1
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
2
|
Crabbé A, Ledesma MA, Nickerson CA. Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa. Pathog Dis 2014; 71:1-19. [PMID: 24737619 DOI: 10.1111/2049-632x.12180] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 02/01/2023] Open
Abstract
Why is a healthy person protected from Pseudomonas aeruginosa infections, while individuals with cystic fibrosis or damaged epithelium are particularly susceptible to this opportunistic pathogen? To address this question, it is essential to thoroughly understand the dynamic interplay between the host microenvironment and P. aeruginosa. Therefore, using model systems that represent key aspects of human mucosal tissues in health and disease allows recreating in vivo host-pathogen interactions in a physiologically relevant manner. In this review, we discuss how factors of mucosal tissues, such as apical-basolateral polarity, junctional complexes, extracellular matrix proteins, mucus, multicellular complexity (including indigenous microbiota), and other physicochemical factors affect P. aeruginosa pathogenesis and are thus important to mimic in vitro. We highlight in vitro cell and tissue culture model systems of increasing complexity that have been used over the past 35 years to study the infectious disease process of P. aeruginosa, mainly focusing on lung models, and their respective advantages and limitations. Continued improvements of in vitro models based on our expanding knowledge of host microenvironmental factors that participate in P. aeruginosa pathogenesis will help advance fundamental understanding of pathogenic mechanisms and increase the translational potential of research findings from bench to the patient's bedside.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
3
|
Kausar S, Asif M, Bibi N, Rashid S. Comparative molecular docking analysis of cytoplasmic dynein light chain DYNLL1 with pilin to explore the molecular mechanism of pathogenesis caused by Pseudomonas aeruginosa PAO. PLoS One 2013; 8:e76730. [PMID: 24098557 PMCID: PMC3789673 DOI: 10.1371/journal.pone.0076730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein light chain 1 (DYNLL1) is a component of large protein complex, which is implicated in cargo transport processes, and is known to interact with many cellular and viral proteins through its short consensus motif (K/R)XTQT. Still, it remains to be explored that bacterial proteins also exhibit similar recognition sequences to make them vulnerable to host defense mechanism. We employed multiple docking protocols including AUTODOCK, PatchDock, ZDOCK, DOCK/PIERR and CLUSPRO to explore the DYNLL1 and Pilin interaction followed by molecular dynamics simulation assays. Subsequent structural comparison of the predicted binding site for DYNLL1-Pilin complex against the experimentally verified DYNLL1 binding partners was performed to cross check the residual contributions and to determine the binding mode. On the basis of in silico analysis, here we describe a novel interaction of DYNLL1 and receptor binding domain of Pilin (the main protein constituent of bacterial type IV Pili) of gram negative bacteria Pseudomonas aeruginosa (PAO), which is the third most common nosocomial pathogen associated with the life-threatening infections. Evidently, our results underscore that Pilin specific motif (KSTQD) exhibits a close structural similarity to that of Vaccinia virus polymerase, P protein Rabies and P protein Mokola viruses. We speculate that binding of DYNLL1 to Pilin may trigger an uncontrolled inflammatory response of the host immune system during P. aeruginosa chronic infections thereby opening a new pioneering area to investigate the role of DYNLL1 in gram negative bacterial infections other than viral infections. Moreover, by manifesting a strict correspondence between sequence and function, our study anticipates a novel drug target site to control the complications caused by P. aeruginosa infections.
Collapse
Affiliation(s)
- Samina Kausar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Asif
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
4
|
Sequeiros IM, Jarad N. Factors associated with a shorter time until the next pulmonary exacerbation in adult patients with cystic fibrosis. Chron Respir Dis 2012; 9:9-16. [DOI: 10.1177/1479972311433575] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Time until the subsequent exacerbation (PEx) in cystic fibrosis (CF) is a significant health outcome and one of the significant end points in clinical trials. Risk factors associated with shorter time until the next exacerbation (TUNE) have not been reported. This is a prospective study. TUNE was the number of days from the end of intravenous (IV) antibiotic treatment of a PEx until the day of start of IV antibiotics for the following PEx. Factors assessed were age, gender, site of treatment, CF-related diabetes (CFRD), allergic bronchopulmonary aspergillosis (ABPA) and infection with Pseudomonas aeruginosa (PA). In addition, we examined parameters obtained at day 14 of treatment including forced expiratory volume in the first second (FEV1), body mass index, CF respiratory symptom score, C-reactive protein (CRP) and serum cytokines. A total of 170 exacerbations in 58 adult CF patients (27 female), mean (SD) age 25.8 (6.7) years were analysed. When analysing individual variables, patients with lower FEV1, greater symptom score and higher CRP at the end of exacerbation were associated with shorter TUNE. Patients with ABPA and CFRD had a shorter TUNE than those without. When applying multiple regression analysis, factors associated with shorter TUNE were older age and lower day-14 FEV1 values. Shorter periods until the following PEx are expected in older CF patients and those with lower FEV1 at the end of course of treatment. When these risk factors are present, there may be a justification to take therapeutic steps to increase the time until the following PEx.
Collapse
Affiliation(s)
| | - Nabil Jarad
- Department of Respiratory Medicine, Bristol Royal Infirmary, Bristol, UK
| |
Collapse
|
5
|
Borgatti M, Mancini I, Bianchi N, Guerrini A, Lampronti I, Rossi D, Sacchetti G, Gambari R. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines. BMC BIOCHEMISTRY 2011; 12:15. [PMID: 21496221 PMCID: PMC3095539 DOI: 10.1186/1471-2091-12-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/15/2011] [Indexed: 01/01/2023]
Abstract
Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.
Collapse
Affiliation(s)
- Monica Borgatti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, Ferrara, 44121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tamanini A, Borgatti M, Finotti A, Piccagli L, Bezzerri V, Favia M, Guerra L, Lampronti I, Bianchi N, Dall'Acqua F, Vedaldi D, Salvador A, Fabbri E, Mancini I, Nicolis E, Casavola V, Cabrini G, Gambari R. Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol 2011; 300:L380-90. [DOI: 10.1152/ajplung.00129.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammatory response in the airway tract of patients affected by cystic fibrosis is characterized by an excessive recruitment of neutrophils to the bronchial lumina, driven by the chemokine interleukin (IL)-8. We previously found that 5-methoxypsoralen reduces Pseudomonas aeruginosa -dependent IL-8 transcription in bronchial epithelial cell lines, with an IC50 of 10 μM (Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bezzerri V, Bianchi N, Mazzon M, Mancini I, Giri MG, Rizzotti P, Gambari R, Cabrini G. Int Immunopharmacol 9: 1411–1422, 2009). Here, we extended the investigation to analogs of 5-methoxypsoralen, and we found that the most potent effect is obtained with 4,6,4′-trimethylangelicin (TMA), which inhibits P. aeruginosa -dependent IL-8 transcription at nanomolar concentration in IB3–1, CuFi-1, CFBE41o−, and Calu-3 bronchial epithelial cell lines. Analysis of phosphoproteins involved in proinflammatory transmembrane signaling evidenced that TMA reduces the phosphorylation of ribosomal S6 kinase-1 and AKT2/3, which we found indeed involved in P. aeruginosa -dependent activation of IL-8 gene transcription by testing the effect of pharmacological inhibitors. In addition, we found a docking site of TMA into NF-κB by in silico analysis, whereas inhibition of the NF-κB/DNA interactions in vitro by EMSA was observed at high concentrations (10 mM TMA). To further understand whether NF-κB pathway should be considered a target of TMA, chromatin immunoprecipitation was performed, and we observed that TMA (100 nM) preincubated in whole living cells reduced the interaction of NF-κB with the promoter of IL-8 gene. These results suggest that TMA could inhibit IL-8 gene transcription mainly by intervening on driving the recruitment of activated transcription factors on IL-8 gene promoter, as demonstrated here for NF-κB. Although the complete understanding of the mechanism of action of TMA deserves further investigation, an activity of TMA on phosphorylating pathways was already demonstrated by our study. Finally, since psoralens have been shown to potentiate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport, TMA was tested and found to potentiate CFTR-dependent chloride efflux. In conclusion, TMA is a dual-acting compound reducing excessive IL-8 expression and potentiating CFTR function.
Collapse
Affiliation(s)
- Anna Tamanini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Monica Borgatti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Alessia Finotti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Laura Piccagli
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Maria Favia
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Lorenzo Guerra
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Ilaria Lampronti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Nicoletta Bianchi
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | | | - Daniela Vedaldi
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Alessia Salvador
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Enrica Fabbri
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Irene Mancini
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Elena Nicolis
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Valeria Casavola
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Roberto Gambari
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Induction by TNF-α of IL-6 and IL-8 in cystic fibrosis bronchial IB3-1 epithelial cells encapsulated in alginate microbeads. J Biomed Biotechnol 2010; 2010. [PMID: 20936184 PMCID: PMC2946646 DOI: 10.1155/2010/907964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 01/22/2023] Open
Abstract
We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells.
Collapse
|
8
|
Kannan S, Audet A, Huang H, Chen LJ, Wu M. Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:2396-408. [PMID: 18250449 DOI: 10.4049/jimmunol.180.4.2396] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism of phagocytosis of pathogens remains to be fully characterized. We report a novel phagocytosis pathway for Pseudomonas aeruginosa, which is initiated by cholesterol-rich membrane rafts and is dependent on Lyn, primarily an immune regulator with both positive and negative roles. Blocking of Lyn or blocking of cholesterol synthesis significantly inhibited phagocytosis by alveolar macrophages. We found that Lyn, via Src homology 2 and 3 domains, bound to and then activated PI3K and Akt to regulate intracellular routing of the engulfed P. aeruginosa. Further analysis indicates that Lyn and raft components entered in phagosomes and late lysosomes. Finally, respiratory burst was dependent on Lyn and membrane rafts, as confirmed by small interfering RNA and dominant-negative strategies. Our investigations demonstrate that Lyn along with membrane rafts plays a fundamental role in phagocytosis by alveolar macrophages during infection.
Collapse
Affiliation(s)
- Shibichakravarthy Kannan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
9
|
Barnes RJ, Leung KT, Schraft H, Ulanova M. Chromosomalgfplabelling ofPseudomonas aeruginosausing a mini-Tn7transposon: application for studies of bacteria–host interactions. Can J Microbiol 2008; 54:48-57. [DOI: 10.1139/w07-118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Analysis of bacterial interactions with host cells using multiple techniques is essential for studies on microbial pathogenesis and for the development of new antimicrobial therapies. Pseudomonas aeruginosa is an important opportunistic pathogen that can cause severe, often life-threatening pulmonary infections in individuals with impaired host defense mechanisms. Using a mini-Tn7 transposon delivery system, we have chromosomally labelled the strain P. aeruginosa PAK with a green fluorescent protein gene (gfp) and tested PAKgfp as a research tool for studies of bacteria–host interactions. We were able to reliably and rapidly measure the interactions of PAKgfp with A549 human lung epithelial cells by using flow cytometry, a fluorometric microplate reader-based assay, and fluorescence microscopy. With these analytical tools, we have demonstrated the adhesion of PAKgfp to the extracellular matrix protein fibronectin and the involvement of fibronectin in PAKgfp–A549 cell interactions. PAKgfp can be successfully used to explore the effects of various pharmacological compounds on P. aeruginosa – host cell interactions in both in vitro and in vivo systems, with potentially important medical applications.
Collapse
Affiliation(s)
- Rebecca J. Barnes
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, West Campus, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Kam Tin Leung
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, West Campus, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Heidi Schraft
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, West Campus, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, West Campus, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
10
|
Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:406-17. [PMID: 17652508 PMCID: PMC2647605 DOI: 10.1513/pats.200703-044br] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
Pulmonary biomarkers are being used more frequently to monitor disease activity and evaluate response to treatment in individuals with cystic fibrosis (CF). This article summarizes the current state of knowledge of biomarkers of inflammation relevant to CF lung disease, and the tools to measure inflammation, with specific emphasis on sputum. Sputum is a rich, noninvasive source of biomarkers of inflammation and infection. Sputum induction, through the inhalation of hypertonic saline, has expanded the possibilities for monitoring airway inflammation and infection, especially in individuals who do not routinely expectorate sputum. We critically examine the existing data supporting the validity of sputum biomarkers in CF, with an eye toward their application as surrogate endpoints or outcome measures in CF clinical trials. Further validation studies are needed regarding the variability of inflammatory biomarker measurements, and to evaluate how these biomarkers relate to disease severity, and to longitudinal changes in lung function and other clinical endpoints. We highlight the need to incorporate sputum collection, by induction if necessary, and measurement of sputum biomarkers into routine CF clinical care. In the future, pulmonary biomarkers will likely be useful in predicting disease progression, indicating the onset and resolution of a pulmonary exacerbation, and assessing response to current therapies or candidate therapeutics.
Collapse
Affiliation(s)
- Scott D Sagel
- Department of Pediatrics, The Children's Hospital and University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80218, USA.
| | | | | |
Collapse
|
11
|
Borgatti M, Bezzerri V, Mancini I, Nicolis E, Dechecchi MC, Lampronti I, Rizzotti P, Cabrini G, Gambari R. Induction of IL-6 gene expression in a CF bronchial epithelial cell line by Pseudomonas aeruginosa is dependent on transcription factors belonging to the Sp1 superfamily. Biochem Biophys Res Commun 2007; 357:977-83. [PMID: 17466942 DOI: 10.1016/j.bbrc.2007.04.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease characterized by chronic bacterial lung infection, most commonly sustained by Pseudomonas aeruginosa. Upon infection, elevated concentrations of pro-inflammatory cytokines (i.e. IL-6 and IL1beta) and chemokines (i.e. IL-8 and GROgamma) are found in the bronchoalveolar fluid of CF patients. We report in this paper that: (a) IL-8, IL-6, IL-1beta, ICAM-1, and GRO-gamma genes are upregulated following infection of CF bronchial epithelial IB3-1 cells with P. aeruginosa; (b) Sp1 transcription factor activity is induced following infection of the cystic fibrosis IB3-1 and CuFi-1 cell lines; (c) inhibition of Sp1 activity using transcription factor decoy molecules leads to inhibition of the expression of IL-6 gene. From the theoretical point of view, our results demonstrate that Sp1 transcription factor activity is induced following infection of CF cells with P. aeruginosa, and that this effect is important in the activation of IL-6 gene transcription. From the practical point of view, our data sustain the potential use of decoy molecules targeting the transcription factor Sp1 to control a relevant molecule involved in the inflammatory process associated with the cystic fibrosis airway pathology.
Collapse
Affiliation(s)
- Monica Borgatti
- ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara, 74, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blau H, Klein K, Shalit I, Halperin D, Fabian I. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NF-κB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2007; 292:L343-52. [PMID: 17012372 DOI: 10.1152/ajplung.00030.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-α, IL-1β, or LPS with or without 5–50 μg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-κB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-α and IL-1β increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-α ( P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-κB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-α increased, as did the p-p38, by 1.6- to 2-fold. MXF (5–50 μg/ml) and CIP (50 μg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-α-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-κB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-α and IL-1β induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.
Collapse
Affiliation(s)
- Hannah Blau
- Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petah Tikva, Israel 49202.
| | | | | | | | | |
Collapse
|