1
|
Harry ND, Zakas C. The role of heterochronic gene expression and regulatory architecture in early developmental divergence. eLife 2024; 13:RP93062. [PMID: 39177024 PMCID: PMC11343563 DOI: 10.7554/elife.93062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring - using reciprocal crosses - to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| |
Collapse
|
2
|
Brash JT, Diez-Pinel G, Colletto C, Castellan RF, Fantin A, Ruhrberg C. The BulkECexplorer compiles endothelial bulk transcriptomes to predict functional versus leaky transcription. NATURE CARDIOVASCULAR RESEARCH 2024; 3:460-473. [PMID: 38708406 PMCID: PMC7615926 DOI: 10.1038/s44161-024-00436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 05/07/2024]
Abstract
Transcriptomic data can be mined to understand the molecular activity of cell types. Yet, functional genes may remain undetected in RNA sequencing (RNA-seq) experiments for technical reasons, such as insufficient read depth or gene dropout. Conversely, RNA-seq experiments may detect lowly expressed mRNAs thought to be biologically irrelevant products of leaky transcription. To represent a cell type's functional transcriptome more accurately, we propose compiling many bulk RNA-seq datasets into a compendium and applying established classification models to predict whether detected transcripts are likely products of active or leaky transcription. Here, we present the BulkECexplorer (bulk RNA-seq endothelial cell explorer) compendium of 240 bulk RNA-seq datasets from five vascular endothelial cell subtypes. This resource reports transcript counts for genes of interest and predicts whether detected transcripts are likely the products of active or leaky gene expression. Beyond its usefulness for vascular biology research, this resource provides a blueprint for developing analogous tools for other cell types.
Collapse
Affiliation(s)
- James T. Brash
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Chiara Colletto
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Biosciences, University of Milan, Milan, Italy
| | | |
Collapse
|
3
|
Vainchtein ID, Alsema AM, Dubbelaar ML, Grit C, Vinet J, van Weering HRJ, Al‐Izki S, Biagini G, Brouwer N, Amor S, Baker D, Eggen BJL, Boddeke EWGM, Kooistra SM. Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis. Glia 2023; 71:588-601. [PMID: 36377669 PMCID: PMC10100411 DOI: 10.1002/glia.24297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.
Collapse
Affiliation(s)
- Ilia D. Vainchtein
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Astrid M. Alsema
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Corien Grit
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jonathan Vinet
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Al‐Izki
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sandra Amor
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
- Department of PathologyVUMCAmsterdamThe Netherlands
| | - David Baker
- Department of NeuroimmunologyBlizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Cellular and Molecular MedicineCenter for Healthy Ageing, University of CopenhagenCopenhagenDenmark
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Chung YC, Bisht M, Thuma J, Tu LC. Single-chromosome dynamics reveals locus-dependent dynamics and chromosome territory orientation. J Cell Sci 2023; 136:jcs260137. [PMID: 36718642 PMCID: PMC10022681 DOI: 10.1242/jcs.260137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Dynamic chromatin organization instantly influences DNA accessibility through modulating local macromolecular density and interactions, driving changes in transcription activities. Chromatin dynamics have been reported to be locally confined but contribute to coherent chromatin motion across the entire nucleus. However, the regulation of dynamics, nuclear orientation and compaction of subregions along a single chromosome are not well-understood. We used CRISPR-based real-time single-particle tracking and polymer models to characterize the dynamics of specific genomic loci and determine compaction levels of large human chromosomal domains. Our studies showed that chromosome compaction changed during interphase and that compactions of two arms on chromosome 19 were different. The dynamics of genomic loci were subdiffusive and dependent on chromosome regions and transcription states. Surprisingly, the correlation between locus-dependent nuclear localization and mobility was negligible. Strong tethering interactions detected at the pericentromeric region implies local condensation or associations with organelles within local nuclear microenvironments, such as chromatin-nuclear body association. Based on our findings, we propose a 'guided radial model' for the nuclear orientation of the long arm of chromosome 19.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Madhoolika Bisht
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jenna Thuma
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Miedema A, Gerrits E, Brouwer N, Jiang Q, Kracht L, Meijer M, Nutma E, Peferoen-Baert R, Pijnacker ATE, Wesseling EM, Wijering MHC, Gabius HJ, Amor S, Eggen BJL, Kooistra SM. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol Commun 2022; 10:8. [PMID: 35090578 PMCID: PMC8796391 DOI: 10.1186/s40478-021-01306-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.
Collapse
|
6
|
Talma N, Gerrits E, Wang B, Eggen BJ, Demaria M. Identification of distinct and age-dependent p16 High microglia subtypes. Aging Cell 2021; 20:e13450. [PMID: 34598318 PMCID: PMC8520715 DOI: 10.1111/acel.13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cells expressing high levels of the cyclin‐dependent kinase (CDK)4/6 inhibitor p16 (p16High) accumulate in aging tissues and promote multiple age‐related pathologies, including neurodegeneration. Here, we show that the number of p16High cells is significantly increased in the central nervous system (CNS) of 2‐year‐old mice. Bulk RNAseq indicated that genes expressed by p16High cells were associated with inflammation and phagocytosis. Single‐cell RNAseq of brain cells indicated p16High cells were primarily microglia, and their accumulation was confirmed in brains of aged humans. Interestingly, we identified two distinct subpopulations of p16High microglia in the mouse brain, with one being age‐associated and one present in young animals. Both p16High clusters significantly differed from previously described disease‐associated microglia and expressed only a partial senescence signature. Taken together, our study provides evidence for the existence of two p16‐expressing microglia populations, one accumulating with age and another already present in youth that could positively and negatively contribute to brain homeostasis, function, and disease.
Collapse
Affiliation(s)
- Nynke Talma
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
7
|
Alsema AM, Jiang Q, Kracht L, Gerrits E, Dubbelaar ML, Miedema A, Brouwer N, Hol EM, Middeldorp J, van Dijk R, Woodbury M, Wachter A, Xi S, Möller T, Biber KP, Kooistra SM, Boddeke EWGM, Eggen BJL. Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue. Front Mol Neurosci 2020; 13:134. [PMID: 33192286 PMCID: PMC7655794 DOI: 10.3389/fnmol.2020.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/22/2023] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous system (CNS). Recent studies based on bulk and single-cell RNA sequencing in mice indicate high relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer's disease (AD). Here, we investigated microglia transcriptomes at bulk and single-cell levels in non-demented elderly and AD donors using acute human postmortem cortical brain samples. We identified seven human microglial subpopulations with heterogeneity in gene expression. Notably, gene expression profiles and subcluster composition of microglia did not differ between AD donors and non-demented elderly in bulk RNA sequencing nor in single-cell sequencing.
Collapse
Affiliation(s)
- Astrid M. Alsema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qiong Jiang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Maya Woodbury
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Astrid Wachter
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Simon Xi
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Thomas Möller
- Foundational Neuroscience Center, AbbVie Inc., Cambridge, MA, United States
| | - Knut P. Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH and Co. KG, Ludwigshafen, Germany
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Cellular and Molecular Medicine, Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
dos Santos KCG, Desgagné-Penix I, Germain H. Custom selected reference genes outperform pre-defined reference genes in transcriptomic analysis. BMC Genomics 2020; 21:35. [PMID: 31924161 PMCID: PMC6954607 DOI: 10.1186/s12864-019-6426-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA sequencing allows the measuring of gene expression at a resolution unmet by expression arrays or RT-qPCR. It is however necessary to normalize sequencing data by library size, transcript size and composition, among other factors, before comparing expression levels. The use of internal control genes or spike-ins is advocated in the literature for scaling read counts, but the methods for choosing reference genes are mostly targeted at RT-qPCR studies and require a set of pre-selected candidate controls or pre-selected target genes. RESULTS Here, we report an R-based pipeline to select internal control genes based solely on read counts and gene sizes. This novel method first normalizes the read counts to Transcripts per Million (TPM) and then excludes weakly expressed genes using the DAFS script to calculate the cut-off. It then selects as references the genes with lowest TPM covariance. We used this method to pick custom reference genes for the differential expression analysis of three transcriptome sets from transgenic Arabidopsis plants expressing heterologous fungal effector proteins tagged with GFP (using GFP alone as the control). The custom reference genes showed lower covariance and fold change as well as a broader range of expression levels than commonly used reference genes. When analyzed with NormFinder, both typical and custom reference genes were considered suitable internal controls, but the custom selected genes were more stably expressed. geNorm produced a similar result in which most custom selected genes ranked higher (i.e. were more stably expressed) than commonly used reference genes. CONCLUSIONS The proposed method is innovative, rapid and simple. Since it does not depend on genome annotation, it can be used with any organism, and does not require pre-selected reference candidates or target genes that are not always available.
Collapse
Affiliation(s)
- Karen Cristine Gonçalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7 Canada
| |
Collapse
|
9
|
Monteiro MB, Pelaes TS, Santos-Bezerra DP, Thieme K, Lerario AM, Oba-Shinjo SM, Machado UF, Passarelli M, Marie SKN, Corrêa-Giannella ML. Urinary Sediment Transcriptomic and Longitudinal Data to Investigate Renal Function Decline in Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:238. [PMID: 32425885 PMCID: PMC7204506 DOI: 10.3389/fendo.2020.00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/01/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Using a discovery/validation approach we investigated associations between a panel of genes selected from a transcriptomic study and the estimated glomerular filtration rate (eGFR) decline across time in a cohort of type 1 diabetes (T1D) patients. Experimental: Urinary sediment transcriptomic was performed to select highly modulated genes in T1D patients with rapid eGFR decline (decliners) vs. patients with stable eGFR (non-decliners). The selected genes were validated in samples from a T1D cohort (n = 54, mean diabetes duration of 21 years, 61% women) followed longitudinally for a median of 12 years in a Diabetes Outpatient Clinic. Results: In the discovery phase, the transcriptomic study revealed 158 genes significantly different between decliners and non-decliners. Ten genes increasingly up or down-regulated according to renal function worsening were selected for validation by qRT-PCR; the genes CYP4F22, and PMP22 were confirmed as differentially expressed comparing decliners vs. non-decliners after adjustment for potential confounders. CYP4F22, LYPD3, PMP22, MAP1LC3C, HS3ST2, GPNMB, CDH6, and PKD2L1 significantly modified the slope of eGFR in T1D patients across time. Conclusions: Eight genes identified as differentially expressed in the urinary sediment of T1D patients presenting different eGFR decline rates significantly increased the accuracy of predicted renal function across time in the studied cohort. These genes may be a promising way of unveiling novel mechanisms associated with diabetic kidney disease progression.
Collapse
Affiliation(s)
- Maria Beatriz Monteiro
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana S. Pelaes
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele P. Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Thieme
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antonio M. Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Sueli M. Oba-Shinjo
- Laboratory of Molecular and Cellular Biology (LIM-15, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Ubiratan F. Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Suely K. N. Marie
- Laboratory of Molecular and Cellular Biology (LIM-15, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- *Correspondence: Maria Lúcia Corrêa-Giannella
| |
Collapse
|
10
|
Choi SW, Choi SW, Chae J, Yoo HY, Kim JI, Kim SJ. The novel high-frequency variant of TRPV3 p.A628T in East Asians showing faster sensitization in response to chemical agonists. Pflugers Arch 2019; 471:1273-1289. [PMID: 31612282 DOI: 10.1007/s00424-019-02309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
TRPV3, a member of the thermosensitive Ca2+-permeable TRPV channel subfamily expressed in skin and sensory nerves, is also activated by chemical agonists such as 2-aminoethyl diphenylborinate (2-APB). Repetitive stimuli induce sensitization of TRPV3 activation, characterized by the cumulative increase in current amplitude and linearization of current-voltage relation (I/V curve). Through genomic analysis of various populations, we found non-rare TRPV3 mutation (p.A628T) in East Asian people with an allele frequency of 0.249 while 0.007 in Caucasian. Slope conductance of unitary channel was not different between WT and p.A628T. Whole-cell patch clamp study of wildtype TRPV3 (WT) and p.A628T overexpressed in HEK293T cells showed similar sensitization by the repetitive increase in temperature from 23 to 37 °C, while slightly higher sensitization to 43 °C in p.A628T. In contrast, the repetitive application of 2-APB (10 μM) or carvacrol (100 μM) induced faster sensitization in p.A628T than WT. However, 1 μM farnesyl pyrophosphate, an intrinsic lipid metabolite agonist, induced similar level of slow activations in WT and p.A628T. In Fura-2 microspectrofluorimetry, the 2-APB pulses induced a faster increase of [Ca2+]c in p.A628T than WT. In terms of ionic selectivity of channels, WT and p.A628T showed similar Ca2+ permeability (PCa/PNa) calculated from the reversal potential of I/V curves. Taken together, p.A628T shows faster sensitization to chemical agonists that are reflected as higher [Ca2+]c signaling. Based on the intriguing pharmacological sensitivity, the physiological implications of p.A628T in the East Asian population require further investigation.
Collapse
Affiliation(s)
- Seong Woo Choi
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Si Won Choi
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jeesoo Chae
- Department of Biochemistry and Molecular Biology, Genomic Medicine Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, 100-031, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Genomic Medicine Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Kap YS, Bus-Spoor C, van Driel N, Dubbelaar ML, Grit C, Kooistra SM, Fagrouch ZC, Verschoor EJ, Bauer J, Eggen BJL, Harmsen HJM, Laman JD, 't Hart BA. Targeted Diet Modification Reduces Multiple Sclerosis-like Disease in Adult Marmoset Monkeys from an Outbred Colony. THE JOURNAL OF IMMUNOLOGY 2018; 201:3229-3243. [PMID: 30341184 DOI: 10.4049/jimmunol.1800822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in common marmosets is a translationally relevant model of the chronic neurologic disease multiple sclerosis. Following the introduction of a new dietary supplement in our purpose-bred marmoset colony, the percentage of marmosets in which clinically evident EAE could be induced by sensitization against recombinant human myelin oligodendrocyte glycoprotein in IFA decreased from 100 to 65%. The reduced EAE susceptibility after the dietary change coincided with reduced Callitrichine herpesvirus 3 expression in the colony, an EBV-related γ1-herpesvirus associated with EAE. We then investigated, in a controlled study in marmoset twins, which disease-relevant parameters were affected by the dietary change. The selected twins had been raised on the new diet for at least 12 mo prior to the study. In twin siblings reverted to the original diet 8 wk prior to EAE induction, 100% disease prevalence (eight out of eight) was restored, whereas in siblings remaining on the new diet the EAE prevalence was 75% (six out of eight). Spinal cord demyelination, a classical hallmark of the disease, was significantly lower in new-diet monkeys than in monkeys reverted to the original diet. In new-diet monkeys, the proinflammatory T cell response to recombinant human myelin oligodendrocyte glycoprotein was significantly reduced, and RNA-sequencing revealed reduced apoptosis and enhanced myelination in the brain. Systematic typing of the marmoset gut microbiota using 16S rRNA sequencing demonstrated a unique, Bifidobacteria-dominated composition, which changed after disease induction. In conclusion, targeted dietary intervention exerts positive effects on EAE-related parameters in multiple compartments of the marmoset's gut-immune-CNS axis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Carien Bus-Spoor
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Marissa L Dubbelaar
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Corien Grit
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Susanne M Kooistra
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Jan Bauer
- Department for Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bart J L Eggen
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jon D Laman
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| |
Collapse
|
12
|
Catalán A, Macias-Muñoz A, Briscoe AD. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol Biol Evol 2018; 35:2120-2134. [DOI: 10.1093/molbev/msy111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ana Catalán
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- Section of Evolutionary Biology, Department of Biology II, Ludwig Maximilians Universität, Planegg-Martinsried, Germany
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
13
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
14
|
Abstract
In this methods article, I describe a computational workflow for cross-species visualization and comparison of mRNA-seq transcriptome profiling data. The workflow is based on gene set variation analysis (GSVA) and is illustrated using commands in the R programming language. I provide a complete step-by-step procedure for the workflow using mRNA-seq data sets from dog and human bladder cancer as an example.
Collapse
Affiliation(s)
- Stephen A Ramsey
- Oregon State University, 106 Dryden Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
Dapas M, Kandpal M, Bi Y, Davuluri RV. Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms. Brief Bioinform 2017; 18:260-269. [PMID: 26944083 PMCID: PMC5444266 DOI: 10.1093/bib/bbw016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/04/2023] Open
Abstract
Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and microarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.
Collapse
Affiliation(s)
| | - Manoj Kandpal
- Department of Veterinary Surgery & Radiology, College of Veterinary & Animal Sciences, GBPUAT, Pantnagar - 263 145, Uttarakhand, India
| | - Yingtao Bi
- Center for Systems and Computational Biology, Molecular and Cellular Oncogenesis Program, The Wistar Institute, 19104 Philadelphia, PA, USA
| | - Ramana V Davuluri
- Center for Systems and Computational Biology, Molecular and Cellular Oncogenesis Program, The Wistar Institute, 19104 Philadelphia, PA, USA
| |
Collapse
|
16
|
da Silva KS, Pinto PR, Fabre NT, Gomes DJ, Thieme K, Okuda LS, Iborra RT, Freitas VG, Shimizu MHM, Teodoro WR, Marie SKN, Woods T, Brimble MA, Pickford R, Rye KA, Okamoto M, Catanozi S, Correa-Giannela ML, Machado UF, Passarelli M. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats. Front Physiol 2017; 8:723. [PMID: 29018354 PMCID: PMC5616024 DOI: 10.3389/fphys.2017.00723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM.
Collapse
Affiliation(s)
- Karolline S da Silva
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Paula R Pinto
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Nelly T Fabre
- Laboratorio de Carboidratos e Radioimunoensaios, LIM-18, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Diego J Gomes
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Karina Thieme
- Laboratorio de Carboidratos e Radioimunoensaios, LIM-18, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Ligia S Okuda
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Rodrigo T Iborra
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Vanessa G Freitas
- Laboratorio de Biologia Celular e Molecular, LIM-15, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Maria H M Shimizu
- Laboratorio de Pesquisa Básica em Doenças Renais, LIM-12, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Walcy R Teodoro
- Laboratorio de Reumatologia, LIM-17, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Suely K N Marie
- Laboratorio de Biologia Celular e Molecular, LIM-15, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Tom Woods
- School of Chemical Sciences and School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences and School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South WalesSydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Maristela Okamoto
- Laboratorio de Metabolismo e Endocrinologia; Instituto de Ciencias Biomedicas, Universidade de São PauloSão Paulo, Brazil
| | - Sergio Catanozi
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Maria L Correa-Giannela
- Laboratorio de Carboidratos e Radioimunoensaios, LIM-18, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| | - Ubiratan F Machado
- Laboratorio de Metabolismo e Endocrinologia; Instituto de Ciencias Biomedicas, Universidade de São PauloSão Paulo, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides, LIM-10, Faculdade de Medicina, Hospital das Clinicas, Universidade de São PauloSão Paulo, Brazil
| |
Collapse
|
17
|
Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Möller T, Wes PD, Sogayar MC, Laman JD, den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie SKN, Eggen BJL. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 2017; 20:1162-1171. [PMID: 28671693 DOI: 10.1038/nn.4597] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.
Collapse
Affiliation(s)
- Thais F Galatro
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ilia D Vainchtein
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paula R Sola
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana M Veras
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tulio F Pereira
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil.,Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Renata E P Leite
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Paul D Wes
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Mari C Sogayar
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wilfred den Dunnen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlos A Pasqualucci
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Erik W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suely K N Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Rogers Z, Hiruy H, Pasipanodya JG, Mbowane C, Adamson J, Ngotho L, Karim F, Jeena P, Bishai W, Gumbo T. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism. EBioMedicine 2016; 11:118-126. [PMID: 27528266 PMCID: PMC5049930 DOI: 10.1016/j.ebiom.2016.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022] Open
Abstract
N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax) and affinity (Km) in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥ 5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm. We identified the NAT2 Km and Vmax in children treated with isoniazid. Artificial intelligence (AI) algorithms were used to find predictors of Km and Vmax. Isoniazid concentration affected Vmax and Km, and superseded NAT2 genotype. Age non-linearly modified NAT2 genotype contribution until maturation at ≥ 5.3 years. AI output is in the form of equations that allow multiscale systems modeling.
The effects of maturation on drug metabolism have not been studied for the type phase II enzymes such as NAT2, which metabolizes the drug isoniazid. Genes have been found to control speed of isoniazid metabolism. Studies to characterize affinity and maximum velocity for isoniazid metabolism in people were last performed in two individuals' livers in the 1960s. We identified NAT2 affinity and maximum velocity in 30 tuberculosis children treated with isoniazid. Artificial intelligence methods found that metabolism was affected by the drug's concentration more than by genes, which were affected by age up to 5.3 years.
Collapse
Affiliation(s)
- Zoe Rogers
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Hiwot Hiruy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA
| | - Chris Mbowane
- Dept of Pediatrics, Nelson Mandela School of Medicine, UKZN, Durban 4001, South Africa
| | - John Adamson
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Lihle Ngotho
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Farina Karim
- KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Prakash Jeena
- Dept of Pediatrics, Nelson Mandela School of Medicine, UKZN, Durban 4001, South Africa
| | - William Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA; Department of Medicine, University of Cape Town, Observatory, South Africa.
| |
Collapse
|
19
|
Bowyer JF, Tranter KM, Hanig JP, Crabtree NM, Schleimer RP, George NI. Evaluating the Stability of RNA-Seq Transcriptome Profiles and Drug-Induced Immune-Related Expression Changes in Whole Blood. PLoS One 2015; 10:e0133315. [PMID: 26177368 PMCID: PMC4503719 DOI: 10.1371/journal.pone.0133315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022] Open
Abstract
Methods were developed to evaluate the stability of rat whole blood expression obtained from RNA sequencing (RNA-seq) and assess changes in whole blood transcriptome profiles in experiments replicated over time. Expression was measured in globin-depleted RNA extracted from the whole blood of Sprague-Dawley rats, given either saline (control) or neurotoxic doses of amphetamine (AMPH). The experiment was repeated four times (paired control and AMPH groups) over a 2-year span. The transcriptome of the control and AMPH-treated groups was evaluated on: 1) transcript levels for ribosomal protein subunits; 2) relative expression of immune-related genes; 3) stability of the control transcriptome over 2 years; and 4) stability of the effects of AMPH on immune-related genes over 2 years. All, except one, of the 70 genes that encode the 80s ribosome had levels that ranked in the top 5% of all mean expression levels. Deviations in sequencing performance led to significant changes in the ribosomal transcripts. The overall expression profile of immune-related genes and genes specific to monocytes, T-cells or B-cells were well represented and consistent within treatment groups. There were no differences between the levels of ribosomal transcripts in time-matched control and AMPH groups but significant differences in the expression of immune-related genes between control and AMPH groups. AMPH significantly increased expression of some genes related to monocytes but down-regulated those specific to T-cells. These changes were partially due to changes in the two types of leukocytes present in blood, which indicate an activation of the innate immune system by AMPH. Thus, the stability of RNA-seq whole blood transcriptome can be verified by assessing ribosomal protein subunits and immune-related gene expression. Such stability enables the pooling of samples from replicate experiments to carry out differential expression analysis with acceptable power.
Collapse
Affiliation(s)
- John F. Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| | - Karen M. Tranter
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nathaniel M. Crabtree
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Robert P. Schleimer
- Division of Allergy and Immunology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nysia I. George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| |
Collapse
|