicted; FEV1% predicted) in CF patients. This study demonstrates the widespread nature of immune dysregulation in CF and provides a basis for identification of potential therapeutic targets. Modulation of the distinct CF-related immune cell phenotype identified could also be an important biomarker for evaluating CFTR-targeted drug efficacy.
Collapse
Affiliation(s)
- Emily M Mulcahy
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Royal Hobart Hospital, Hobart, TAS, Australia
| | | | - Helen McGuire
- Centenary Institute, Newtown, NSW, Australia.,Discipline of Pathology, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- Centenary Institute, Newtown, NSW, Australia.,Discipline of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sean A Beggs
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Royal Hobart Hospital, Hobart, TAS, Australia
| | - Louise F Roddam
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
20
|
Robledo-Avila FH, Ruiz-Rosado JDD, Brockman KL, Kopp BT, Amer AO, McCoy K, Bakaletz LO, Partida-Sanchez S. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2016-2027. [PMID: 30120123 DOI: 10.4049/jimmunol.1800076] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), one of the most common human genetic diseases worldwide, is caused by a defect in the CF transmembrane conductance regulator (CFTR). Patients with CF are highly susceptible to infections caused by opportunistic pathogens (including Burkholderia cenocepacia), which induce excessive lung inflammation and lead to the eventual loss of pulmonary function. Abundant neutrophil recruitment into the lung is a key characteristic of bacterial infections in CF patients. In response to infection, inflammatory neutrophils release reactive oxygen species and toxic proteins, leading to aggravated lung tissue damage in patients with CF. The present study shows a defect in reactive oxygen species production by mouse Cftr-/- , human F508del-CFTR, and CF neutrophils; this results in reduced antimicrobial activity against B. cenocepacia Furthermore, dysregulated Ca2+ homeostasis led to increased intracellular concentrations of Ca2+ that correlated with significantly diminished NADPH oxidase response and impaired secretion of neutrophil extracellular traps in human CF neutrophils. Functionally deficient human CF neutrophils recovered their antimicrobial killing capacity following treatment with pharmacological inhibitors of Ca2+ channels and CFTR channel potentiators. Our findings suggest that regulation of neutrophil Ca2+ homeostasis (via CFTR potentiation or by the regulation of Ca2+ channels) can be used as a new therapeutic approach for reestablishing immune function in patients with CF.
Collapse
Affiliation(s)
- Frank H Robledo-Avila
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205.,Section of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus, OH 43205
| | - Amal O Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210; and
| | - Karen McCoy
- Section of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus, OH 43205.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205; .,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
21
|
Khoury O, Barrios C, Ortega V, Atala A, Murphy SV. Immunomodulatory Cell Therapy to Target Cystic Fibrosis Inflammation. Am J Respir Cell Mol Biol 2018; 58:12-20. [PMID: 28707978 DOI: 10.1165/rcmb.2017-0160tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is associated with exaggerated and prolonged inflammation in the lungs, which contributes to lung injury, airway mucus obstruction, bronchiectasis, and loss of lung function. This hyperinflammatory phenotype appears to be caused by an imbalance between the pro- and antiinflammatory regulatory pathways, with heightened proinflammatory stimuli, a decreased counter-regulatory response, and reduced effectiveness of immune cell function and inflammatory resolution. Thus, therapies that can target this inflammatory environment would have a major impact on preventing the progression of lung disease. Because of the complex phenotype of CF inflammation, current antiinflammatory regimens have proven to be inadequate for the targeting of these multiple dysregulated pathways and effects. Several approaches using cell therapies have shown potential therapeutic benefit for the treatment of CF inflammation. This review provides an overview of the immune dysfunctions in CF and current therapeutic regimens; explores the field of cell therapy as a treatment for CF inflammation; and focuses on the various cell types used, their immunomodulatory functions, and the current approaches to mitigate the inflammatory response and reduce the long-term damage for patients with CF.
Collapse
Affiliation(s)
- Oula Khoury
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Christopher Barrios
- 2 Cystic Fibrosis Adult Care Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Victor Ortega
- 2 Cystic Fibrosis Adult Care Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Anthony Atala
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Sean V Murphy
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
22
|
Mauch RM, Jensen PØ, Moser C, Levy CE, Høiby N. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis. J Cyst Fibros 2017; 17:143-152. [PMID: 29033275 DOI: 10.1016/j.jcf.2017.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Brazil
| | - Peter Østrup Jensen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - Carlos Emilio Levy
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Brazil; Laboratory of Microbiology, Division of Clinical Pathology, Hospital de Clínicas (Campinas University Hospital), Brazil
| | - Niels Høiby
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark.
| |
Collapse
|
23
|
Aali M, Caldwell A, House K, Zhou J, Chappe V, Lehmann C. Iron chelation as novel treatment for lung inflammation in cystic fibrosis. Med Hypotheses 2017; 104:86-88. [PMID: 28673599 DOI: 10.1016/j.mehy.2017.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/21/2017] [Indexed: 11/19/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that results in defective cystic fibrosis transmembrane conductance regulator (CFTR) protein expression and function in various tissues. The leading cause of CF mortality and morbidity is the progressive destruction of the lungs due to recurrent infections and chronic inflammation. CFTR defect also affects immune cells, including neutrophils, resulting in ineffective, severe and persistent inflammatory response. Since unopposed recruitment of neutrophils significantly contributes to lung tissue damage through the generation of reactive oxygen species (ROS), we hypothesize that the administration of iron chelators could serve as a novel treatment to attenuate chronic inflammation in CF lungs since iron is significantly involved in ROS production by neutrophils. Ideally, the iron chelator should sequester host iron effectively, prevent bacterial access to chelator-bound iron and penetrates lung tissues efficiently, e.g. by inhalational route of administration.
Collapse
Affiliation(s)
- Maral Aali
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Alexa Caldwell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Kelsey House
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Christian Lehmann
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada.
| |
Collapse
|
24
|
Pincikova T, Paquin-Proulx D, Sandberg JK, Flodström-Tullberg M, Hjelte L. Vitamin D treatment modulates immune activation in cystic fibrosis. Clin Exp Immunol 2017; 189:359-371. [PMID: 28470739 DOI: 10.1111/cei.12984] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Persistent inflammatory response in cystic fibrosis (CF) airways is believed to play a central role in the progression of lung damage. Anti-inflammatory treatment may slow lung disease progression, but adverse side effects have limited its use. Vitamin D has immunoregulatory properties. We randomized 16 CF patients to receive vitamin D2, vitamin D3 or to serve as controls, and investigated the effect of vitamin D supplementation on soluble immunological parameters, myeloid dendritic cells (mDCs) and T cell activation. Three months of vitamin D treatment were followed by two washout months. Vitamin D status at baseline was correlated negatively with haptoglobin, erythrocyte sedimentation rate and immunoglobulin A concentration. Total vitamin D dose per kg bodyweight correlated with the down-modulation of the co-stimulatory receptor CD86 on mDCs. Vitamin D treatment was associated with reduced CD279 (PD-1) expression on CD4+ and CD8+ T cells, as well as decreased frequency of CD8+ T cells co-expressing the activation markers CD38 and human leucocyte antigen D-related (HLA-DR) in a dose-dependent manner. There was a trend towards decreased mucosal-associated invariant T cells (MAIT) cell frequency in patients receiving vitamin D and free serum 25-hydroxyvitamin D (free-s25OHD) correlated positively with CD38 expression by these cells. At the end of intervention, the change in free-s25OHD was correlated negatively with the change in CD279 (PD-1) expression on MAIT cells. Collectively, these data indicate that vitamin D has robust pleiotropic immunomodulatory effects in CF. Larger studies are needed to explore the immunomodulatory treatment potential of vitamin D in CF in more detail.
Collapse
Affiliation(s)
- T Pincikova
- Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - D Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - L Hjelte
- Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Bustamante AE, Jaime-Pérez JC, Cordero-Pérez P, Galindo-Rodríguez G, Muñoz-Espinosa LE, Villarreal-Villarreal CD, Mercado-Longoria R. A High Level of Soluble CD40L Is Associated with P. aeruginosa Infection in Patients with Cystic Fibrosis. PLoS One 2016; 11:e0168819. [PMID: 28030642 PMCID: PMC5193430 DOI: 10.1371/journal.pone.0168819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/18/2016] [Indexed: 11/26/2022] Open
Abstract
Objective The aim of this study was to evaluate whether the concentration of sCD40L, a product of platelet activation, correlates with the presence of Pseudomonas aeruginosa in the airway of patients with cystic fibrosis (CF) and to determine its possible clinical association. Methods Sixty patients with CF, ranging in age from 2 months to 36 years, were studied. The demographics, cystic fibrosis transmembrane conductance regulator (CFTR) genotype, spirometry measurements, radiographic and tomographic scans, platelet count in peripheral blood, sCD40L, IL-6, TNF-α and ICAM1 data were collected. Infection-colonization of the airway was evaluated using sputum and throat swab cultures; the levels of anti-Pseudomonas aeruginosa antibodies (Anti-PaAb) were evaluated. Results Patients with CF and chronic colonization had anti-PaAb values of 11.6 ± 2.1 ELISA units (EU) and sCD40L in plasma of 1530.9 ±1162.3 pg/mL; those with intermittent infection had 5.7 ± 2.7 EU and 2243.6 ± 1475.9 pg/mL; and those who were never infected had 3.46 ± 1.8 EU (p≤0.001) and 1008.1 ± 746.8 pg/mL (p≤0.01), respectively. The cutoff value of sCD40L of 1255 pg/mL was associated with an area under the ROC (receiver operating characteristic curve) of 0.84 (95% CI, 0.71 to 0.97), reflecting P. aeruginosa infection with a sensitivity of 73% and a specificity of 89%. Lung damage was determined using the Brasfield Score, the Bhalla Score, and spirometry (FVC%, FEV1%) and found to be significantly different among the groups (p≤0.001). Conclusion Circulating sCD40L levels are increased in patients with cystic fibrosis and P. aeruginosa infection. Soluble CD40L appears to reflect infection and provides a tool for monitoring the evolution of lung deterioration.
Collapse
Affiliation(s)
- Adriana Ester Bustamante
- Clínica de Fibrosis Quística, Servicio de Neumología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
- * E-mail:
| | - José Carlos Jaime-Pérez
- Departamento de Hematología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| | - Paula Cordero-Pérez
- Unidad de Hígado, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| | - Gabriela Galindo-Rodríguez
- Servicio de Alergia e Inmunología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| | - Linda Elsa Muñoz-Espinosa
- Unidad de Hígado, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| | - César Daniel Villarreal-Villarreal
- Departamento de Hematología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| | - Roberto Mercado-Longoria
- Clínica de Fibrosis Quística, Servicio de Neumología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Hospital Universitario “Dr. José E. González”, Monterrey Nuevo León, México
| |
Collapse
|
26
|
Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016; 3:38. [PMID: 27868161 PMCID: PMC5136534 DOI: 10.1186/s40348-016-0066-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The pathological course of several chronic inflammatory diseases, including cystic fibrosis, chronic obstructive pulmonary disease, and rheumatoid arthritis, features an aberrant innate immune response dominated by neutrophils. In cystic fibrosis, neutrophil burden and activity of neutrophil elastase in the extracellular fluid have been identified as strong predictors of lung disease severity. REVIEW Although neutrophils are generally considered to be rigid, pre-programmed effector leukocytes, recent studies suggest extensive plasticity in how neutrophil functions unfold upon recruitment to peripheral tissues, and how they choose their ultimate fate. Indeed, upon migration to cystic fibrosis airways, neutrophils display dysregulated lifespan, metabolic activation, and altered effector and regulatory functions, consistent with profound adaptation and phenotypic reprogramming. Licensed by signals present in cystic fibrosis airway microenvironment to survive and develop these novel functions, neutrophils orchestrate, in partnership with the epithelium and with the resident microbiota, the evolution of a pathological microenvironment. This microenvironment is defined by altered proteolytic, redox, and metabolic balance and the presence of stable luminal structures in which neutrophils and microbes coexist. CONCLUSIONS The elucidation of molecular mechanisms driving neutrophil plasticity in vivo will open new treatment opportunities designed to modulate, rather than block, the crucial adaptive functions fulfilled by neutrophils. This review aims to outline emerging mechanisms of neutrophil plasticity and their participation in the building of pathological microenvironments in the context of cystic fibrosis and other diseases with similar features.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA.
| |
Collapse
|
27
|
Considerations for the Conduct of Clinical Trials with Antiinflammatory Agents in Cystic Fibrosis. A Cystic Fibrosis Foundation Workshop Report. Ann Am Thorac Soc 2016; 12:1398-406. [PMID: 26146892 DOI: 10.1513/annalsats.201506-361ot] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammation leads to lung destruction and loss of pulmonary function in patients with cystic fibrosis (CF). Drugs that modulate the cystic fibrosis transmembrane conductance regulator (CFTR) have recently been approved. Although the impact of CFTR modulators on sweat chloride and lung function are exciting, they have not yet demonstrated an effect on inflammation. Therefore, CF antiinflammatory drug development must continue. Unfortunately, the lack of clarity with this process has left investigators and industry sponsors frustrated. The Cystic Fibrosis Foundation established a working group in early 2014 to address this issue. There are many inflammatory processes disrupted in CF, and, therefore, there are many potential targets amenable to antiinflammatory therapy. Regardless of a drug's specific mechanism of action, it must ultimately affect the neutrophil or its products to impact CF. The working group concluded that before bringing new antiinflammatory drugs to clinical trial, preclinical safety studies must be conducted in disease-relevant models to assuage safety concerns. Furthermore, although studies of antiinflammatory therapies must first establish safety in adults, subsequent studies must involve children, as they are most likely to reap the most benefit. The working group also recommended that pharmacokinetic-pharmacodynamic studies and early-phase safety studies be performed before proceeding to larger studies of longer duration. In addition, innovative study designs may improve the likelihood of adequately assessing treatment response and mitigating risk before conducting multiyear studies. Learning from past experiences and incorporating this knowledge into new drug development programs will be instrumental in bringing new antiinflammatory therapies to patients.
Collapse
|
28
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
29
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
30
|
Thakur C, Wolfarth M, Sun J, Zhang Y, Lu Y, Battelli L, Porter DW, Chen F. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells. Oncotarget 2016; 6:3722-36. [PMID: 25669985 PMCID: PMC4414149 DOI: 10.18632/oncotarget.2914] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/-) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/- mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/- mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/- mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Michael Wolfarth
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Respiratory Medicine, The 4th Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yadong Zhang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Lori Battelli
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Dale W Porter
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| |
Collapse
|
31
|
Hector A, Schäfer H, Pöschel S, Fischer A, Fritzsching B, Ralhan A, Carevic M, Öz H, Zundel S, Hogardt M, Bakele M, Rieber N, Riethmueller J, Graepler-Mainka U, Stahl M, Bender A, Frick JS, Mall M, Hartl D. Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 2015; 191:914-23. [PMID: 25632992 DOI: 10.1164/rccm.201407-1381oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with cystic fibrosis (CF) lung disease have chronic airway inflammation driven by disrupted balance of T-cell (Th17 and Th2) responses. Regulatory T cells (Tregs) dampen T-cell activation, but their role in CF is incompletely understood. OBJECTIVES To characterize numbers, function, and clinical impact of Tregs in CF lung disease. METHODS Tregs were quantified in peripheral blood and airway samples from patients with CF and from lung disease control patients without CF and healthy control subjects. The role of Pseudomonas aeruginosa and CF transmembrane conductance regulator (CFTR) in Treg regulation was analyzed by using in vitro and murine in vivo models. MEASUREMENTS AND MAIN RESULTS Tregs were decreased in peripheral blood and airways of patients with CF compared with healthy controls or lung disease patients without CF and correlated positively with lung function parameters. Patients with CF with chronic P. aeruginosa infection had lower Tregs compared with patients with CF without P. aeruginosa infection. Genetic knockout, pharmacological inhibition, and P. aeruginosa infection studies showed that both P. aeruginosa and CFTR contributed to Treg dysregulation in CF. Functionally, Tregs from patients with CF or from Cftr(-/-) mice were impaired in suppressing conventional T cells, an effect that was enhanced by P. aeruginosa infection. The loss of Tregs in CF affected memory, but not naive Tregs, and manifested gradually with disease progression. CONCLUSIONS Patients with CF who have chronic P. aeruginosa infection show an age-dependent, quantitative, and qualitative impairment of Tregs. Modulation of Tregs represents a novel strategy to rebalance T-cell responses, dampen inflammation, and ultimately improve outcomes for patients with infective CF lung disease.
Collapse
|
32
|
Ghorbani P, Santhakumar P, Hu Q, Djiadeu P, Wolever TM, Palaniyar N, Grasemann H. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur Respir J 2015; 46:1033-45. [DOI: 10.1183/09031936.00143614] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Abstract
The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5–2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5–2.5 mM) SCFA concentrations increased, while high (25–50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth ofPseudomonas aeruginosain a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.
Collapse
|
33
|
Mulcahy EM, Hudson JB, Beggs SA, Reid DW, Roddam LF, Cooley MA. High peripheral blood th17 percent associated with poor lung function in cystic fibrosis. PLoS One 2015; 10:e0120912. [PMID: 25803862 PMCID: PMC4372584 DOI: 10.1371/journal.pone.0120912] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022] Open
Abstract
People with cystic fibrosis (CF) have been reported to make lung T cell responses that are biased towards T helper (Th) 2 or Th17. We hypothesized that CF-related T cell regulatory defects could be detected by analyzing CD4+ lymphocyte subsets in peripheral blood. Peripheral blood mononuclear cells from 42 CF patients (6 months–53 years old) and 78 healthy controls (2–61 years old) were analyzed for Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17+), Treg (FOXP3+), IL-10+ and TGF-β+ CD4+ cells. We observed higher proportions of Treg, IL-10+ and TGF-β+ CD4+ cells in CF adults (≥ 18 years old), but not children/adolescents, compared with controls. Within the CF group, high TGF-β+% was associated with chronic Pseudomonas aeruginosa lung infection (p < 0.006). We observed no significant differences between control and CF groups in the proportions of Th1, Th2 or Th17 cells, and no association within the CF group of any subset with sex, CFTR genotype, or clinical exacerbation. However, high Th17% was strongly associated with poor lung function (FEV1 % predicted) (p = 0.0008), and this association was strongest when both lung function testing and blood sampling were performed within one week. Our results are consistent with reports of CF as a Th17 disease and suggest that peripheral blood Th17 levels may be a surrogate marker of lung function in CF.
Collapse
Affiliation(s)
- Emily M. Mulcahy
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jo B. Hudson
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sean A. Beggs
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - David W. Reid
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Louise F. Roddam
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Margaret A. Cooley
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
34
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
35
|
Singh S, Barr H, Liu YC, Robins A, Heeb S, Williams P, Fogarty A, Cámara M, Martínez-Pomares L. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection. PLoS One 2015; 10:e0117447. [PMID: 25706389 PMCID: PMC4338139 DOI: 10.1371/journal.pone.0117447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/23/2014] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ.
Collapse
Affiliation(s)
- Sonali Singh
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Helen Barr
- School of Medicine, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Yi-Chia Liu
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Adrian Robins
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Andrew Fogarty
- School of Community Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Miguel Cámara
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- * E-mail: (LMP); (MC)
| | - Luisa Martínez-Pomares
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- * E-mail: (LMP); (MC)
| |
Collapse
|
36
|
Kim SY, Koh WJ, Kim YH, Jeong BH, Park HY, Jeon K, Kim JS, Cho SN, Shin SJ. Importance of reciprocal balance of T cell immunity in Mycobacterium abscessus complex lung disease. PLoS One 2014; 9:e109941. [PMID: 25295870 PMCID: PMC4190320 DOI: 10.1371/journal.pone.0109941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the nature of the host immune response to Mycobacterium abscessus complex (MABC) infection. The aim of the present study was to investigate whether alterations in serum immunomolecule levels after treating MABC lung disease patients with antibiotics can reflect the disease-associated characteristics. Methods A total of 22 immunomolecules in 24 MABC lung disease patients before and after antibiotic therapy were quantitatively analyzed using a multiplex bead-based system. Results In general, the pre-treatment levels of T helper type 1 (Th1)-related cytokines, i.e., interferon (IFN)-γ and interleukin (IL)-12, and Th2-related cytokines, i.e., IL-4 and IL-13, were significantly decreased in patients compared with control subjects. In contrast, the pre-treatment levels of Th17-related cytokines, i.e., IL-17 and IL-23, were significantly increased in MABC patients. Interestingly, significantly higher levels of IFN-γ-induced protein (IP)-10 and monokine induced by IFN-γprotein (MIG) were detected in patients with failure of sputum conversion at post-treatment compared to patients with successful sputum conversion. Conclusion Reduced Th1 and Th2 responses and enhanced Th17 responses in patients may perpetuate MABC lung disease, and the immunomolecules IP-10 and MIG, induced through IFN-γ, may serve as key markers for indicating the treatment outcome.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
37
|
Fouka E, Lamprianidou E, Arvanitidis K, Filidou E, Kolios G, Miltiades P, Paraskakis E, Antoniadis A, Kotsianidis I, Bouros D. Low-Dose Clarithromycin Therapy Modulates Th17 Response In Non-Cystic Fibrosis Bronchiectasis Patients. Lung 2014; 192:849-55. [DOI: 10.1007/s00408-014-9619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/22/2014] [Indexed: 12/27/2022]
|
38
|
Kushwah R, Gagnon S, Sweezey NB. T cell unresponsiveness in a pediatric cystic fibrosis patient: a case report. Allergy Asthma Clin Immunol 2014; 10:2. [PMID: 24438707 PMCID: PMC3896844 DOI: 10.1186/1710-1492-10-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/14/2014] [Indexed: 01/12/2023] Open
Abstract
A girl was diagnosed with cystic fibrosis (CF) at birth, with repeatedly positive sweat tests and homozygous F508del mutations of her CF transmembrane conductance regulator (CFTR) gene. From an early age, her lung disease was more severe than her birth cohort peers despite aggressive treatment. At the age of 16 she was listed for lung transplantation, but prior to transplant was not on systemic corticosteroids or other immunosuppressive agents. In response to ex vivo stimulation, her pre-transplant peripheral blood T cells unexpectedly failed to produce detectable levels of IFN-γ, unlike cells from healthy controls or from another girl with CF and lung disease of comparable severity. Furthermore, naïve T cells freshly isolated from her peripheral blood showed a complete block of T cell differentiation into Th1, Th17 and Treg lineages, even in the presence of cytokines known to promote differentiation into the respective lineages. Her serology has been remarkably devoid of evidence of exposure to viruses that have been associated with T cell exhaustion. However, her freshly isolated naïve T cells showed sustained expression of markers of T cell exhaustion, which were further induced upon ex vivo stimulation, pointing to T cell exhaustion as the cause of the failure of naïve T cells to undergo differentiation in response to cytokine stimulation. Although excessive inflammation in CF lung can be both ineffective at clearing certain pathogens as well as destructive to the lung tissue itself, adequate inflammation is a component of an effective overall immune response to microbial pathogens. Our present findings suggest that intrinsic impairment of T cell differentiation may have contributed to the greater severity and more rapid progression of her CF lung disease than of the lung disease of most of her peers.
Collapse
Affiliation(s)
| | | | - Neil B Sweezey
- Respiratory Medicine, Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|