1
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Wei SM, Henze EK, Schindler S, Mehravar S, Wood DM, Petrocelli JJ, Sun Y, Sprenger HG, Latorre-Muro P, Smythers AL, Bozi LHM, Darabedian N, Zhu Y, Seo HS, Dhe-Paganon S, Che J, Chouchani ET. The human zinc-binding cysteine proteome. Cell 2024:S0092-8674(24)01341-2. [PMID: 39742810 DOI: 10.1016/j.cell.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome. We define 6,173 zinc-binding cysteines, uncovering protein families across major domains of biology that are subject to constitutive or inducible zinc binding. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc binding and nominate malignancies sensitive to zinc-induced cytotoxicity. We discover a mechanism of zinc regulation over glutathione reductase (GSR), which drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation of protein function.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanghee Shin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shelley M Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Erik K Henze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schindler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Wood
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan J Petrocelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Georg Sprenger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yingde Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Guo H, Wang S, Zhang H, Li J, Wang C, Liu Z, Chen J, Wang K, Wei X, Wei Q, Xu X. Research progress on the molecular structure, function, and application in tumor therapy of zinc transporter ZIP4. Int J Biol Sci 2024; 20:5910-5924. [PMID: 39664563 PMCID: PMC11628325 DOI: 10.7150/ijbs.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
ZIP4, a pivotal member of the ZIP family, is the causative gene for the hereditary disorder AE (acrodermatitis enteropathica) in humans, and plays an essential role in regulating zinc ion balance within cells. While research on the molecular structure of ZIP4 continues, there remains a lack of full understanding regarding the stereo-structural conformation of ZIP4 molecules. Currently, there are two hypotheses concerning the transport of zinc ions into the cytoplasm by ZIP4, with some contradictions between experimental studies. Recent investigations have revealed that ZIP4 is involved in tumor growth, metastasis, drug tolerance, and various other processes. Most studies suggest that ZIP4 regulates the malignant biological behavior of tumors through zinc ions as a second messenger: however, latest research has identified that ZIP4 itself binds to Ephrin-B1 to regulate tumor metastasis. This review provides a comprehensive summary of the molecular structure of ZIP4 and its mechanism for transporting zinc ions while also exploring mutual regulation between zinc ions and ZIP4. Furthermore, it summarizes recent research progress on the role of ZIP4 in tumors and discusses its potential as a target for anticancer therapy based on an extensive analysis of research findings. These insights can guide future investigations into the role of ZIP4 in tumors.
Collapse
Affiliation(s)
- Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shaohua Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Shaoxing city Keqiao District TCM hospital Medical Alliance General Hospital, Shaoxing, 312000, China
| | - Hui Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, 310053, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital Affiliated to Hangzhou Medical College (Zhejiang Provincial People's Hospital), Hangzhou, 310024, China
- Institute of Translational Medical, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
3
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
4
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Bozi LHM, Wei S, Sprenger HG, Sun Y, Zhu Y, Darabedian N, Petrocelli JJ, Muro PL, Che J, Chouchani ET. A comprehensive landscape of the zinc-regulated human proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574225. [PMID: 38260676 PMCID: PMC10802333 DOI: 10.1101/2024.01.04.574225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
Collapse
|
6
|
Laveglia V, Bazayeva M, Andreini C, Rosato A. Hunting down zinc(II)-binding sites in proteins with distance matrices. Bioinformatics 2023; 39:btad653. [PMID: 37878807 PMCID: PMC10630175 DOI: 10.1093/bioinformatics/btad653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
MOTIVATION In recent years, high-throughput sequencing technologies have made available the genome sequences of a huge variety of organisms. However, the functional annotation of the encoded proteins often still relies on low-throughput and costly experimental studies. Bioinformatics approaches offer a promising alternative to accelerate this process. In this work, we focus on the binding of zinc(II) ions, which is needed for 5%-10% of any organism's proteins to achieve their physiologically relevant form. RESULTS To implement a predictor of zinc(II)-binding sites in the 3D structures of proteins, we used a neural network, followed by a filter of the network output against the local structure of all known sites. The latter was implemented as a function comparing the distance matrices of the Cα and Cβ atoms of the sites. We called the resulting tool Master of Metals (MOM). The structural models for the entire proteome of an organism generated by AlphaFold can be used as input to our tool in order to achieve annotation at the whole organism level within a few hours. To demonstrate this, we applied MOM to the yeast proteome, obtaining a precision of about 76%, based on data for homologous proteins. AVAILABILITY AND IMPLEMENTATION Master of Metals has been implemented in Python and is available at https://github.com/cerm-cirmmp/Master-of-metals.
Collapse
Affiliation(s)
- Vincenzo Laveglia
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Milana Bazayeva
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Claudia Andreini
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino 50019, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino 50019, Italy
| |
Collapse
|
7
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
8
|
Ravnik V, Jukič M, Bren U. Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach. J Chem Inf Model 2023; 63:5204-5219. [PMID: 37557084 PMCID: PMC10466382 DOI: 10.1021/acs.jcim.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/11/2023]
Abstract
In order to identify the locations of metal ions in the binding sites of proteins, we have developed a method named the MADE (MAcromolecular DEnsity and Structure Analysis) approach. The MADE approach represents an evolution of our previous toolset, the ProBiS H2O (MD) methodology, for the identification of conserved water molecules. Our method uses experimental structures of proteins homologous to a query, which are subsequently superimposed upon it. Areas with a particular species present in a similar location among many homologous protein structures are identified using a clustering algorithm. Dense clusters likely represent positions containing species important to the query protein structure or function. We analyze well-characterized apo protein structures and show that the MADE approach can identify clusters corresponding to the expected positions of metal ions in their binding sites. The greatest advantage of our method lies in its generality. It can in principle be applied to any species found in protein records; it is not only limited to metal ions. We additionally demonstrate that the MADE approach can be successfully applied to predict the location of cofactors in computer-modeled structures, e.g., via AlphaFold. We also conduct a careful protein superposition method comparison and find our methodology robust and the results largely independent of the selected protein superposition algorithm. We postulate that with increasing structural data availability, additional applications of the MADE approach will be possible such as non-protein systems, water network identification, protein binding site elaboration, and analysis of binding events, all in a dynamic manner. We have implemented the MADE approach as a plugin for the PyMOL molecular visualization tool. The MADE plugin is available free of charge at https://gitlab.com/Jukic/made_software.
Collapse
Affiliation(s)
- Vid Ravnik
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
| | - Marko Jukič
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| | - Urban Bren
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| |
Collapse
|
9
|
Dürr SL, Levy A, Rothlisberger U. Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins. Nat Commun 2023; 14:2713. [PMID: 37169763 PMCID: PMC10175565 DOI: 10.1038/s41467-023-37870-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.
Collapse
Affiliation(s)
- Simon L Dürr
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Levy
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Chen A, Gao G, Lian G, Gong J, Luo L, Liu J, Chen W, Xu C, Wang H, Xie L. Zinc promotes cell proliferation via regulating metal-regulatory transcription factor 1 expression and transcriptional activity in pulmonary arterial hypertension. Cell Cycle 2023; 22:1284-1301. [PMID: 37128643 PMCID: PMC10193901 DOI: 10.1080/15384101.2023.2205209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Metal responsive transcription factor 1 (MTF-1) is a zinc-dependent transcription factor involved in the development of pulmonary arterial hypertension (PAH), which is a life-threatening disease characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling. However, little is known about the role and regulatory signaling of MTF-1 in PAH. This study aimed to investigate the effect and mechanism of MTF-1 on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Several techniques including intracellular-free zinc detected by fluorescent indicator-fluozinc-3-AM, western blot, luciferase reporter, and cell proliferation assay were conducted to perform a comprehensive analysis of MTF-1 in proliferation of PASMCs in PAH. Increased cytosolic zinc was shown in monocrotaline (MCT)-PASMCs and ZnSO₄-treated PASMCs, which led to overexpression and overactivation of MTF-1, followed by the up-regulation of placental growth factor (PlGF). Elevated MTF-1 and PlGF were observed in western blot, and high transcriptional activity of MTF-1 was confirmed by luciferase reporter in ZnSO4-treated cells. Further investigation of cell proliferation revealed a favorable impact of zinc ions on PASMCs proliferation, with the deletion of Mtf-1/Plgf attenuating ZnSO4-induced proliferation. Flow cytometry analysis showed that blockade of PKC signaling inhibited the cell cycle of MCT-PASMCs and ZnSO4-treated PASMCs. The Zinc/PKC/MTF-1/PlGF pathway is involved in the up-regulatory effect on the PASMCs proliferation in the process of PAH. This study provided novel insight into zinc homeostasis in the pathogenesis of PAHs, and the regulation of MTF-1 might be a potential target for therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Junping Liu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Zinc is an essential element for human health. Among its many functions, zinc(II) modulates the immune response to infections and, at high concentrations or in the presence of ionophores, inhibits the replication of various RNA viruses. Structural biology studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed that zinc(II) is the most common metal ion that binds to viral proteins. However, the number of zinc(II)-binding sites identified by experimental methods is far from exhaustive, as metal ions may be lost during protein purification protocols. To better define the zinc(II)-binding proteome of coronavirus, we leveraged the wealth of deposited structural data and state-of-the-art bioinformatics methods. Through this in silico approach, 15 experimental zinc(II) sites were identified and a further 22 were predicted in Spike, open reading frame (ORF)3a/d, ORF8, and several nonstructural proteins, highlighting an essential role of zinc(II) in viral replication. Furthermore, the structural relationships between viral and eukaryotic sites (typically zinc fingers) indicate that SARS-CoV-2 can compete with human proteins for zinc(II) binding. Given the double-edged effect of zinc(II) ions, both essential and toxic to coronavirus, only the complete elucidation of the structural and regulatory zinc(II)-binding sites can guide selective antiviral strategies based on zinc supplementation.
Collapse
Affiliation(s)
- Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro,” Via Orabona 4, 70125 Bari, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Aptekmann AA, Buongiorno J, Giovannelli D, Glamoclija M, Ferreiro DU, Bromberg Y. mebipred: identifying metal binding potential in protein sequence. Bioinformatics 2022; 38:3532-3540. [PMID: 35639953 PMCID: PMC9272798 DOI: 10.1093/bioinformatics/btac358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/27/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Motivation metal-binding proteins have a central role in maintaining life processes. Nearly one-third of known protein structures contain metal ions that are used for a variety of needs, such as catalysis, DNA/RNA binding, protein structure stability, etc. Identifying metal-binding proteins is thus crucial for understanding the mechanisms of cellular activity. However, experimental annotation of protein metal-binding potential is severely lacking, while computational techniques are often imprecise and of limited applicability. Results we developed a novel machine learning-based method, mebipred, for identifying metal-binding proteins from sequence-derived features. This method is over 80% accurate in recognizing proteins that bind metal ion-containing ligands; the specific identity of 11 ubiquitously present metal ions can also be annotated. mebipred is reference-free, i.e. no sequence alignments are involved, and is thus faster than alignment-based methods; it is also more accurate than other sequence-based prediction methods. Additionally, mebipred can identify protein metal-binding capabilities from short sequence stretches, e.g. translated sequencing reads, and, thus, may be useful for the annotation of metal requirements of metagenomic samples. We performed an analysis of available microbiome data and found that ocean, hot spring sediments and soil microbiomes use a more diverse set of metals than human host-related ones. For human microbiomes, physiological conditions explain the observed metal preferences. Similarly, subtle changes in ocean sample ion concentration affect the abundance of relevant metal-binding proteins. These results highlight mebipred’s utility in analyzing microbiome metal requirements. Availability and implementation mebipred is available as a web server at services.bromberglab.org/mebipred and as a standalone package at https://pypi.org/project/mymetal/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A A Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA.,Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - D Giovannelli
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Biology, University of Naples Federico II, Naples, Italy.,Institute for Marine Biological Resources and Biotechnology-IRBIM, National Research Council of Italy, CNR, Ancona, Italy
| | - M Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, New Brunswick, NJ, 07102, USA
| | - D U Ferreiro
- Protein Physiology Lab, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET-IQUIBICEN, Buenos Aires, 1428, Argentina
| | - Y Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ, 08873, USA
| |
Collapse
|
13
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
14
|
A Comprehensive Review of Computation-Based Metal-Binding Prediction Approaches at the Residue Level. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8965712. [PMID: 35402609 PMCID: PMC8989566 DOI: 10.1155/2022/8965712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details 18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and underlying limitations of the current studies and propose several prospective directions concerning the future development of the related databases and methods.
Collapse
|
15
|
Yu Y, Wang R, Teo RD. Machine Learning Approaches for Metalloproteins. Molecules 2022; 27:1277. [PMID: 35209064 PMCID: PMC8878495 DOI: 10.3390/molecules27041277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Metalloproteins are a family of proteins characterized by metal ion binding, whereby the presence of these ions confers key catalytic and ligand-binding properties. Due to their ubiquity among biological systems, researchers have made immense efforts to predict the structural and functional roles of metalloproteins. Ultimately, having a comprehensive understanding of metalloproteins will lead to tangible applications, such as designing potent inhibitors in drug discovery. Recently, there has been an acceleration in the number of studies applying machine learning to predict metalloprotein properties, primarily driven by the advent of more sophisticated machine learning algorithms. This review covers how machine learning tools have consolidated and expanded our comprehension of various aspects of metalloproteins (structure, function, stability, ligand-binding interactions, and inhibitors). Future avenues of exploration are also discussed.
Collapse
Affiliation(s)
- Yue Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215316, China;
- Department of Physics, Duke University, Durham, NC 27708, USA
| | - Ruobing Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA;
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, NC 27708, USA;
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
17
|
Lall SP, Kaushik SJ. Nutrition and Metabolism of Minerals in Fish. Animals (Basel) 2021; 11:ani11092711. [PMID: 34573676 PMCID: PMC8466162 DOI: 10.3390/ani11092711] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our aim is to introduce the mineral nutrition of fish and explain the complexity of determining requirements for these elements, which are absorbed and excreted by the fish into the surrounding water. To date, only the requirements for nine minerals have been investigated. The review is focused on the absorption and the dietary factors that reduce their absorption from feed ingredients of plant and animal origin. Some diseases, such as cataracts, anemia and bone deformity, have been linked to dietary deficiency of minerals. Abstract Aquatic animals have unique physiological mechanisms to absorb and retain minerals from their diets and water. Research and development in the area of mineral nutrition of farmed fish and crustaceans have been relatively slow and major gaps exist in the knowledge of trace element requirements, physiological functions and bioavailability from feed ingredients. Quantitative dietary requirements have been reported for three macroelements (calcium, phosphorus and magnesium) and six trace minerals (zinc, iron, copper, manganese, iodine and selenium) for selected fish species. Mineral deficiency signs in fish include reduced bone mineralization, anorexia, lens cataracts (zinc), skeletal deformities (phosphorus, magnesium, zinc), fin erosion (copper, zinc), nephrocalcinosis (magnesium deficiency, selenium toxicity), thyroid hyperplasia (iodine), muscular dystrophy (selenium) and hypochromic microcytic anemia (iron). An excessive intake of minerals from either diet or gill uptake causes toxicity and therefore a fine balance between mineral deficiency and toxicity is vital for aquatic organisms to maintain their homeostasis, either through increased absorption or excretion. Release of minerals from uneaten or undigested feed and from urinary excretion can cause eutrophication of natural waters, which requires additional consideration in feed formulation. The current knowledge in mineral nutrition of fish is briefly reviewed.
Collapse
Affiliation(s)
- Santosh P. Lall
- National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
- Correspondence: (S.P.L.); (S.J.K.)
| | - Sadasivam J. Kaushik
- Retd. INRA, 64310 St Pée sur Nivelle, France
- Ecoaqua Institute, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas, Spain
- Correspondence: (S.P.L.); (S.J.K.)
| |
Collapse
|
18
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
19
|
Interactions of zinc- and redox-signaling pathways. Redox Biol 2021; 41:101916. [PMID: 33662875 PMCID: PMC7937829 DOI: 10.1016/j.redox.2021.101916] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc and cellular oxidants such as reactive oxygen species (ROS) each participate in a multitude of physiological functions. There is considerable overlap between the affected events, including signal transduction. While there is no obvious direct connection between zinc and ROS, mainly because the bivalent cation zinc does not change its oxidation state in biological systems, these are linked by their interaction with sulfur, forming the remarkable triad of zinc, ROS, and protein thiols. First, zinc binds to reduced thiols and can be released upon oxidation. Thereby, redox signals are translated into changes in the free zinc concentration, which can act as zinc signals. Second, zinc affects oxidation of thiols in several ways, directly as well as indirectly. A protein incorporating many of these interactions is metallothionein (MT), which is rich in cysteine and capable of binding up to seven zinc ions in its fully reduced state. Zinc binding is diminished after (partial) oxidation, while thiols show increased reactivity in the absence of bound metal ions. Adding still more complexity, the MT promoter is controlled by zinc (via metal regulatory transcription factor 1 (MTF-1)) as well as redox (via nuclear factor erythroid 2-related factor 2 (NRF2)). Many signaling cascades that are important for cell proliferation or apoptosis contain protein thiols, acting as centers for crosstalk between zinc- and redox-signaling. A prominent example for shared molecular targets for zinc and ROS are active site cysteine thiols in protein tyrosine phosphatases (PTP), their activity being downregulated by oxidation as well as zinc binding. Because zinc binding also protects PTP thiols form irreversible oxidation, there is a multi-faceted reciprocal interaction, illustrating that zinc- and redox-signaling are intricately linked on multiple levels.
Collapse
|
20
|
Sánchez-Aparicio JE, Tiessler-Sala L, Velasco-Carneros L, Roldán-Martín L, Sciortino G, Maréchal JD. BioMetAll: Identifying Metal-Binding Sites in Proteins from Backbone Preorganization. J Chem Inf Model 2020; 61:311-323. [PMID: 33337144 DOI: 10.1021/acs.jcim.0c00827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With a large amount of research dedicated to decoding how metallic species bind to proteins, in silico methods are interesting allies for experimental procedures. To date, computational predictors mostly work by identifying the best possible sequence or structural match of the target protein with metal-binding templates. These approaches are fundamentally focused on the first coordination sphere of the metal. Here, we present the BioMetAll predictor that is based on a different postulate: the formation of a potential metal-binding site is related to the geometric organization of the protein backbone. We first report the set of convenient geometric descriptors of the backbone needed for the algorithm and their parameterization from a statistical analysis. Then, the successful benchmark of BioMetAll on a set of more than 90 metal-binding X-ray structures is presented. Because BioMetAll allows structural predictions regardless of the exact geometry of the side chains, it appears extremely valuable for systems whose structures (either experimental or theoretical) are not optimal for metal-binding sites. We report here its application on three different challenging cases: (i) the modulation of metal-binding sites during conformational transition in human serum albumin, (ii) the identification of possible routes of metal migration in hemocyanins, and (iii) the prediction of mutations to generate convenient metal-binding sites for de novo biocatalysts. This study shows that BioMetAll offers a versatile platform for numerous fields of research at the interface between inorganic chemistry and biology and allows to highlight the role of the preorganization of the protein backbone as a marker for metal binding. BioMetAll is an open-source application available at https://github.com/insilichem/biometall.
Collapse
Affiliation(s)
- José-Emilio Sánchez-Aparicio
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Laura Tiessler-Sala
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Lorea Velasco-Carneros
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Lorena Roldán-Martín
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
21
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
23
|
Shahpar Z, Johari SA. Effects of Dietary Organic, Inorganic, and Nanoparticulate Zinc on Rainbow Trout, Oncorhynchus mykiss Larvae. Biol Trace Elem Res 2019; 190:535-540. [PMID: 30414001 DOI: 10.1007/s12011-018-1563-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023]
Abstract
The present study was conducted to investigate the effects of different dietary zinc sources on growth performance, survival, and body composition of larval rainbow trout, Oncorhynchus mykiss. A total of 3240 larvae with an average weight of 82.3 ± 11.6 mg were randomly divided into four groups by three replicates and were fed for 70 days. Organic zinc (Zn-proteinate, Bioplex Zn®), mineral zinc (ZnSO4), and nanoparticulate zinc (ZnO-NPs) were each added to the basal diet at 50-mg/kg diet. In all of the zinc-supplemented groups, final body weight (FBW) and weight gain (WG) increased significantly (P < 0.05) compared to the control at the termination of the feeding trial. There was no significant difference in specific growth rate (SGR) in experimental groups. Fish fed with mineral and nanoparticulate zinc, respectively, demonstrated the highest and lowest survival rates (P < 0.05) as compared to other experimental diets. Feed conversion ratio (FCR) significantly decreased (P < 0.05) in groups fed with organic and mineral zinc. There were no significant differences in protein, lipid, moisture, and ash content among fish fed the experimental diets. Fish fed mineral zinc showed the highest (P < 0.05) zinc content in the whole body than the other groups. The data of the present study confirm positive effects of the use of 50 mg kg-1 of zinc sources in early diet to enhance growth performance of rainbow trout larvae.
Collapse
Affiliation(s)
- Zahra Shahpar
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, PO box 416, Sanandaj, 66177-15175, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, PO box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
24
|
Yan R, Wang X, Tian Y, Xu J, Xu X, Lin J. Prediction of zinc-binding sites using multiple sequence profiles and machine learning methods. Mol Omics 2019; 15:205-215. [PMID: 31046040 DOI: 10.1039/c9mo00043g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The zinc (Zn2+) cofactor has been proven to be involved in numerous biological mechanisms and the zinc-binding site is recognized as one of the most important post-translation modifications in proteins. Therefore, accurate knowledge of zinc ions in protein structures can provide potential clues for elucidation of protein folding and functions. However, determining zinc-binding residues by experimental means is usually lab-intensive and associated with high cost in most cases. In this context, the development of computational tools for identifying zinc-binding sites is highly desired, especially in the current post-genomic era. In this work, we developed a novel zinc-binding site prediction method by combining several intensively-trained machine learning models. To establish an accurate and generative method, we downloaded all zinc-binding proteins from the Protein Data Bank and prepared a non-redundant dataset. Meanwhile, a well-prepared dataset by other groups was also used. Then, effective and complementary features were extracted from sequences and three-dimensional structures of these proteins. Moreover, several well-designed machine learning models were intensively trained to construct accurate models. To assess the performance, the obtained predictors were stringently benchmarked using the diverse zinc-binding sites. Furthermore, several state-of-the-art in silico methods developed specifically for zinc-binding sites were also evaluated and compared. The results confirmed that our method is very competitive in real world applications and could become a complementary tool to wet lab experiments. To facilitate research in the community, a web server and stand-alone program implementing our method were constructed and are publicly available at . The downloadable program of our method can be easily used for the high-throughput screening of potential zinc-binding sites across proteomes.
Collapse
Affiliation(s)
- Renxiang Yan
- School of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350002, China. and Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou 350002, China
| | - Xiaofeng Wang
- College of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China
| | - Yarong Tian
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530, Sweden
| | - Jing Xu
- School of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350002, China. and Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou 350002, China
| | - Xiaoli Xu
- School of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350002, China.
| | - Juan Lin
- School of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350002, China. and Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou 350002, China
| |
Collapse
|
25
|
Abstract
Zinc(II) ions are redox-inert in biology. Yet, their interaction with sulfur of cysteine in cellular proteins can confer ligand-centered redox activity on zinc coordination sites, control protein functions, and generate signalling zinc ions as potent effectors of many cellular processes. The specificity and relative high affinity of binding sites for zinc allow regulation in redox biology, free radical biology, and the biology of reactive species. Understanding the role of zinc in these areas of biology requires an understanding of how cellular Zn2+ is homeostatically controlled and can serve as a regulatory ion in addition to Ca2+, albeit at much lower concentrations. A rather complex system of dozens of transporters and metallothioneins buffer the relatively high (hundreds of micromolar) total cellular zinc concentrations in such a way that the available zinc ion concentrations are only picomolar but can fluctuate in signalling. The proteins targeted by Zn2+ transients include enzymes controlling phosphorylation and redox signalling pathways. Networks of regulatory functions of zinc integrate gene expression and metabolic and signalling pathways at several hierarchical levels. They affect enzymatic catalysis, protein structure and protein-protein/biomolecular interactions and add to the already impressive number of catalytic and structural functions of zinc in an estimated three thousand human zinc proteins. The effects of zinc on redox biology have adduced evidence that zinc is an antioxidant. Without further qualifications, this notion is misleading and prevents a true understanding of the roles of zinc in biology. Its antioxidant-like effects are indirect and expressed only in certain conditions because a lack of zinc and too much zinc have pro-oxidant effects. Teasing apart these functions based on quantitative considerations of homeostatic control of cellular zinc is critical because opposite consequences are observed depending on the concentrations of zinc: pro- or anti-apoptotic, pro- or anti-inflammatory and cytoprotective or cytotoxic. The article provides a biochemical basis for the links between redox and zinc biology and discusses why zinc has pleiotropic functions. Perturbation of zinc metabolism is a consequence of conditions of redox stress. Zinc deficiency, either nutritional or conditioned, and cellular zinc overload cause oxidative stress. Thus, there is causation in the relationship between zinc metabolism and the many diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
26
|
Sciortino G, Garribba E, Rodríguez-Guerra Pedregal J, Maréchal JD. Simple Coordination Geometry Descriptors Allow to Accurately Predict Metal-Binding Sites in Proteins. ACS OMEGA 2019; 4:3726-3731. [PMID: 31459585 PMCID: PMC6648054 DOI: 10.1021/acsomega.8b03457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 06/10/2023]
Abstract
With more than a third of the genome encoding for metal-containing biomolecules, the in silico prediction of how metal ions bind to proteins is crucial in chemistry, biology, and medicine. To date, algorithms for metal-binding site prediction are mainly based on sequence analysis. Those methods have reached enough quality to predict the correct region of the protein and the coordinating residues involved in metal-binding, but they do not provide three-dimensional (3D) models. On the contrary, the prediction of accurate 3D models for protein-metal adducts by structural bioinformatics and molecular modeling techniques is still a challenge. Here, we present an update of our multipurpose molecular modeling suite, GaudiMM, to locate metal-binding sites in proteins. The approach is benchmarked on 105 X-ray structures with resolution lower than 2.0 Å. Results predict the correct binding site of the metal in the biological scaffold for all the entries in the data set. Generated 3D models of the protein-metal coordination complexes reach root-mean-square deviation values under 1.0 Å between calculated and experimental structures. The whole process is purely based on finding poses that satisfy metal-derived geometrical rules without needing sequence or fine electronic inputs. Additional post-optimizations, including receptor flexibility, have been tested and suggest that more extensive searches, required when the host structures present a low level of pre-organization, are also possible. With this new update, GaudiMM is now able to look for metal-binding sites in biological scaffolds and clearly shows how explicitly considering the geometric particularities of the first coordination sphere of the metal in a docking process provides excellent results.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament
de Química, Universitat Autònoma
de Barcelona, Cerdanyola del Vallés, 08193 Barcelona, Spain
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | | | - Jean-Didier Maréchal
- Departament
de Química, Universitat Autònoma
de Barcelona, Cerdanyola del Vallés, 08193 Barcelona, Spain
| |
Collapse
|
27
|
Qiao L, Xie D. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information. Anal Biochem 2019; 566:75-88. [DOI: 10.1016/j.ab.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
|
28
|
A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, Waterman J, Tan BK, Tan HL, Li AY, Chen ES, Ng CL. Crystal structure and functional analysis of human C1ORF123. PeerJ 2018; 6:e5377. [PMID: 30280012 PMCID: PMC6166629 DOI: 10.7717/peerj.5377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
| | - Jastina Mat Yusop
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Center for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Jitka Waterman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, England, United Kingdom
| | - Boon Keat Tan
- Division of Human Biology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hwei Ling Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adelicia Yongling Li
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
29
|
Shaik NA, Awan ZA, Verma PK, Elango R, Banaganapalli B. Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms. J Cell Biochem 2018; 119:8233-8248. [PMID: 29932249 DOI: 10.1002/jcb.26834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
The life-threatening group of irregular cardiac rhythmic disorders also known as Cardiac Arrhythmias (CA) are caused by mutations in highly conserved Calmodulin (CALM/CaM) genes. Herein, we present a multidimensional approach to diagnose changes in phenotypic, stability, and Ca2+ ion binding properties of CA-causing mutations. Mutation pathogenicity was determined by diverse computational machine learning approaches. We further modeled the mutations in 3D protein structure and analyzed residue level phenotype plasticity. We have also examined the influence of torsion angles, number of H-bonds, and free energy dynamics on the stability, near-native simulation dynamic potential of residue fluctuations in protein structures, Ca2+ ion binding potentials, of CaM mutants. Our study recomends to use M-CAP method for measuring the pathogenicity of CA causing CaM variants. Interestingly, most CA-causing variants we analyzed, exists in either third (V/H-96, S/I-98, V-103) or fourth (G/V-130, V/E/H-132, H-134, P-136, G-141, and L-142) EF-hands located in carboxyl domains of the CaM molecule. We observed that the minor structural fluctuations caused by these variants are likely tolerable owing to the highly flexible nature of calmodulin's globular domains. However, our molecular docking results supports that these variants disturb the affinity of CaM toward Ca2+ ions and corroborate previous findings from functional studies. Taken together, these computational findings can explain the molecular reasons for subtle changes in structure, flexibility, and stability aspects of mutant CaM molecule. Our comprehensive molecular scanning approach demonstrates the utility of computational methods in quick preliminary screening of CA- CaM mutations before undertaking time consuming and complicated functional laboratory assays.
Collapse
Affiliation(s)
- Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant K Verma
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Andéol Y, Bonneau J, M Gagné L, Jacquet K, Rivest V, Huot MÉ, Séguin C. The phosphoinositide 3-kinase pathway and glycogen synthase kinase-3 positively regulate the activity of metal-responsive transcription factor-1 in response to zinc ions. Biochem Cell Biol 2018; 96:1-8. [PMID: 29707960 DOI: 10.1139/bcb-2018-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a metal-regulatory transcription factor essential for induction of the genes encoding metallothioneins (MTs) in response to transition metal ions. Activation of MTF-1 is dependent on the interaction of zinc with the zinc fingers of the protein. In addition, phosphorylation is essential for MTF-1 transactivation. We previously showed that inhibition of phosphoinositide 3-kinase (PI3K) abrogated Mt expression and metal-induced MTF-1 activation in human hepatocellular carcinoma (HCC) HepG2 and mouse L cells, thus showing that the PI3K signaling pathway positively regulates MTF-1 activity and Mt gene expression. However, it has also been reported that inhibition of PI3K has no significant effects on Mt expression in immortalized epithelial cells and increases Mt expression in HCC cells. To further characterize the role of the PI3K pathway on the activity of MTF-1, transfection experiments were performed in HEK293 and HepG2 cells in presence of glycogen synthase kinase-3 (GSK-3), mTOR-C1, and mTOR-C2 inhibitors, as well as of siRNAs targeting Phosphatase and TENsin homolog (PTEN). We showed that inhibition of the mTOR-C2 complex inhibits the activity of MTF-1 in HepG2 and HEK293 cells, while inhibition of the mTOR-C1 complex or of PTEN stimulates MTF-1 activity in HEK293 cells. These results confirm that the PI3K pathway positively regulates MTF-1 activity. Finally, we showed that GSK-3 is required for MTF-1 activation in response to zinc ions.
Collapse
Affiliation(s)
- Yannick Andéol
- a Équipe Enzymologie de l'ARN, ER6, 9 quai St Bernard, Faculté des Sciences et Technologies, Sorbonne-Université, 75252 Paris, Cedex 05, France
| | - Jessica Bonneau
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Kevin Jacquet
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Véronique Rivest
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Carl Séguin
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| |
Collapse
|
31
|
Trace Elements and Healthcare: A Bioinformatics Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1005:63-98. [PMID: 28916929 DOI: 10.1007/978-981-10-5717-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Collapse
|
32
|
Srivastava A, Kumar M. Prediction of zinc binding sites in proteins using sequence derived information. J Biomol Struct Dyn 2018; 36:4413-4423. [PMID: 29241411 DOI: 10.1080/07391102.2017.1417910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Zinc is one the most abundant catalytic cofactor and also an important structural component of a large number of metallo-proteins. Hence prediction of zinc metal binding sites in proteins can be a significant step in annotation of molecular function of a large number of proteins. Majority of existing methods for zinc-binding site predictions are based on a data-set of proteins, which has been compiled nearly a decade ago. Hence there is a need to develop zinc-binding site prediction system using the current updated data to include recently added proteins. Herein, we propose a support vector machine-based method, named as ZincBinder, for prediction of zinc metal-binding site in a protein using sequence profile information. The predictor was trained using fivefold cross validation approach and achieved 85.37% sensitivity with 86.20% specificity during training. Benchmarking on an independent non-redundant data-set, which was not used during training, showed better performance of ZincBinder vis-à-vis existing methods. Executable versions, source code, sample datasets, and usage instructions are available at http://proteininformatics.org/mkumar/znbinder/.
Collapse
Affiliation(s)
- Abhishikha Srivastava
- a Department of Biophysics , University of Delhi South Campus , Benito Juarez Road, New Delhi 110021 , India
| | - Manish Kumar
- a Department of Biophysics , University of Delhi South Campus , Benito Juarez Road, New Delhi 110021 , India
| |
Collapse
|
33
|
Cao X, Hu X, Zhang X, Gao S, Ding C, Feng Y, Bao W. Identification of metal ion binding sites based on amino acid sequences. PLoS One 2017; 12:e0183756. [PMID: 28854211 PMCID: PMC5576659 DOI: 10.1371/journal.pone.0183756] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/10/2017] [Indexed: 11/26/2022] Open
Abstract
The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.
Collapse
Affiliation(s)
- Xiaoyong Cao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiaojin Zhang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Sujuan Gao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010021, China
| | - Changjiang Ding
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yonge Feng
- College of Sciences, Inner Mongolia Agricultural University, Hohhot, 010021, China
| | - Weihua Bao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
34
|
Computational approaches for de novo design and redesign of metal-binding sites on proteins. Biosci Rep 2017; 37:BSR20160179. [PMID: 28167677 PMCID: PMC5482196 DOI: 10.1042/bsr20160179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Metal ions play pivotal roles in protein structure, function and stability. The functional and structural diversity of proteins in nature expanded with the incorporation of metal ions or clusters in proteins. Approximately one-third of these proteins in the databases contain metal ions. Many biological and chemical processes in nature involve metal ion-binding proteins, aka metalloproteins. Many cellular reactions that underpin life require metalloproteins. Most of the remarkable, complex chemical transformations are catalysed by metalloenzymes. Realization of the importance of metal-binding sites in a variety of cellular events led to the advancement of various computational methods for their prediction and characterization. Furthermore, as structural and functional knowledgebase about metalloproteins is expanding with advances in computational and experimental fields, the focus of the research is now shifting towards de novo design and redesign of metalloproteins to extend nature’s own diversity beyond its limits. In this review, we will focus on the computational toolbox for prediction of metal ion-binding sites, de novo metalloprotein design and redesign. We will also give examples of tailor-made artificial metalloproteins designed with the computational toolbox.
Collapse
|
35
|
Zhang F, Ma XL, Wang YX, He CC, Tian K, Wang HG, An D, Heng B, Xie LH, Liu YQ. TPEN, a Specific Zn 2+ Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K + and Na + Channels. Cell Mol Neurobiol 2017; 37:235-250. [PMID: 26983717 DOI: 10.1007/s10571-016-0364-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
36
|
Minimal Functional Sites in Metalloproteins and Their Usage in Structural Bioinformatics. Int J Mol Sci 2016; 17:ijms17050671. [PMID: 27153067 PMCID: PMC4881497 DOI: 10.3390/ijms17050671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
Metal ions play a functional role in numerous biochemical processes and cellular pathways. Indeed, about 40% of all enzymes of known 3D structure require a metal ion to be able to perform catalysis. The interactions of the metals with the macromolecular framework determine their chemical properties and reactivity. The relevant interactions involve both the coordination sphere of the metal ion and the more distant interactions of the so-called second sphere, i.e., the non-bonded interactions between the macromolecule and the residues coordinating the metal (metal ligands). The metal ligands and the residues in their close spatial proximity define what we call a minimal functional site (MFS). MFSs can be automatically extracted from the 3D structures of metal-binding biological macromolecules deposited in the Protein Data Bank (PDB). They are 3D templates that describe the local environment around a metal ion or metal cofactor and do not depend on the overall macromolecular structure. MFSs provide a different view on metal-binding proteins and nucleic acids, completely focused on the metal. Here we present different protocols and tools based upon the concept of MFS to obtain deeper insight into the structural and functional properties of metal-binding macromolecules. We also show that structure conservation of MFSs in metalloproteins relates to local sequence similarity more strongly than to overall protein similarity.
Collapse
|
37
|
Rosenkranz E, Metz CHD, Maywald M, Hilgers RD, Weßels I, Senff T, Haase H, Jäger M, Ott M, Aspinall R, Plümäkers B, Rink L. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res 2015; 60:661-71. [PMID: 26614004 DOI: 10.1002/mnfr.201500524] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/21/2015] [Accepted: 11/12/2015] [Indexed: 01/18/2023]
Abstract
SCOPE Zinc is an essential trace element, regulating immune function. Its deficiency results in immune dysfunction and transplant rejection. In here, a benefit of zinc supplementation for the induction of tolerance was investigated, focusing on the TH 1-dominated allogeneic immune reaction. METHODS AND RESULTS Allogeneic immune reaction was modeled by mixed lymphocyte culture (MLC). The effect of zinc supplementation was monitored via expression of cytokines and surface lineage markers using ELISA and flow cytometry. Epigenetic analyses were performed to investigate mechanisms underlying zinc-induced changes in regulatory T cell (Treg) activation. Results reveal that Tregs are induced when MLCs are treated with 50 μM zinc causing a decrease in IFNγ production. IL-2 and IL-10 expression were not affected. The teleology of this effect includes the inhibition of histone deacetylase Sirt-1-mediated Foxp3 deacetylation, resulting in its decreased degradation. CONCLUSION In conclusion, zinc should be considered to prevent graft-versus-host disease (GVHD) as it is capable of stabilizing iTregs, resulting in increased numbers of this cell type while not suppressing the immune system.
Collapse
Affiliation(s)
- Eva Rosenkranz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Claudia H D Metz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Ralf-Dieter Hilgers
- Institute of Medical Statistics, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Inga Weßels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Tina Senff
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany.,Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany
| | - Maximilian Jäger
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Richard Aspinall
- Translational Medicine Group, Cranfield University, Cranfield, Bedfordshire, UK
| | - Birgit Plümäkers
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Aachen, Germany
| |
Collapse
|
38
|
Rosenkranz E, Maywald M, Hilgers RD, Brieger A, Clarner T, Kipp M, Plümäkers B, Meyer S, Schwerdtle T, Rink L. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J Nutr Biochem 2015; 29:116-23. [PMID: 26895672 DOI: 10.1016/j.jnutbio.2015.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system.
Collapse
Affiliation(s)
- Eva Rosenkranz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Ralf-Dieter Hilgers
- Institute of Medical Statistics, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Anne Brieger
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany; Department of Neuroanatomy, Ludwig-Maximilians University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany
| | - Birgit Plümäkers
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
39
|
Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, Moraes TF. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun 2015; 6:7996. [PMID: 26282243 PMCID: PMC4557270 DOI: 10.1038/ncomms8996] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/03/2015] [Indexed: 11/09/2022] Open
Abstract
Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops. ZnuD is a conserved zinc transporter expressed in several bacterial pathogens with potential as a target against infection. Here the authors demonstrate a requirement for ZnuD in systemic infection by N. meningitidis and define the molecular mechanism of ZnuD-mediated Zinc transport across the bacterial outer membrane.
Collapse
Affiliation(s)
- Charles Calmettes
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Ing
- 1] Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada [2] Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Carolyn M Buckwalter
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Majida El Bakkouri
- Structural Genomic Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Christine Chieh-Lin Lai
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Anastassia Pogoutse
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Régis Pomès
- 1] Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada [2] Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
40
|
Scientific Opinion on the safety and efficacy of zinc compounds (E6) as feed additives for all animal species (zinc acetate, dihydrate; zinc chloride, anhydrous; zinc oxide; zinc sulphate, heptahydrate; zinc sulphate, monohydrate; zinc chelate of amino acids, hydrate; zinc chelate of glycine, hydrate), based on a dossier submitted by FEFANA asbl. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
41
|
Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB. Bioinformatics survey of the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics 2014; 7:156-64. [PMID: 25412156 DOI: 10.1039/c4mt00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
Collapse
Affiliation(s)
- Pik Mun Foong
- Enzyme and Microbial Technology Research Center (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | | | | | | | | |
Collapse
|
42
|
Zheng D, Feeney GP, Handy RD, Hogstrand C, Kille P. Uptake epithelia behave in a cell-centric and not systems homeostatic manner in response to zinc depletion and supplementation. Metallomics 2014; 6:154-65. [PMID: 24301558 PMCID: PMC4157650 DOI: 10.1039/c3mt00212h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Global transcriptomic analysis, non-invasive real-time flux, nutritional profiling and metallomics reveal cell-centric response to zinc supplementation/depletion in zebrafish uptake epithelia.
Much remains to be understood about systemic regulation of zinc uptake in vertebrates, and adequate zinc status is far from always achieved in animals or human. In addition to absorbing zinc from the diet, fish are able to take up zinc directly from the water with the gills. This provides an elegant system to study zinc uptake, how it relates to zinc status, and the expression of genes for proteins involved in zinc acquisition. A 21-day experiment was conducted in which zebrafish were acclimated to deficient, control or excess zinc concentrations in the water and feed. Deficient provision of zinc reduced whole body zinc, potassium, sodium and calcium levels whilst zinc concentrations in the uptake epithelia (gills and gut) remained unchanged. Excess levels of zinc caused accumulation of zinc in the gills, intestine and carcass, but impaired whole body iron, sodium and calcium concentrations. Fish subjected to zinc deficiency had, surprisingly, a reduced zinc influx across the gill epithelium, even when tested at a high concentration of zinc in the water. Zinc influx in the excess group was indistinct from the control. Expression of genes for metallothionein-2 (Mt2) and zinc transporters-1, -2, and -8 (Znt1, Znt2, Znt8) in uptake epithelia showed in general a direct relationship with zinc supply, while mRNA for Zip4 was inversely related to zinc supply. Transcripts for the epithelial calcium channel (Ecac/Trpv6) showed time-dependent increased expression in the gills of the deficiency group, and a transient decrease of expression during zinc excess. Transcriptome profiling by microarrays showed that in both gills and intestine, the most markedly affected biological functions were those related to cell growth, proliferation and cancer, closely followed by processes of gene transcription and protein synthesis in general. Whilst changes in zinc supply had profound effects in the intestine on genes associated with uptake and metabolism of macronutrients, many of the unique categories of genes preferentially regulated in the gill could be mapped onto signalling pathways. This included pathways for PPAR/RXR, LXR/RXR, ATM, chemokine, and BMP signalling. Overall, the responses of epithelial tissue to zinc deficiency and excess are best explained by local epithelial homeostasis with no evidence of systemic control.
Collapse
Affiliation(s)
- Dongling Zheng
- King's College London, Diabetes and Nutritional Sciences, Franklin-Wilkins Building, 150 Stamford Street, London, UK.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Krasnići N, Dragun Z, Erk M, Raspor B. Distribution of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements among protein fractions from hepatic cytosol of European chub (Squalius cephalus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2340-2351. [PMID: 22886752 DOI: 10.1007/s11356-012-1105-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex™ 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L(-1)). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30-100 kDa), after exposure to dissolved Pb concentration of ~1 μg L(-1). The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.
Collapse
Affiliation(s)
- Nesrete Krasnići
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | | | | | | |
Collapse
|
45
|
Liu Z, Wang Y, Zhou C, Xue Y, Zhao W, Liu H. Computationally characterizing and comprehensive analysis of zinc-binding sites in proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:171-80. [PMID: 23499845 DOI: 10.1016/j.bbapap.2013.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
Zinc is one of the most essential metals utilized by organisms, and zinc-binding proteins play an important role in a variety of biological processes such as transcription regulation, cell metabolism and apoptosis. Thus, characterizing the precise zinc-binding sites is fundamental to an elucidation of the biological functions and molecular mechanisms of zinc-binding proteins. Using systematic analyses of structural characteristics, we observed that 4-residue and 3-residue zinc-binding sites have distinctly specific geometric features. Based on the results, we developed the novel computational program Geometric REstriction for Zinc-binding (GRE4Zn) to characterize the zinc-binding sites in protein structures, by restricting the distances between zinc and its coordinating atoms. The comparison between GRE4Zn and analogous tools revealed that it achieved a superior performance. A large-scale prediction for structurally characterized proteins was performed with this powerful predictor, and statistical analyses for the results indicated zinc-binding proteins have come to be significantly involved in more complicated biological processes in higher species than simpler species during the course of evolution. Further analyses suggested that zinc-binding proteins are preferentially implicated in a variety of diseases and highly enriched in known drug targets, and the prediction of zinc-binding sites can be helpful for the investigation of molecular mechanisms. In this regard, these prediction and analysis results should prove to be highly useful be helpful for further biomedical study and drug design. The online service of GRE4Zn is freely available at: http://biocomp.ustc.edu.cn/gre4zn/. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Zexian Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | |
Collapse
|
46
|
MAURER-STROH SEBASTIAN, GAO HE, HAN HAO, BAETEN LIES, SCHYMKOWITZ JOOST, ROUSSEAU FREDERIC, ZHANG LOUXIN, EISENHABER FRANK. MOTIF DISCOVERY WITH DATA MINING IN 3D PROTEIN STRUCTURE DATABASES: DISCOVERY, VALIDATION AND PREDICTION OF THE U-SHAPE ZINC BINDING ("HUF-ZINC") MOTIF. J Bioinform Comput Biol 2013; 11:1340008. [DOI: 10.1142/s0219720013400088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif—structural motif—function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL ( http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/ ).
Collapse
Affiliation(s)
- SEBASTIAN MAURER-STROH
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, 637551, Singapore
| | - HE GAO
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456, Singapore
| | - HAO HAN
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - LIES BAETEN
- VIB Switch Laboratory, Katholieke Universiteit Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - JOOST SCHYMKOWITZ
- VIB Switch Laboratory, Katholieke Universiteit Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - FREDERIC ROUSSEAU
- VIB Switch Laboratory, Katholieke Universiteit Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - LOUXIN ZHANG
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore
| | - FRANK EISENHABER
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive 4, 117597, Singapore
- School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, 637553, Singapore
| |
Collapse
|
47
|
Scientific Opinion on the safety and efficacy of methionine-zinc, technically pure as amino acid for ruminants, and as compound of trace element for all species. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
48
|
Chen Z, Wang Y, Zhai YF, Song J, Zhang Z. ZincExplorer: an accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences. MOLECULAR BIOSYSTEMS 2013; 9:2213-22. [DOI: 10.1039/c3mb70100j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Assunção AGL, Persson DP, Husted S, Schjørring JK, Alexander RD, Aarts MGM. Model of how plants sense zinc deficiency. Metallomics 2013; 5:1110-6. [DOI: 10.1039/c3mt00070b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Scientific Opinion on safety and efficacy of zinc compounds (E6) as feed additive for all animal species: Zinc oxide, based on a dossier submitted by Grillo Zinkoxid GmbH/EMFEMA. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2970] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|