1
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
2
|
Xie X, Li L, Wu H, Hou F, Chen Y, Xue Q, Zhou Y, Zhang J, Gong J, Song R. Comprehensive Integrative Analyses Identify TIGD5 rs75547282 as a Risk Variant for Autism Spectrum Disorder. Autism Res 2021; 14:631-644. [PMID: 33393181 DOI: 10.1002/aur.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Although recent genome-wide association studies have identified risk loci that strongly associates with autism spectrum disorder (ASD), how to pinpoint the causal genes remains a challenge. We aimed to pinpoint the potential causal genes and explore the possible susceptibility and mechanism. A convergent functional genomics (CFG) method was used to prioritize the candidate genes by combining lines of evidence, including Sherlock analysis, spatio-temporal expression patterns, expression analysis, protein-protein interactions, co-expression and association with brain structure. A higher score in the CFG approach suggested that more evidence supported this gene as an ASD risk gene. We screened genes with higher CFG scores for candidate functional single nucleotide polymorphisms (SNPs). A genotyping experiment (602 ASD children and 604 healthy sex-matched children) and the dual-luciferase reporter gene assay were followed to validate the effects of SNPs. We identified three genes (MAPT, ZNF285, and TIGD5) as candidate causal genes using the CFG approach. The genotyping experiment showed that TIGD5 rs75547282 was associated with an increased risk of ASD under the dominant model (OR = 1.37, 95% CI = 1.09-1.72, P = 0.006) though the statistical power was limited (5.2%). The T allele of rs75547282 activated the expression of TIGD5 compared with the C allele in the dual-luciferase reporter assay. Our study indicates that such comprehensive integrative analyses may be an effective way to explore promising ASD susceptibility variants and needs to be further investigated in future research. Genotyping experiments should, however, be based on a larger population sample to increase statistical power. LAY SUMMARY: We set out to pinpoint the potential causal genes of ASD and explore the possible susceptibility and mechanism by combining lines of evidence from different analyses. Our results show that TIGD5 rs75547282 is associated with the risk of ASD in the Han Chinese population. In addition, a similar framework to seek promising ASD risk variants could be further investigated in future research Autism Res 2021, 14: 631-644. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Beydoun A, DuPont S, Zhou D, Matta M, Nagire V, Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020; 83:251-263. [PMID: 33334546 DOI: 10.1016/j.seizure.2020.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders, affecting approximately 50 million people worldwide. Despite a dramatic increase in treatment options over the past 30 years, it still ranks fourth in the world's disease burden. There are now close to 30 antiepileptic drugs (AEDs), with more than two thirds introduced to the market after carbamazepine (CBZ) and one third after its derivative, oxcarbazepine (OXC). Following the introduction of these newer AEDs, the role of CBZ and OXC in the therapeutic armamentarium for seizure control and effective epilepsy management needs to be reviewed. The main guidelines list both CBZ and OXC as first-line options or second-line alternatives for the treatment of focal-onset epilepsy and primary generalized tonic-clonic seizures. While evidence suggests that overall AEDs have similar efficacy, some newer AEDs may be better tolerated than CBZ. In line with this, there have been changes in treatment patterns, with many variations across different countries. However, CBZ remains among the two or three most prescribed drugs for focal epilepsy in many countries, and is widely used across Europe, Africa, South America, and Asia, where it represents a good compromise between cost, availability, and effectiveness. OXC is among the first-choice options for the initial treatment of focal-onset seizures in several countries, including the US and China, where the oral suspension is commonly prescribed. This review provides guidance on the optimal use of these two drugs in clinical practice, including in children, the elderly, and in pregnancy.
Collapse
Affiliation(s)
- Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sophie DuPont
- Epilepsy Unit and Rehabilitation Unit, Hôpital de la Pitié-Salpêtrière, AP-HP, Centre de recherche de l'Institut du cerveau et de la moelle épinière (ICM), UMPC-UMR 7225 CNRS-UMRS 975 Inserm, Paris, France; Université Paris Sorbonne, Paris, France
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maha Matta
- Novartis Pharma Services, Dubaï, United Arab Emirates
| | | | - Lieven Lagae
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Kaushik G, Thomas MA. The potential association of psychoactive pharmaceuticals in the environment with human neurological disorders. SUSTAINABLE CHEMISTRY AND PHARMACY 2019; 13:100148. [PMID: 31453309 PMCID: PMC6709680 DOI: 10.1016/j.scp.2019.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Psychoactive pharmaceuticals release into the environment and reach humans through a variety of routes, including sewage, drinking water, contaminated irrigation water, biosolids, soil and food. It was assumed that these compounds via the environment could induce genetic effects in the etiology of human neurological disorders. With the help of in vitro, in vivo and in silico approaches, we demonstrated that psychoactive pharmaceuticals in drinking water can cross maternal biological barriers and alter in vitro molecular and genetic mechanisms that potentially have a key role in the development, growth and regulation of neuronal systems during embryonic brain development.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8 Ave, Pocatello, ID 83209-8007, USA
- Stem Pharm, Incorporated, Madison, WI 53711 USA
- Corresponding author
| | - Michael A. Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8 Ave, Pocatello, ID 83209-8007, USA
| |
Collapse
|
5
|
Zhang Y, Tu B, Jiang X, Xu G, Liu X, Tang Q, Bai L, Meng P, Zhang L, Qin X, Zou Z, Chen C. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 2019; 422:44-52. [PMID: 31022427 DOI: 10.1016/j.tox.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Maternal exposure to carbon black nanoparticles (CBNPs) during pregnancy have been well documented to induce harmful outcomes of offspring on brain function. However, it remains largely unknown whether females exposed to CBNPs during sensitive period of pregnancy can cause the neurotoxic effects on their own body after parturition. In this study, our results showed that pregnancy CBNPs exposure induced the persistent pathological changes in the cerebral cortex tissues and impaired cerebrovascular function of mice manifested by significant alterations of endothelin-1, endothelial nitric oxide synthase, vascular endothelial growth factor-A and ATP-binding cassette transporter G1. Intriguingly, we observed that these deleterious effects on brain and cerebrovascular functions in mice could persist for 49 days after delivery of pups. By using in vitro human umbilical vein endothelial cells, we further verified the potential vascular dysfunction after CBNPs exposure. In summary, our results provide the first evidence that pregnancy CBNPs exposure-induced brain pathological changes and cerebrovascular dysfunction can persist for a relative long time. These finding suggest exposure to CBNPs during sensitive stages of pregnancy may not only show the harmful effects on offspring neurodevelopment, but also result in the irreversible brain damage on mother body.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
6
|
Kaushik G, Xia Y, Pfau JC, Thomas MA. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations. Neurosci Lett 2017; 661:143-148. [PMID: 28965935 DOI: 10.1016/j.neulet.2017.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705 USA.
| | - Yu Xia
- Division of Biological Sciences, University of Montana, 32 Campus Dr. HS 104, Missoula, MT 59812, USA.
| | - Jean C Pfau
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Michael A Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA.
| |
Collapse
|
7
|
Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016; 101:S0197-0186(16)30197-8. [PMID: 27984170 DOI: 10.1016/j.neuint.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
The increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism susceptibility genes (ASG's) from the Autworks database to interrogate ∼1 million chemical/gene interactions in the comparative toxicogenomics database. Any bias towards ASG's was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI's, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG's, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected endocrine disruptors (over 100) selectively targeted ASG's including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and behavioural research is warranted to determine the relevance of large number of suspect candidates whose addition to the environment, household, food and cosmetics might be fuelling the autism epidemic in a gene-dependent manner.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex, TN34 2EY, UK.
| | - R A Blizard
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College, London, UK
| |
Collapse
|
8
|
Psychoactive pharmaceuticals at environmental concentrations induce in vitro gene expression associated with neurological disorders. BMC Genomics 2016; 17 Suppl 3:435. [PMID: 27356971 PMCID: PMC4943479 DOI: 10.1186/s12864-016-2784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background A number of researchers have speculated that neurological disorders are mostly due to the interaction of common susceptibility genes with environmental, epigenetic and stochastic factors. Genetic factors such as mutations, insertions, deletions and copy number variations (CNVs) are responsible for only a small subset of cases, suggesting unknown environmental contaminants play a role in triggering neurological disorders like idiopathic autism. Psychoactive pharmaceuticals have been considered as potential environmental contaminants as they are detected in the drinking water at very low concentrations. Preliminary studies in our laboratory identified gene sets associated with neuronal systems and human neurological disorders that were significantly enriched after treating fish brains with psychoactive pharmaceuticals at environmental concentrations. These gene expression inductions were associated with changes in fish behavior. Here, we tested the hypothesis that similar treatments would alter in vitro gene expression associated with neurological disorders (including autism) in human neuronal cells. We differentiated and treated human SK-N-SH neuroblastoma cells with a mixture (fluoxetine, carbamazepine and venlafaxine) and valproate (used as a positive control to induce autism-associated profiles), followed by transcriptome analysis with RNA-Seq approach. Results We found that psychoactive pharmaceuticals and valproate significantly altered neuronal gene sets associated with human neurological disorders (including autism-associated sets). Moreover, we observed that altered expression profiles in human cells were similar to gene expression profiles previously identified in fish brains. Conclusions Psychoactive pharmaceuticals at environmental concentrations altered in vitro gene expression profiles of neuronal growth, development and regulation. These expression patterns were associated with potential neurological disorders including autism, suggested psychoactive pharmaceuticals at environmental concentrations might mimic, aggravate, or induce neurological disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2784-1) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers. Biochem Biophys Res Commun 2016; 474:291-295. [PMID: 27105911 DOI: 10.1016/j.bbrc.2016.04.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding (2)H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post-conception days), and quantifying (2)H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of (2)H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical environmental concentrations is transmitted from mother to embryo. Our results, combined with previous evidence that carbamazepine may be associated with ASD in infants, warrant the closer examination of psychoactive pharmaceuticals in drinking water and their potential association with neurodevelopmental disorders.
Collapse
|