1
|
Yadav AK, Gupta PK, Singh TR. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs. Mol Divers 2024; 28:2301-2315. [PMID: 39033257 DOI: 10.1007/s11030-024-10937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model's predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
| | - Pradeep Kumar Gupta
- Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
- School of Computing, Department of Data Science and Engineering, Mohan Babu University, Tirupati- 517102, Andhra Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
- Centre of Excellence in Healthcare Technologies and Informatics (CHETI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
| |
Collapse
|
2
|
de Oliveira IB, Moura IM, Santana JO, Gramacho KP, Dos Santos Alves S, Ferreira MM, Santos AS, de Novais DPS, Pirovani CP. Cocoa Apoplastome Contains Defense Proteins Against Pathogens. PHYTOPATHOLOGY 2024; 114:427-440. [PMID: 37665571 DOI: 10.1094/phyto-03-23-0101-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The apoplast performs important functions in the plant, such as defense against stress, and compounds present form the apoplastic washing fluid (AWF). The fungus Moniliophthora perniciosa, the causal agent of witches' broom disease (WBD) in Theobroma cacao, initially colonizes the apoplast in its biotrophic phase. In this period, the fungus can remain for approximately 60 days, until it changes to its second phase, causing tissue death and consequently large loss in the production of beans. To better understand the importance of the apoplast in the T. cacao-M. perniciosa interaction, we performed the first apoplastic proteomic mapping of two contrasting genotypes for WBD resistance (CCN51-resistant and Catongo-susceptible). Based on two-dimensional gel analysis, we identified 36 proteins in CCN-51 and 15 in Catongo. We highlight PR-proteins, such as peroxidases, β-1,3-glucanases, and chitinases. A possible candidate for a resistance marker of the CCN-51 genotype, osmotin, was identified. The antioxidative metabolism of the superoxide dismutase (SOD) enzyme showed a significant increase (P < 0.05) in the AWF of the two genotypes under field conditions (FD). T. cacao AWF inhibited the germination of M. perniciosa basidiospores (>80%), in addition to causing morphological changes. Our results shed more light on the nature of the plant's defense performed by the apoplast in the T. cacao-M. perniciosa interaction in the initial (biotrophic) phase of fungal infection and therefore make it possible to expand WBD control strategies based on the identification of potential targets for resistance markers and advance scientific knowledge of the disease.
Collapse
Affiliation(s)
| | | | | | - Karina Peres Gramacho
- Centro de Pesquisa do Cacau (CEPEC/CEPLAC) Molecular Plant Pathology Laboratory, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA. Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 2021; 7:e08480. [PMID: 34901509 PMCID: PMC8640478 DOI: 10.1016/j.heliyon.2021.e08480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi have great prospects for synthesis, applications and developing new products in nanotechnology. In recent times, fungi use in nanotechnology is gaining more attention because of the ecological friendly state of their metabolite-mediated nanoparticles, their safety, amenability and applications in diverse fields. The diversity of the metabolites such as enzymes, polysaccharide, polypeptide, protein and other macro-molecules has made fungi a veritable tool for nanoparticles synthesis. Mechanism of fungal nano-biosynthesis from the molecular perspective has been extensively studied through various investigations on its green synthesized metal nanoparticles. Fungal nanobiotechnology has been applied in agricultural, medical and industrial sectors for goods and services improvement and delivery to mankind. Agriculturally, it has found applications in plant disease management and production of environmentally friendly, non-toxic insecticides, fungicides to enhance agricultural production in general. Medically, diagnosis and treatment of diseases, especially of microbial origin have been improved with fungal nanoparticles through more efficient drug delivery systems with great benefits to pharmaceutical industries. This review therefore explored fungal nanobiotechnology; mechanism of synthesis, characterization and potential applications in various fields of human endeavours for goods and services delivery.
Collapse
Affiliation(s)
- Elijah A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Micheal B. Alao
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Abel M. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Daniel A. Aina
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
4
|
Wu J, Choi J, Asiegbu FO, Lee YH. Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases. MYCOBIOLOGY 2020; 48:373-382. [PMID: 33177916 PMCID: PMC7594830 DOI: 10.1080/12298093.2020.1816151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac.kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.
Collapse
Affiliation(s)
- Jiayao Wu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mohit E, Tabarzad M, Faramarzi MA. Biomedical and Pharmaceutical-Related Applications of Laccases. Curr Protein Pept Sci 2020; 21:78-98. [DOI: 10.2174/1389203720666191011105624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/07/2022]
Abstract
The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by
laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications.
The present review was conducted to provide a broad context in pharmaceutical- and biomedical-
related applications of laccases for academic and industrial researchers. First, an overview of biological
roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial
and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated
mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of
phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination.
Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials,
particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative
polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant
properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial
and antiproliferative agents and the degradation of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
6
|
Yosberto CM. Theoretical study on binding interactions of laccase-enzyme from Ganoderma weberianum with multiples ligand substrates with environmental impact. ACTA ACUST UNITED AC 2019. [DOI: 10.29328/journal.apb.1001007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Upadhyay P, Shrivastava R, Agrawal PK. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016; 6:15. [PMID: 28330085 PMCID: PMC4703590 DOI: 10.1007/s13205-015-0316-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022] Open
Abstract
Laccase belongs to a small group of enzymes called the blue multicopper oxidases, having the potential ability of oxidation. It belongs to enzymes, which have innate properties of reactive radical production, but its utilization in many fields has been ignored because of its unavailability in the commercial field. There are diverse sources of laccase producing organisms like bacteria, fungi and plants. In fungi, laccase is present in Ascomycetes, Deuteromycetes, Basidiomycetes and is particularly abundant in many white-rot fungi that degrade lignin. Laccases can degrade both phenolic and non-phenolic compounds. They also have the ability to detoxify a range of environmental pollutants. Due to their property to detoxify a range of pollutants, they have been used for several purposes in many industries including paper, pulp, textile and petrochemical industries. Some other application of laccase includes in food processing industry, medical and health care. Recently, laccase has found applications in other fields such as in the design of biosensors and nanotechnology. The present review provides an overview of biological functions of laccase, its mechanism of action, laccase mediator system, and various biotechnological applications of laccase obtained from endophytic fungi.
Collapse
Affiliation(s)
- Pooja Upadhyay
- Department of Biotechnology, G. B. Pant Engineering College, Ghurdauri, Pauri, Uttarakhand, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, HP, India
| | - Pavan Kumar Agrawal
- Department of Biotechnology, G. B. Pant Engineering College, Ghurdauri, Pauri, Uttarakhand, India.
| |
Collapse
|
8
|
Anesi A, Stocchero M, Dal Santo S, Commisso M, Zenoni S, Ceoldo S, Tornielli GB, Siebert TE, Herderich M, Pezzotti M, Guzzo F. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC PLANT BIOLOGY 2015; 15:191. [PMID: 26245744 PMCID: PMC4527360 DOI: 10.1186/s12870-015-0584-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/25/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.
Collapse
Affiliation(s)
- Andrea Anesi
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
- Present address: Physics Department, Laboratory of Bioorganic Chemistry, University of Trento, Via Sommarive 14, 38123, Trento, Italy.
| | - Matteo Stocchero
- S-IN Soluzioni Informatiche, Via G. Ferrari 14, 36100, Vicenza, Italy.
| | - Silvia Dal Santo
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Mauro Commisso
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Sara Zenoni
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Stefania Ceoldo
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | | | - Tracey E Siebert
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Adelaide, Australia.
| | - Markus Herderich
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Adelaide, Australia.
| | - Mario Pezzotti
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Flavia Guzzo
- Biotechnology Departement, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
9
|
Alkema W, Boekhorst J, Wels M, van Hijum SAFT. Microbial bioinformatics for food safety and production. Brief Bioinform 2015; 17:283-92. [PMID: 26082168 PMCID: PMC4793891 DOI: 10.1093/bib/bbv034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
Collapse
|
10
|
Wren JD, Dozmorov MG, Burian D, Perkins A, Zhang C, Hoyt P, Kaundal R. Proceedings of the 2014 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference. BMC Bioinformatics 2014; 15 Suppl 11:I1. [PMID: 25350879 PMCID: PMC4251036 DOI: 10.1186/1471-2105-15-s11-i1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|