1
|
Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, Baruch K, Fröhlich H. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches. Front Immunol 2024; 15:1343900. [PMID: 38720902 PMCID: PMC11078023 DOI: 10.3389/fimmu.2024.1343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| | - Ella Wilczynski
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Neus Falgàs
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eti Yoles
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Beahm DR, Deng Y, DeAngelo TM, Sarpeshkar R. Drug Cocktail Formulation via Circuit Design. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS 2023; 9:28-48. [PMID: 37397625 PMCID: PMC10312325 DOI: 10.1109/tmbmc.2023.3246928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electronic circuits intuitively visualize and quantitatively simulate biological systems with nonlinear differential equations that exhibit complicated dynamics. Drug cocktail therapies are a powerful tool against diseases that exhibit such dynamics. We show that just six key states, which are represented in a feedback circuit, enable drug-cocktail formulation: 1) healthy cell number; 2) infected cell number; 3) extracellular pathogen number; 4) intracellular pathogenic molecule number; 5) innate immune system strength; and 6) adaptive immune system strength. To enable drug cocktail formulation, the model represents the effects of the drugs in the circuit. For example, a nonlinear feedback circuit model fits measured clinical data, represents cytokine storm and adaptive autoimmune behavior, and accounts for age, sex, and variant effects for SARS-CoV-2 with few free parameters. The latter circuit model provided three quantitative insights on the optimal timing and dosage of drug components in a cocktail: 1) antipathogenic drugs should be given early in the infection, but immunosuppressant timing involves a tradeoff between controlling pathogen load and mitigating inflammation; 2) both within and across-class combinations of drugs have synergistic effects; 3) if they are administered sufficiently early in the infection, anti-pathogenic drugs are more effective at mitigating autoimmune behavior than immunosuppressant drugs.
Collapse
Affiliation(s)
| | - Yijie Deng
- Thayer School or Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Thomas M DeAngelo
- Thayer School or Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Rahul Sarpeshkar
- Departments of Engineering, Physics, Microbiology & Immunobiology, and Molecular & Systems Biology, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
3
|
Liberman A, Mussel M, Kario D, Sprinzak D, Nevo U. Modelling cell surface dynamics and cell-cell interactions using Cell Studio: a three-dimensional visualization tool based on gaming technology. J R Soc Interface 2019; 16:20190264. [PMID: 31771451 DOI: 10.1098/rsif.2019.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Predictive modelling of complex biological systems and biophysical interactions requires the inclusion of multiple nano- and micro-scale events. In many scenarios, however, numerical solutions alone do not necessarily enhance the understanding of the system. Instead, this work explores the use of an agent-based model with visualization capabilities to elucidate interactions between single cells. We present a model of juxtacrine signalling, using Cell Studio, an agent-based modelling system, based on gaming and three-dimensional visualization tools. The main advantages of the system are its ability to apply any cell geometry and to dynamically visualize the diffusion and interactions of the molecules within the cells in real time. These provide an excellent tool for obtaining insight about different biological scenarios, as the user may view the dynamics of a system and observe its emergent behaviour as it unfolds. The agent-based model was validated against the results of a mean-field model of Notch receptors and ligands in two neighbouring cells. The conversion to an agent-based model is described in detail. To demonstrate the advantages of the model, we further created a filopodium-mediated signalling model. Our model revealed that diffusion and endocytosis alone are insufficient to produce significant signalling in a filopodia scenario. This is due to the bottleneck at the cell-filopodium contact region and the long distance to the end of the filopodium. However, allowing active transport of ligands into filopodia enhances the signalling significantly compared with a face-to-face scenario. We conclude that the agent-based approach can provide insights into mechanisms underlying cell signalling. The open-source model can be found in the Internet hosting service GitHub.
Collapse
Affiliation(s)
- Asaf Liberman
- The Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Matan Mussel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Danny Kario
- The Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- The Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- The Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Liberman A, Kario D, Mussel M, Brill J, Buetow K, Efroni S, Nevo U. Cell studio: A platform for interactive, 3D graphical simulation of immunological processes. APL Bioeng 2018; 2:026107. [PMID: 31069304 PMCID: PMC6481718 DOI: 10.1063/1.5039473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/04/2018] [Indexed: 12/27/2022] Open
Abstract
The field of computer modeling and simulation of biological systems is rapidly advancing, backed by significant progress in the fields of experimentation techniques, computer hardware, and programming software. The result of a simulation may be delivered in several ways, from numerical results, through graphs of the simulated run, to a visualization of the simulation. The vision of an in-silico experiment mimicking an in-vitro or in-vivo experiment as it is viewed under a microscope is appealing but technically demanding and computationally intensive. Here, we report “Cell Studio,” a generic, hybrid platform to simulate an immune microenvironment with biological and biophysical rules. We use game engines—generic programs for game creation which offer ready-made assets and tools—to create a visualized, interactive 3D simulation. We also utilize a scalable architecture that delegates the computational load to a server. The user may view the simulation, move the “camera” around, stop, fast-forward, and rewind it and inject soluble molecules into the extracellular medium at any point in time. During simulation, graphs are created in real time for a broad view of system-wide processes. The model is parametrized using a user-friendly Graphical User Interface (GUI). We show a simple validation simulation and compare its results with those from a “classical” simulation, validated against a “wet” experiment. We believe that interactive, real-time 3D visualization may aid in generating insights from the model and encourage intuition about the immunological scenario.
Collapse
Affiliation(s)
- Asaf Liberman
- The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Matan Mussel
- Physics Department, TU Dortmund University, Dortmund 44227, Germany
| | - Jacob Brill
- Arizona State University, Tempe, Arizona 85281, USA
| | | | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
5
|
Isern D, Moreno A. A Systematic Literature Review of Agents Applied in Healthcare. J Med Syst 2015; 40:43. [PMID: 26590981 DOI: 10.1007/s10916-015-0376-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Intelligent agents and healthcare have been intimately linked in the last years. The intrinsic complexity and diversity of care can be tackled with the flexibility, dynamics and reliability of multi-agent systems. The purpose of this review is to show the feasibility of applying intelligent agents in the healthcare domain and use the findings to provide a discussion of current trends and devise future research directions. A review of the most recent literature (2009-2014) of applications of agents in healthcare is discussed, and two classifications considering the main goal of the health systems as well as the main actors involved have been investigated. This review shows that the number of published works exhibits a growing interest of researchers in this field in a wide range of applications.
Collapse
Affiliation(s)
- David Isern
- Department of Computer Science and Mathematics, ITAKA Research Group, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007, Tarragona, Catalonia (Spain).
| | - Antonio Moreno
- Department of Computer Science and Mathematics, ITAKA Research Group, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007, Tarragona, Catalonia (Spain).
| |
Collapse
|
6
|
Esmaeili A, Davison T, Wu A, Alcantara J, Jacob C. PROKARYO: an illustrative and interactive computational model of the lactose operon in the bacterium Escherichia coli. BMC Bioinformatics 2015; 16:311. [PMID: 26415599 PMCID: PMC4587781 DOI: 10.1186/s12859-015-0720-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
Background We are creating software for agent-based simulation and visualization of bio-molecular processes in bacterial and eukaryotic cells. As a first example, we have built a 3-dimensional, interactive computer model of an Escherichia coli bacterium and its associated biomolecular processes. Our illustrative model focuses on the gene regulatory processes that control the expression of genes involved in the lactose operon. Prokaryo, our agent-based cell simulator, incorporates cellular structures, such as plasma membranes and cytoplasm, as well as elements of the molecular machinery, including RNA polymerase, messenger RNA, lactose permease, and ribosomes. Results The dynamics of cellular ’agents’ are defined by their rules of interaction, implemented as finite state machines. The agents are embedded within a 3-dimensional virtual environment with simulated physical and electrochemical properties. The hybrid model is driven by a combination of (1) mathematical equations (DEQs) to capture higher-scale phenomena and (2) agent-based rules to implement localized interactions among a small number of molecular elements. Consequently, our model is able to capture phenomena across multiple spatial scales, from changing concentration gradients to one-on-one molecular interactions. We use the classic gene regulatory mechanism of the lactose operon to demonstrate our model’s resolution, visual presentation, and real-time interactivity. Our agent-based model expands on a sophisticated mathematical E. coli metabolism model, through which we highlight our model’s scientific validity. Conclusion We believe that through illustration and interactive exploratory learning a model system like Prokaryo can enhance the general understanding and perception of biomolecular processes. Our agent-DEQ hybrid modeling approach can also be of value to conceptualize, illustrate, and—eventually—validate cell experiments in the wet lab.
Collapse
Affiliation(s)
- Afshin Esmaeili
- Department of Computer Science, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, Canada.
| | - Timothy Davison
- Department of Computer Science, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, Canada.
| | - Andrew Wu
- Department of Computer Science, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, Canada.
| | - Joenel Alcantara
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada.
| | - Christian Jacob
- Department of Computer Science, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, Canada. .,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
7
|
Cappuccio A, Tieri P, Castiglione F. Multiscale modelling in immunology: a review. Brief Bioinform 2015; 17:408-18. [PMID: 25810307 DOI: 10.1093/bib/bbv012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.
Collapse
Affiliation(s)
- Antonio Cappuccio
- Laboratory of Integrative biology of human dendritic cells and T cells, U932 Immunity and cancer, Institut Curie, 26 Rue d`Ulm, 75005 Paris, France
| | - Paolo Tieri
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Filippo Castiglione
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|