1
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van Tellingen O, Maragakis NJ, Shefner J, Bunt T, Aronica E. Expression and Cellular Distribution of P-Glycoprotein and Breast Cancer Resistance Protein in Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 79:266-276. [PMID: 31999342 PMCID: PMC7036662 DOI: 10.1093/jnen/nlz142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.
Collapse
Affiliation(s)
- Erwin A van Vliet
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam
| | - Anand M Iyer
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Lucia Mesarosova
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Hilal Çolakoglu
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Jasper J Anink
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, Massachusetts
| | - Eleonora Aronica
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| |
Collapse
|
3
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
4
|
Couvreur O, Aubourg A, Crépin D, Degrouard J, Gertler A, Taouis M, Vacher CM. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012; 302:E458-67. [PMID: 22146310 DOI: 10.1152/ajpendo.00388.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a neural cytokine that reduces appetite and body weight when administrated to rodents or humans. We have demonstrated recently that the level of CNTF in the arcuate nucleus (ARC), a key hypothalamic region involved in food intake regulation, is positively correlated with protection against diet-induced obesity. However, the comprehension of the physiological significance of neural CNTF action was still incomplete because CNTF lacks a signal peptide and thus may not be secreted by the classical exocytosis pathways. Knowing that CNTF distribution shares similarities with that of its receptor subunits in the rat ARC, we hypothesized that CNTF could exert a direct intracrine effect in ARC cells. Here, we demonstrate that CNTF, together with its receptor subunits, translocates to the cell nucleus of anorexigenic POMC neurons in the rat ARC. Furthermore, the stimulation of hypothalamic nuclear fractions with CNTF induces the phosphorylation of several signaling proteins, including Akt, as well as the transcription of the POMC gene. These data strongly suggest that intracellular CNTF may directly modulate POMC gene expression via the activation of receptors localized in the cell nucleus, providing a novel plausible mechanism of CNTF action in regulating energy homeostasis.
Collapse
Affiliation(s)
- Odile Couvreur
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol 2009; 12:895-904. [PMID: 19224656 DOI: 10.1017/s1461145709009894] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aetiology of depressive disorder remains unknown, although genetic susceptibility and exposure to neurotoxins are currently being discussed as possible contributors to this disorder. In normal circumstances, the brain is protected against bloodborne toxic influences by the blood-brain barrier, which includes the molecular efflux pump P-glycoprotein (P-gp) in the vessel wall of brain capillaries. We hypothesized that P-gp function in the blood-brain barrier is changed in patients with major depression. Positron emission tomography was used to measure brain uptake of [11C]verapamil, which is normally expelled from the brain by P-gp. Cerebral volume of distribution (V(T)) of [11C]verapamil was used as a measure of P-gp function. Both region-of-interest (ROI) analysis and voxel analysis using statistical parametric mapping (SPM2) were performed to assess regional brain P-gp function. We found that patients with a major depressive episode, using antidepressants, compared to healthy controls showed a significant decrease of [11C]verapamil uptake in different areas throughout the brain, in particular in frontal and temporal regions. The decreased [11C]verapamil uptake correlates with an increased function of the P-gp protein and may be related to chronic use of psychotropic drugs. Our results may explain why treatment-resistant depression can develop.
Collapse
|
6
|
Vacher CM, Crépin D, Aubourg A, Couvreur O, Bailleux V, Nicolas V, Férézou J, Gripois D, Gertler A, Taouis M. A putative physiological role of hypothalamic CNTF in the control of energy homeostasis. FEBS Lett 2008; 582:3832-8. [PMID: 18950628 DOI: 10.1016/j.febslet.2008.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/26/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Administration of CNTF durably reduces food intake and body weight in obese humans and rodent models. However, the involvement of endogenous CNTF in the central regulation of energy homeostasis needs to be elucidated. Here, we demonstrate that CNTF and its receptor are expressed in the arcuate nucleus, a key hypothalamic region controlling food intake, and that CNTF levels are inversely correlated to body weight in rats fed a high-sucrose diet. Thus endogenous CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.
Collapse
Affiliation(s)
- C-M Vacher
- Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire, UMR 1197 INRA, Université Paris 11, Bâtiment 447, 91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. J Transl Med 2005; 85:734-46. [PMID: 15908914 DOI: 10.1038/labinvest.3700281] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although cerebral endothelium disturbance is commonly observed in central nervous system (CNS) inflammatory pathologies, neither the cause of this phenomenon nor the effective participation of blood-brain barrier (BBB) in such diseases are well established. Observations were mostly made in vivo using mouse models of chronic inflammation. This paper presents a new mouse in vitro model suitable for the study of underlying mechanistic events touching BBB functions during CNS inflammatory disturbances. This model consists of a coculture with both primary cell types isolated from mice. Mouse brain capillary endothelial cell (MBCEC)s coming from brain capillaries are in culture with their in vivo partners and form differentiated monolayers that retain endothelial markers and numerous phenotypic properties of in vivo cerebral endothelium, such as: (1) peripheral distribution of tight junction proteins (occludin, claudin-5, claudin-3 and JAM-1); (2) high trans-endothelium electrical resistance value; (3) attenuated paracellular flux of sucrose and inulin; (4) P-gp expression; (5) no MECA-32 expression. Furthermore, this endothelium expresses cell adhesion molecules described in vivo and shows intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 upregulation under lipopolysaccharide-treatment. Therefore, this well-differentiated model using autologous cells appears as a suitable support to reconstitute pathological in vitro BBB model.
Collapse
Affiliation(s)
- Caroline Coisne
- EA 2465, Unité mixte Université d'Artois, Institut Pasteur de Lille, Lens Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
P-glycoprotein (P-gp) and caveolin-1alpha are both involved in membrane transport, and studies in rodent brain show that these proteins are specifically localized at the microvascular endothelium, which forms the blood-brain barrier (BBB). In humans, P-gp is also expressed in astrocytes, especially in pathological tissue. The present study examines the cellular expression of P-gp and caveolin-1alpha in fresh-frozen brain from healthy rhesus monkey using confocal microscopy and polyclonal antibodies against either P-gp or caveolin-1alpha co-labeled for astrocytes or microvascular endothelium. P-gp and caveolin-1alpha are expressed in both astrocytes and endothelium of healthy primate brain. These findings suggest that P-gp and caveolin-1alpha share a broad spectrum of cellular expression and may play a role in drug transport within the brain in addition to the BBB.
Collapse
Affiliation(s)
- Felix Schlachetzki
- Department of Medicine, UCLA, Warren Hall 13-164, 900 Veteran Ave. Los Angeles, CA 90024, USA
| | | |
Collapse
|