1
|
Luo Z, Huang Y, Chen S, Zhang B, Huang H, Dabiri S, Chen Y, Zhang A, Andreas AR, Li S. Delivery of PARP inhibitors through 2HG-incorporated liposomes for synergistically targeting DNA repair in cancer. Cancer Lett 2024; 604:217268. [PMID: 39321912 DOI: 10.1016/j.canlet.2024.217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PARP inhibitors (PARPi) benefit only a small subset of patients with DNA homologous recombination (HR) defects. In addition, long-term administration of a PARPi can lead to the development of drug resistance. 2-Hydroxyglutarate (2HG) has long been known as an oncometabolite but is capable of inducing an HR defect, which makes tumor cells exquisitely sensitive to PARPi. To facilitate the translation of this discovery to the treatment of both HR-deficient and HR-proficient tumors, a liposomal formulation was developed for codelivery of 2HG and veliparib, a PARPi. A sequential loading protocol was developed such that the initial loading of 2HG into liposomes greatly facilitated the subsequent, pH gradient-driven remote loading of veliparib. The liposomes co-loaded with veliparib and 2HG exhibited favorable stability, slow kinetics of drug release, and targeted delivery to the tumor. Furthermore, the veliparib/2HG liposomes demonstrated enhanced anti-tumor activity in both PARPi-resistant BRCA mutant cancer and BRCA wildtype cancer by synergistically enhancing the defect in DNA repair. Moreover, combination of veliparib and 2HG via liposomal co-delivery also augmented the function of cytotoxic T cells by activating the STING pathway and downregulating PD-L1 expression via 2HG-induced hypermethylation.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Shangyu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Sheida Dabiri
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Alexis R Andreas
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Das PK, Matada GSP, Pal R, Maji L, Dhiwar PS, Manjushree BV, Viji MP. Poly (ADP-ribose) polymerase (PARP) inhibitors as anticancer agents: An outlook on clinical progress, synthetic strategies, biological activity, and structure-activity relationship. Eur J Med Chem 2024; 274:116535. [PMID: 38838546 DOI: 10.1016/j.ejmech.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) is considered an essential component in case of DNA (Deoxyribonucleic acid) damage, response by sensing DNA damage and engaging DNA repair proteins. Those proteins repair the damaged DNA via an aspect of posttranslational modification, known as poly (ADP-Ribosyl)ation (PARylation). Specifically, PARP inhibitors (PARPi) have shown better results when administered alone in a variety of cancer types with BRCA (Breast Cancer gene) mutation. The clinical therapeutic benefits of PARP inhibitors have been diminished by their cytotoxicity, progression of drug resistance, and limitation of indication, regardless of their tremendous clinical effectiveness. A growing number of PARP-1 inhibitors, particularly those associated with BRCA-1/2 mutations, have been identified as potential cancer treatments. Recently, several researchers have identified various promising scaffolds, which have resulted in the resuscitation of the faith in PARP inhibitors as cancer therapies. This review provided a comprehensive update on the anatomy and physiology of the PARP enzyme, the profile of FDA (Food and Drug Administration) and CFDA (China Food and Drug Administration)-approved drugs, and small-molecule inhibitors of PARP, including their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| | - Prasad Sanjay Dhiwar
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - B V Manjushree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
3
|
Daei Sorkhabi A, Fazlollahi A, Sarkesh A, Aletaha R, Feizi H, Mousavi SE, Nejadghaderi SA, Sullman MJM, Kolahi AA, Safiri S. Efficacy and safety of veliparib plus chemotherapy for the treatment of lung cancer: A systematic review of clinical trials. PLoS One 2023; 18:e0291044. [PMID: 37682974 PMCID: PMC10490931 DOI: 10.1371/journal.pone.0291044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND As a poly-ADP ribose polymerase (PARP) inhibitor, veliparib has been identified as a potential therapeutic agent for lung cancer. The present study aimed to conduct a systematic review of clinical trials investigating the efficacy and safety of veliparib for treating lung cancer. METHODS PubMed, Scopus, the Web of Science, and Google Scholar were systematically searched up to October 30, 2022. Only randomized controlled trials (RCTs) evaluating the efficacy or safety of veliparib in the treatment of lung cancer patients were included. Studies were excluded if they were not RCTs, enrolled healthy participants or patients with conditions other than lung cancer, or investigated therapeutic approaches other than veliparib. The Cochrane risk-of-bias tool was used for quality assessment. RESULTS The seven RCTs (n = 2188) showed that patients treated with a combination of veliparib and chemotherapy had a significantly higher risk of adverse events, when compared to the control arm. There was no statistically significant difference in overall survival (OS) between those treated with veliparib plus chemotherapy and those receiving the standard therapies. Only two trials demonstrated an improvement in progression-free survival (PFS), and only one study found an increase in objective response rate (ORR). Furthermore, adding veliparib to standard chemotherapy showed no benefit in extending the duration of response (DoR) in any of the studies. CONCLUSIONS Only a small number of studies have found veliparib to be effective, in terms of improved OS, PFS, and ORR, while the majority of studies found no benefit for veliparib over standard treatment.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Feizi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Soldatović TV, Šmit B, Mrkalić EM, Matić SL, Jelić RM, Serafinović MĆ, Gligorijević N, Čavić M, Aranđelović S, Grgurić-Šipka S. Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agents. J Inorg Biochem 2023; 240:112100. [PMID: 36535193 DOI: 10.1016/j.jinorgbio.2022.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The four novel complexes [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2':6',2''-terpyridine) were synthesized and characterized. Acid-base titrations and concentration dependent kinetic measurements for the reactions with biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), inosine-5'-monophosphate (5'-IMP) and glutathione (GSH), were studied at pH 7.4 and 37 °C. The binding of the heterometallic bridged cis- or trans-Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin, characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes. Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA binding.
Collapse
Affiliation(s)
- Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Serbia.
| | - Biljana Šmit
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Emina M Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Sanja Lj Matić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Ratomir M Jelić
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Svetozara Markovića 69, Kragujevac 34000, Serbia
| | - Marina Ćendić Serafinović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Milena Čavić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| |
Collapse
|
5
|
Seo Y, Tamari K, Takahashi Y, Minami K, Tatekawa S, Isohashi F, Suzuki O, Akino Y, Ogawa K. Poly (ADP-ribose) polymerase inhibitors sensitize cancer cells to hypofractionated radiotherapy through altered selection of DNA double-strand break repair pathways. Int J Radiat Biol 2022; 98:1222-1234. [PMID: 34919022 DOI: 10.1080/09553002.2022.2020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Poly (ADP-ribose) polymerase inhibitors (PARPi) are known to induce radiosensitization. However, the exact mechanisms of radiosensitization remain unclear. We previously reported that PARPi may have a unique radiosensitizing effect to enhance β-components of the linear-quadratic model. The aim of this study was to evaluate PARPi in combination with high-dose-per-fraction radiotherapy and to elucidate the underlying mechanisms of its radiosensitization. MATERIALS AND METHODS Radiosensitizing effects of PARPi PJ34, olaparib, and veliparib were measured using a colony-forming assay in the human cancer cell lines, HCT116, NCI-H460, and HT29. Six different radiation dose fractionation schedules were examined by tumor regrowth assay using three-dimensional multicellular spheroids of HCT116, NCI-H460, SW620, and HCT15. The mechanisms of radiosensitization were analyzed by measuring DNA double-strand breaks (DSB), DNA damage responses, chromosomal translocations, cellular senescence, and cell cycle analysis. RESULTS Olaparib and PJ34 were found to show radiosensitization preferentially at higher radiation doses per fraction. Similar results were obtained using a mouse model bearing human tumor xenografts. A kinetic analysis of DNA damage responses and repairs showed that olaparib and PJ34 reduced the homologous recombination activity. However, a neutral comet assay showed that PJ34 treatment did not affect the physical rejoining of DNA-DSBs induced by ionizing radiation. Cell cycle analysis revealed that olaparib and PJ34 strikingly increased G1 tetraploid cells following irradiation, leading to premature senescence. The C-banding analysis of metaphase spreads showed that olaparib and PJ34 significantly increased ionizing radiation-induced dicentric chromosomes. The data suggests that PARPi olaparib and PJ34 altered the choice of DNA-DSB repair pathways rather than reducing the total amount of DNA-DSB repair, which resulted in increased repair errors. Increased quadratic misrepair was one of the mechanisms of PARP-mediated radiosensitization, preferentially at the higher dose range compared to the lower dose range. CONCLUSION PARPi may be a promising candidate to combine with stereotactic hypofractionated radiotherapy, aiming at high-dose region-directed radiosensitization.
Collapse
Affiliation(s)
- Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Takahashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Suzuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichi Akino
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
6
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Xiao M, Guo J, Xie L, Yang C, Gong L, Wang Z, Cai J. Let-7e Suppresses DNA Damage Repair and Sensitizes Ovarian Cancer to Cisplatin through Targeting PARP1. Mol Cancer Res 2019; 18:436-447. [PMID: 31722968 DOI: 10.1158/1541-7786.mcr-18-1369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/26/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Increased DNA damage repair is one of the mechanisms implicated in cisplatin resistance. Our previous study indicated that the deregulation of let-7e promoted cisplatin resistance and that let-7e could suppress DNA double-strand break repair in ovarian cancer. In this study, we further characterized the role of let-7e in DNA damage repair and cisplatin resistance in ovarian cancer, and investigated the underlying mechanisms. The alkaline and neutral comet assay indicated that let-7e impeded both DNA single- and double-strand break repairs through downregulating its target gene PARP1. In vitro and in vivo experiments provided evidence that the let-7e-PARP1-DNA repair axis was involved in the modulation of cisplatin sensitivity in ovarian cancer. Contrary to let-7e, PARP1 was overexpressed in cisplatin-resistant ovarian cancer tissues, and patients with high PARP1 expression exhibited poor progression-free survival (PFS) and overall survival (OS). Multivariate logistic and Cox regression analyses showed that let-7e and FIGO stage were independent prognostic factors for PFS and OS, whereas let-7e and PARP1 were able to independently predict chemotherapy response. Taken together, our results indicated that low expression of let-7e promoted DNA single- and double-strand break repairs and subsequently contributed to cisplatin resistance by relieving the suppression on PARP1 in ovarian cancer. IMPLICATIONS: Targeting the let-7e-PARP1-DNA repair axis might be an effective strategy for the treatment of chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Man Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Madariaga A, Lheureux S, Oza AM. Tailoring Ovarian Cancer Treatment: Implications of BRCA1/2 Mutations. Cancers (Basel) 2019; 11:E416. [PMID: 30909618 PMCID: PMC6468364 DOI: 10.3390/cancers11030416] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most common epithelial ovarian cancer, harbouring more than 20% germline or somatic mutations in the tumour suppressor genes BRCA1 and BRCA2. These genes are involved in both DNA damage repair process via homologous recombination (HR) and transcriptional regulation. BRCA mutation confers distinct characteristics, including an increased response to DNA-damaging agents, such us platinum chemotherapy and poly-ADP ribose polymerase inhibitors (PARPi). However, several mechanisms of resistance to these agents have been described, including increased HR capacity through reverse BRCA mutations, non-homologous end-joint (NHEJ) repair alterations and drug efflux pumps. Current treatments of ovarian cancer including surgery, chemotherapy, targeted treatment and maintenance strategies, as well as resistance mechanisms will be reviewed, focusing on future trends with respect to BRCA mutation carriers.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| | - Stephanie Lheureux
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| | - Amit M Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
9
|
Abstract
High grade serous ovarian cancer (HGSOC) is the most common epithelial ovarian cancer, harbouring more than 20% germline or somatic mutations in the tumour suppressor genes BRCA1 and BRCA2. These genes are involved in both DNA damage repair process via homologous recombination (HR) and transcriptional regulation. BRCA mutation confers distinct characteristics, including an increased response to DNA-damaging agents, such us platinum chemotherapy and poly-ADP ribose polymerase inhibitors (PARPi). However, several mechanisms of resistance to these agents have been described, including increased HR capacity through reverse BRCA mutations, non-homologous end-joint (NHEJ) repair alterations and drug efflux pumps. Current treatments of ovarian cancer including surgery, chemotherapy, targeted treatment and maintenance strategies, as well as resistance mechanisms will be reviewed, focusing on future trends with respect to BRCA mutation carriers.
Collapse
|
10
|
Madariaga A, Lheureux S, Oza AM. Tailoring Ovarian Cancer Treatment: Implications of BRCA1/2 Mutations. Cancers (Basel) 2019. [PMID: 30909618 DOI: 10.3390/cancers11030416]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most common epithelial ovarian cancer, harbouring more than 20% germline or somatic mutations in the tumour suppressor genes BRCA1 and BRCA2. These genes are involved in both DNA damage repair process via homologous recombination (HR) and transcriptional regulation. BRCA mutation confers distinct characteristics, including an increased response to DNA-damaging agents, such us platinum chemotherapy and poly-ADP ribose polymerase inhibitors (PARPi). However, several mechanisms of resistance to these agents have been described, including increased HR capacity through reverse BRCA mutations, non-homologous end-joint (NHEJ) repair alterations and drug efflux pumps. Current treatments of ovarian cancer including surgery, chemotherapy, targeted treatment and maintenance strategies, as well as resistance mechanisms will be reviewed, focusing on future trends with respect to BRCA mutation carriers.
Collapse
Affiliation(s)
- Ainhoa Madariaga
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| | - Stephanie Lheureux
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| | - Amit M Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
11
|
De Picciotto N, Cacheux W, Roth A, Chappuis PO, Labidi-Galy SI. Ovarian cancer: Status of homologous recombination pathway as a predictor of drug response. Crit Rev Oncol Hematol 2016; 101:50-9. [DOI: 10.1016/j.critrevonc.2016.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 12/23/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
|
12
|
Boudra MT, Bolin C, Chiker S, Fouquin A, Zaremba T, Vaslin L, Biard D, Cordelières FP, Mégnin-Chanet F, Favaudon V, Fernet M, Pennaneach V, Hall J. PARP-2 depletion results in lower radiation cell survival but cell line-specific differences in poly(ADP-ribose) levels. Cell Mol Life Sci 2015; 72:1585-97. [PMID: 25336152 PMCID: PMC11113491 DOI: 10.1007/s00018-014-1765-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 02/02/2023]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP-2) activity contributes to a cells' poly(ADP-ribosyl)ating potential and like PARP-1, has been implicated in several DNA repair pathways including base excision repair and DNA single strand break repair. Here the consequences of its stable depletion in HeLa, U20S, and AS3WT2 cells were examined. All three PARP-2 depleted models showed increased sensitivity to the cell killing effects on ionizing radiation as reported in PARP-2 depleted mouse embryonic fibroblasts providing further evidence for a role in DNA strand break repair. The PARP-2 depleted HeLa cells also showed both higher constitutive and DNA damage-induced levels of polymers of ADP-ribose (PAR) associated with unchanged PARP-1 protein levels, but higher PARP activity and a concomitant lower PARG protein levels and activity. These changes were accompanied by a reduced maximal recruitment of PARP-1, XRCC1, PCNA, and PARG to DNA damage sites. This PAR-associated phenotype could be reversed in HeLa cells on re-expression of PARP-2 and was not seen in U20S and AS3WT2 cells. These results highlight the complexity of the relationship between different members of the PARP family on PAR metabolism and suggest that cell model dependent phenotypes associated with the absence of PARP-2 exist within a common background of radiation sensitivity.
Collapse
Affiliation(s)
- Mohammed-Tayyib Boudra
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Celeste Bolin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Department of Biology, The College of Idaho, 2112 Cleveland Boulevard, Caldwell, ID 83605 USA
| | - Sara Chiker
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Alexis Fouquin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Tomasz Zaremba
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: AstraZeneca Pharma Poland Sp. z o.o.ul., Postępu 18, 02-676 Warsaw, Poland
| | - Laurence Vaslin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Denis Biard
- Commissariat à l’Energie Atomique, DSV-iMETI-SEPIA, 92265 Fontenay Aux Roses, France
| | - Fabrice P. Cordelières
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- CNRS, UMR3348, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Plateforme IBiSA d’Imagerie Cellulaire et Tissulaire, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Pôle d’imagerie photonique, Institut François Magendie, Bordeaux Imaging Center, UMS 3420 CNRS-Université de Bordeaux-US4 INSERM, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - Frédérique Mégnin-Chanet
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Inserm U1030, Gustave Roussy Cancer Campus Grand Paris, 114 rue Edouard-Vaillant, 94805 Villejuif, France
| | - Vincent Favaudon
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Marie Fernet
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Janet Hall
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm U612, Institut Curie-Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
13
|
|
14
|
Abstract
DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt gene transcription and genome duplication. If not rapidly repaired, SSBs can be converted into DNA double-strand breaks (DSBs) during genome duplication, eliciting a complex series of DNA damage responses that attempt to protect cells from irreversible replication fork collapse. DSBs are the most cytotoxic and clastogenic type of DNA breaks, and can also arise independently of DNA replication, albeit at a frequency several orders of magnitude lower than SSBs. Here, I discuss the evidence that DNA single- and double -strand break repair pathways, and cellular tolerance mechanisms for protecting replication forks during genome duplication, utilize signalling by protein ADP-ribosyltransferases to protect cells from the harmful impact of DNA strand breakage.
Collapse
Affiliation(s)
- K W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brigton BN1 9RQ, United Kingdom.
| |
Collapse
|
15
|
Matsuda S, Matsuda R, Matsuda Y, Yanagisawa SY, Ikura M, Ikura T, Matsuda T. An Easy-to-use Genotoxicity Assay Using EGFP-MDC1-expressing Human Cells. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Karia B, Martinez JA, Bishop AJR. Induction of homologous recombination following in utero exposure to DNA-damaging agents. DNA Repair (Amst) 2013; 12:912-21. [PMID: 24029142 DOI: 10.1016/j.dnarep.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/06/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Much of our understanding of homologous recombination, as well as the development of the working models for these processes, has been derived from extensive work in model organisms, such as yeast and fruit flies, and mammalian systems by studying the repair of induced double strand breaks or repair following exposure to genotoxic agents in vitro. We therefore set out to expand this in vitro work to ask whether DNA-damaging agents with varying modes of action could induce somatic change in an in vivo mouse model of homologous recombination. We exposed pregnant dams to DNA-damaging agents, conferring a variety of lesions at a specific time in embryo development. To monitor homologous recombination frequency, we used the well-established retinal pigment epithelium pink-eyed unstable assay. Homologous recombination resulting in the deletion of a duplicated 70 kb fragment in the coding region of the Oca2 gene renders this gene functional and can be visualized as a pigmented eyespot in the retinal pigment epithelium. We observed an increased frequency of pigmented eyespots in resultant litters following exposure to cisplatin, methyl methanesulfonate, ethyl methanesulfonate, 3-aminobenzamide, bleomycin, and etoposide with a contrasting decrease in the frequency of detectable reversion events following camptothecin and hydroxyurea exposure. The somatic genomic rearrangements that result from such a wide variety of differently acting damaging agents implies long-term potential effects from even short-term in utero exposures.
Collapse
Affiliation(s)
- Bijal Karia
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
17
|
Kumala S, Fujarewicz K, Jayaraju D, Rzeszowska-Wolny J, Hancock R. Repair of DNA strand breaks in a minichromosome in vivo: kinetics, modeling, and effects of inhibitors. PLoS One 2013; 8:e52966. [PMID: 23382828 PMCID: PMC3559499 DOI: 10.1371/journal.pone.0052966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022] Open
Abstract
To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ∼170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with γ photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD. Repair of double strand breaks was slowed by 20–30% when homologous recombination was supressed by KU55933, caffeine, or siRNA-mediated depletion of Rad51 but was completely arrested by the inhibitors of nonhomologous end-joining wortmannin or NU7441, responses interpreted as reflecting competition between these repair pathways similar to that seen in genomic DNA. The reformation of supercoiled DNA was unaffected when topoisomerases I or II, whose participation in repair of strand breaks has been controversial, were inhibited by the catalytic inhibitors ICRF-193 or F11782. Modeling of the kinetics of repair provided rate constants and showed that repair of single strand breaks in minichromosome DNA proceeded independently of repair of double strand breaks. The simplicity of quantitating strand breaks in this minichromosome provides a usefull system for testing the efficiency of new inhibitors of their repair, and since the sequence and structural features of its DNA and its transcription pattern have been studied extensively it offers a good model for examining other aspects of DNA breakage and repair.
Collapse
Affiliation(s)
- Slawomir Kumala
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Canada
| | - Krzysztof Fujarewicz
- Bioinformatics Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Dheekollu Jayaraju
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Canada
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Canada
- * E-mail:
| |
Collapse
|
18
|
Palacios DA, Miyake M, Rosser CJ. Radiosensitization in prostate cancer: mechanisms and targets. BMC Urol 2013; 13:4. [PMID: 23351141 PMCID: PMC3583813 DOI: 10.1186/1471-2490-13-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer.
Collapse
Affiliation(s)
- Diego A Palacios
- Section of Urologic Oncology, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | | | | |
Collapse
|
19
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
20
|
Cerbinskaite A, Mukhopadhyay A, Plummer E, Curtin N, Edmondson R. Defective homologous recombination in human cancers. Cancer Treat Rev 2012; 38:89-100. [DOI: 10.1016/j.ctrv.2011.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
|
21
|
Roux R, Zweifel M, Rustin GJS. Biologicals in the upfront treatment of ovarian cancer: focus on bevacizumab and poly (adp-ribose) polymerase inhibitors. Am Soc Clin Oncol Educ Book 2012:340-344. [PMID: 24451760 DOI: 10.14694/edbook_am.2012.32.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biologicals have made a major impact in the management of several cancers, but have hitherto had a negligible impact in ovarian cancer. Fortunately, ovarian cancer has been much more sensitive to cytotoxic chemotherapy than many cancers, so treatments were still available. However, improvements are required as more than 80% of patients who present with advanced ovarian cancer eventually will die as a result of their disease. The antiangiogenic antibody bevacizumab and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib have recently been shown to improve progression-free survival of patients with ovarian cancer with better hazard ratios in certain groups than have been seen previously.
Collapse
Affiliation(s)
- Rene Roux
- From the Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| | - Martin Zweifel
- From the Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| | - Gordon J S Rustin
- From the Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|
22
|
Kopaskova M, Hadjo L, Yankulova B, Jovtchev G, Galova E, Sevcovicova A, Mucaji P, Miadokova E, Bryant P, Chankova S. Extract of Lillium candidum L. can modulate the genotoxicity of the antibiotic zeocin. Molecules 2011; 17:80-97. [PMID: 22269865 PMCID: PMC6268910 DOI: 10.3390/molecules17010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 11/16/2022] Open
Abstract
Lilium candidum L. extract (LE) is well known in folk medicine for the treatment of burns, ulcers, inflammations and for healing wounds. This work aims to clarify whether the genotoxic potential of the radiomimetic antibiotic zeocin (Zeo) could be modulated by LE. Our results indicate that LE exerts no cytotoxic, DNA-damaging and clastogenic activity in in Chlamydomonas reinhardtii, Pisum sativum L. and Hordeum vulgare L. test systems over a broad concentration range. Weak but statistically significant clastogenic effects due to the induction of micronuclei and chromosome aberrations have been observed in H. vulgare L. after treatment with 200 and 300 μg/mL LE. To discriminate protective from adverse action of LE different experimental designs have been used. Our results demonstrate that the treatment with mixtures of LE and Zeo causes an increase in the level of DNA damage, micronuclei and "metaphases with chromatid aberrations" (MwA). Clear evidence has been also obtained indicating that pretreatment with LE given 4 h before the treatment with Zeo accelerates the rejoining kinetics of Zeo-induced DNA damage in P. sativum L. and C. reinhardtii, and can decrease clastogenic effect of Zeo measured as frequencies of micronuclei and MwA in H. vulgare L. Here, we show for the first time that LE can modulate the genotoxic effects of zeocin. The molecular mode of action strongly depends on the experimental design and varies from synergistic to protective effect (adaptive response-AR). Our results also revealed that LE-induced AR to zeocin involves up-regulation of DSB rejoining in C. reinhardtii and P. sativum L. cells.
Collapse
Affiliation(s)
- Marcela Kopaskova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, Bratislava 842 15, Slovakia
| | - Lina Hadjo
- Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia 1113, Bulgaria
| | - Bisera Yankulova
- Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia 1113, Bulgaria
| | - Gabriele Jovtchev
- Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia 1113, Bulgaria
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, Bratislava 842 15, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, Bratislava 842 15, Slovakia
| | - Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 832 32, Slovakia
| | - Eva Miadokova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, Bratislava 842 15, Slovakia
| | - Peter Bryant
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews KY16 9TS, Scotland, UK
| | - Stephka Chankova
- Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia 1113, Bulgaria
| |
Collapse
|
23
|
Mégnin-Chanet F, Bollet MA, Hall J. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Cell Mol Life Sci 2010; 67:3649-62. [PMID: 20725763 PMCID: PMC2955921 DOI: 10.1007/s00018-010-0490-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD(+). The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated.
Collapse
Affiliation(s)
- Frédérique Mégnin-Chanet
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| | - Marc A. Bollet
- Département d’oncologie radiothérapique, Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - Janet Hall
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
24
|
Dong Y, Bey EA, Li LS, Kabbani W, Yan J, Xie XJ, Hsieh JT, Gao J, Boothman DA. Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation. Cancer Res 2010; 70:8088-96. [PMID: 20940411 DOI: 10.1158/0008-5472.can-10-1418] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The clinical experimental agent, β-lapachone (β-lap; Arq 501), can act as a potent radiosensitizer in vitro through an unknown mechanism. In this study, we analyzed the mechanism to determine whether β-lap may warrant clinical evaluation as a radiosensitizer. β-Lap killed prostate cancer cells by NAD(P)H:quinone oxidoreductase 1 (NQO1) metabolic bioactivation, triggering a massive induction of reactive oxygen species, irreversible DNA single-strand breaks (SSB), poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, NAD(+)/ATP depletion, and μ-calpain-induced programmed necrosis. In combination with ionizing radiation (IR), β-lap radiosensitized NQO1(+) prostate cancer cells under conditions where nontoxic doses of either agent alone achieved threshold levels of SSBs required for hyperactivation of PARP-1. Combination therapy significantly elevated SSB level, γ-H2AX foci formation, and poly(ADP-ribosylation) of PARP-1, which were associated with ATP loss and induction of μ-calpain-induced programmed cell death. Radiosensitization by β-lap was blocked by the NQO1 inhibitor dicoumarol or the PARP-1 inhibitor DPQ. In a mouse xenograft model of prostate cancer, β-lap synergized with IR to promote antitumor efficacy. NQO1 levels were elevated in ∼60% of human prostate tumors evaluated relative to adjacent normal tissue, where β-lap might be efficacious alone or in combination with radiation. Our findings offer a rationale for the clinical utilization of β-lap (Arq 501) as a radiosensitizer in prostate cancers that overexpress NQO1, offering a potentially synergistic targeting strategy to exploit PARP-1 hyperactivation.
Collapse
Affiliation(s)
- Ying Dong
- Departments of Pharmacology, Radiation Oncology, Pathology, Biostatistics and Clinical Sciences, and Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chalmers AJ, Lakshman M, Chan N, Bristow RG. Poly(ADP-Ribose) Polymerase Inhibition as a Model for Synthetic Lethality in Developing Radiation Oncology Targets. Semin Radiat Oncol 2010; 20:274-81. [DOI: 10.1016/j.semradonc.2010.06.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol 2010; 22:473-80. [DOI: 10.1097/cco.0b013e32833b5126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Abstract
Drugs that inhibit the enzyme poly(ADP-ribose)polymerase (PARP) are showing considerable promise for the treatment of cancers that have mutations in the BRCA1 or BRCA2 tumor suppressors. This therapeutic approach exploits a synthetic lethal strategy to target the specific DNA repair pathway in these tumors. High-grade ovarian cancers have a generally poor prognosis, and accumulating evidence suggests that mutations in BRCA1 or BRCA2, or silencing of BRCA1 by promoter methylation, may be common in this disease. Here, we consider how the potential benefit of PARP inhibitors might be maximized in ovarian cancer. We suggest that it will be crucial to explore novel therapeutic trial strategies and drug combinations, and incorporate robust biomarkers predictive of response if these drugs are to reach their full potential.
Collapse
|
28
|
Underhill C, Toulmonde M, Bonnefoi H. A review of PARP inhibitors: from bench to bedside. Ann Oncol 2010; 22:268-79. [PMID: 20643861 DOI: 10.1093/annonc/mdq322] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors, with novel and selective mechanisms of action, have moved from the laboratory to the clinic in just the last few years. DESIGN We conducted an extensive review of PARP inhibitors using a Medline search. We also searched abstracts in databases of major international oncology meetings from the last 4 years. RESULTS To understand the mechanisms of action of PARP inhibitors requires a basic understanding of DNA repair mechanisms and the critical role of the PARP enzyme. We briefly review these DNA repair mechanisms, the concept of 'synthetic lethality', and how PARP inhibitors play a role to selectively disrupt DNA repair in cells with absent or dysfunctional BRCA genes. We review the preclinical data highlighting this unique and selective mechanism of action and we discuss early but highly promising clinical data and ongoing studies. CONCLUSION PARP inhibitors show promise as a powerful therapeutic tool, especially in the management of BRCA-associated breast and ovarian cancers but also in tumours where BRCA genes may be dysfunctional. Clinical studies are ongoing and many translational questions remain unanswered that will help clarify how to determine the best way to use PARP inhibitors.
Collapse
Affiliation(s)
- C Underhill
- Department of Medical Oncology, Insitut Bergonié Cancer Center and University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
29
|
Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 2010; 9:1775-87. [PMID: 20530711 DOI: 10.1158/1535-7163.mct-09-1027] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.
Collapse
Affiliation(s)
- Dana A Löser
- Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Linn SC, Van 't Veer LJ. Clinical relevance of the triple-negative breast cancer concept: genetic basis and clinical utility of the concept. Eur J Cancer 2010; 45 Suppl 1:11-26. [PMID: 19775601 DOI: 10.1016/s0959-8049(09)70012-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beginning of microarray technology in the 1990s and the sequencing of the human genome in 2000 paved the way for the seminal paper of the Stanford group on the molecular portraits of human breast tumours in the same year. They described four distinct breast cancer subtypes, which they called 'luminal', 'basal', 'HER2-positive', and 'normal breast-like', based on unique gene expression patterns. This paper caused a paradigm shift. Breast cancer was no longer hormone receptor-positive or -negative, but rather luminal, basal or HER2-positive. Since then, numerous papers have appeared, trying to further characterise these subtypes on the DNA, RNA and protein level. Other groups have focussed on the epidemiology, prognosis and outcome after therapy of breast cancer patients according to these molecular subtypes. A promising prognostic marker within the subgroup of basal-like breast cancer is an up-regulated immune response, which is associated with favourable outcome. In addition, the majority of basal-like breast cancers harbour traits of a DNA damage repair defect. This feature can be exploited by the use of DNA damaging agents, and first exciting clinical results of the combination of carboplatin, gemcitabine and a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor have recently been reported. In this review, the molecular characterisation of triple-negative breast cancer, a proxy for basal-like breast cancer, is described and findings have been put into clinical context.
Collapse
Affiliation(s)
- Sabine C Linn
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Sánchez-Olea R, Calera MR, Degterev A. Molecular pathways involved in cell death after chemically induced DNA damage. EXS 2009; 99:209-30. [PMID: 19157063 DOI: 10.1007/978-3-7643-8336-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA damage is at the center of the genesis, progression and treatment of cancer. We review here the molecular mechanisms of the DNA damage inducing small molecules most commonly used in cancer therapy. Cell cycle control and DNA repair mechanisms are known to be activated after DNA damage. Here, we revise recent discoveries related to the cell cycle control and DNA repair processes and how these findings are being utilized for the more efficient, powerful and selective therapies for cancer treatment.
Collapse
|
32
|
Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 2008; 72:1188-97. [PMID: 18954712 DOI: 10.1016/j.ijrobp.2008.07.031] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 12/17/2022]
Abstract
PURPOSE Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. METHODS AND MATERIALS Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. RESULTS KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in gammaH2AX and Rad51 foci. CONCLUSION The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.
Collapse
Affiliation(s)
- Fiona A Dungey
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | | |
Collapse
|
33
|
Godon C, Cordelières FP, Biard D, Giocanti N, Mégnin-Chanet F, Hall J, Favaudon V. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res 2008; 36:4454-64. [PMID: 18603595 PMCID: PMC2490739 DOI: 10.1093/nar/gkn403] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, isogenic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1KD) or XRCC1 (XRCC1KD). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway. PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1KD and XRCC1KD cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1KD cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity.
Collapse
Affiliation(s)
- Camille Godon
- Institut Curie, Centre de Recherche Inserm, U612, Institut Curie, Bât. 110-112, Centre Universitaire, F-91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 2008; 26:3785-90. [PMID: 18591545 DOI: 10.1200/jco.2008.16.0812] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer cells frequently harbor defects in DNA repair pathways, leading to genomic instability. This can foster tumorigenesis but also provides a weakness in the tumor that can be exploited therapeutically. Tumors with compromised ability to repair double-strand DNA breaks by homologous recombination, including those with defects in BRCA1 and BRCA2, are highly sensitive to blockade of the repair of DNA single-strand breaks via the inhibition of the enzyme poly(ADP) ribose polymerase. This provides the basis for a novel synthetic lethal approach to cancer therapy.
Collapse
Affiliation(s)
- Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
35
|
Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst) 2008; 7:1077-86. [PMID: 18468963 DOI: 10.1016/j.dnarep.2008.03.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the most abundant proteins within mammalian cells. First described more than 45 years ago, PARP-1 has been the subject of many studies and was shown to be involved in multiple aspects of cellular metabolism. Despite many interesting studies that implicate PARP-1 in transcription, chromatin remodelling, apoptosis, DNA repair and several neurological disorders, its precise role is still unclear. This review will discuss the role of PARP-1 in DNA repair and propose a model whereby PARP-1 operates as a modulator of base excision repair capacity.
Collapse
Affiliation(s)
- Bethany C Woodhouse
- Medical Research Council Radiation Oncology & Biology Unit, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
36
|
Chankova SG, Dimova E, Dimitrova M, Bryant PE. Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:409-16. [PMID: 17639449 DOI: 10.1007/s00411-007-0123-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/26/2007] [Indexed: 05/02/2023]
Abstract
This study aimed to test the potential of the radiomimetic chemical zeocin to induce DNA double-strand breaks (DSB) and "adaptive response" (AR) in Chlamydomonas reinhardtii strain CW15 as a model system. The AR was measured as cell survival using a micro-colony assay, and by changes in rejoining of DSB DNA. The level of induced DSB was measured by constant field gel electrophoresis based on incorporation of cells into agarose blocks before cell lysis. This avoids the risk of accidental induction of DSB during the manipulation procedures. Our results showed that zeocin could induce DSB in C. reinhardtii strain CW15 in a linear dose-response fashion up to 100 microg ml(-1) which marked the beginning of a plateau. The level of DSB induced by 100 microg ml(-1) zeocin was similar to that induced by 250 Gy of gamma-ray irradiation. It was also found that, similar to gamma rays, zeocin could induce AR measured as DSB in C. reinhardtii CW15 and this AR involved acceleration of the rate of DSB rejoining, too. To our knowledge, this is the first demonstration that zeocin could induce AR in some low eukaryotes such as C. reinhardtii.
Collapse
Affiliation(s)
- S G Chankova
- Central Laboratory of General Ecology-BAS, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
37
|
Chicheportiche A, Bernardino-Sgherri J, de Massy B, Dutrillaux B. Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J Cell Sci 2007; 120:1733-42. [PMID: 17456548 DOI: 10.1242/jcs.004945] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic DNA double strand breaks (DSBs) are indicated at leptotene by the phosphorylated form of histone H2AX (gamma-H2AX). In contrast to previous studies, we identified on both zygotene and pachytene chromosomes two distinct types of gamma-H2AX foci: multiple small (S) foci located along autosomal synaptonemal complexes (SCs) and larger signals on chromatin loops (L-foci). The S-foci number gradually declined throughout pachytene, in parallel with the repair of DSBs monitored by repair proteins suggesting that S-foci mark DSB repair events. We validated this interpretation by showing the absence of S-foci in Spo11(-/-) spermatocytes. By contrast, the L-foci number was very low through pachytene. Based on the analysis of gamma-H2AX labeling after irradiation of spermatocytes, the formation of DSBs clearly induced L-foci formation. Upon DSB repair, these foci appear to be processed and lead to the above mentioned S-foci. The presence of L-foci in wild-type pachytene and diplotene could therefore reflect delayed or unregulated DSB repair events. Interestingly, their distribution was different in Spo11(+/-) spermatocytes compared with Spo11(+/+) spermatocytes, where DSB repair might be differently regulated as a response to homeostatic control of crossing-over. The presence of these L-foci in Spo11(-/-) spermatocytes raises the interesting possibility of yet uncharacterized alterations in DNA or chromosome structure in Spo11(-/-) cells.
Collapse
Affiliation(s)
- Alexandra Chicheportiche
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Unité Mixte de Recherche-S 566, Commissariat à l'Energie Atomique DSV/IRCM/SEGG/LDRG, F-92265 Fontenay aux Roses, France.
| | | | | | | |
Collapse
|
38
|
Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34:6170-82. [PMID: 17088286 PMCID: PMC1693894 DOI: 10.1093/nar/gkl840] [Citation(s) in RCA: 604] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Huichen Wang
- Center for Neurovirology, Temple University1900 North 12th, Philadelphia, PA 19122, USA
| | - George Iliakis
- To whom correspondence should be addressed. Tel: +49 201 723 4152; Fax: +49 201 723 5966;
| |
Collapse
|
39
|
Tutt ANJ, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM, Jackson SP, Smith GCM, Ashworth A. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:139-48. [PMID: 16869747 DOI: 10.1101/sqb.2005.70.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Individuals harboring germ-line mutations in the BRCA1 or BRCA2 genes are at highly elevated risk of a variety of cancers. Ten years of research has revealed roles for BRCA1 and BRCA2 in a wide variety of cellular processes. However, it seems likely that the function of these proteins in DNA repair is critically important in maintaining genome stability. Despite this increasing knowledge of the defects present in BRCA-deficient cells, BRCA mutation carriers developing cancer are still treated similarly to sporadic cases. Here we describe our efforts, based on understanding the DNA repair defects in BRCAdeficient cells, to define the optimal existing treatment for cancers arising in BRCA mutation carriers and, additionally, the development of novel therapeutic approaches. Finally, we discuss how therapies developed to treat BRCA mutant tumors might be applied to some sporadic cancers sharing similar specific defects in DNA repair.
Collapse
Affiliation(s)
- A N J Tutt
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Noël G, Godon C, Fernet M, Giocanti N, Mégnin-Chanet F, Favaudon V. Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 2006; 5:564-74. [PMID: 16546970 DOI: 10.1158/1535-7163.mct-05-0418] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiosensitization caused by the poly(ADP-ribose) polymerase (PARP) inhibitor 4-amino-1,8-naphthalimide (ANI) was investigated in 10 asynchronously growing rodent (V79, CHO-Xrs6, CHO-K1, PARP-1+/+ 3T3, and PARP-1-/- 3T3) or human (HeLa, MRC5VI, IMR90, M059J, and M059K) cell lines, either repair proficient or defective in DNA-PK (CHO-Xrs6 and M059J) or PARP-1 (PARP-1-/- 3T3). Pulse exposure to ANI (1-hour contact) potentiated radiation response in rodent cells except in PARP-1(-/-) 3T3 fibroblasts. In contrast, ANI did not significantly enhance radiation susceptibility in asynchronously dividing human cells; yet, single-strand break rejoining was lengthened by ca. 7-fold in all but mouse PARP-1-/- 3T3s. Circumstantial evidence suggested that radiosensitization by ANI occurs in rapidly dividing cells only. Experiments using synchronized HeLa cells consistently showed that ANI-induced radiosensitization is specific of the S phase of the cell cycle and involves stalled replication forks. Under these conditions, prolonged contact with ANI ended in the formation of de novo DNA double-strand breaks hours after irradiation, evoking collision with uncontrolled replication forks of DNA lesions whose repair was impaired by inhibition of the PARP catalytic activity. The data suggest that increased response to radiotherapy by PARP inhibitors may be achieved only in rapidly growing tumors with a high S-phase content.
Collapse
Affiliation(s)
- Georges Noël
- INSERM U 612, Institut Curie-Recherche, Laboratoires 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V, Zhao GY, Saberi A, Masutani M, Adachi N, Koyama H, de Murcia G, Takeda S. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 2006; 25:1305-14. [PMID: 16498404 PMCID: PMC1422167 DOI: 10.1038/sj.emboj.7601015] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 01/30/2006] [Indexed: 01/19/2023] Open
Abstract
Parp-1 and Parp-2 are activated by DNA breaks and have been implicated in the repair of DNA single-strand breaks (SSB). Their involvement in double-strand break (DSB) repair mediated by homologous recombination (HR) or nonhomologous end joining (NHEJ) remains unclear. We addressed this question using chicken DT40 cells, which have the advantage of carrying only a PARP-1 gene but not a PARP-2 gene. We found that PARP-1(-/-) DT40 mutants show reduced levels of HR and are sensitive to various DSB-inducing genotoxic agents. Surprisingly, this phenotype was strictly dependent on the presence of Ku, a DSB-binding factor that mediates NHEJ. PARP-1/KU70 double mutants were proficient in the execution of HR and displayed elevated resistance to DSB-inducing drugs. Moreover, we found deletion of Ligase IV, another NHEJ gene, suppressed the camptothecin of PARP-1(-/-) cells. Our results suggest a new critical function for Parp in minimizing the suppressive effects of Ku and the NHEJ pathway on HR.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Donniphat Dejsuphong
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Toru Fukushima
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ciaran Morrison
- Department of Biochemistry and NCBES, National University of Ireland-Galway, Ireland
| | - Eiichiro Sonoda
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Valérie Schreiber
- Département Intégrité du génome de l'UMR7175 du CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Guang Yu Zhao
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Alihossein Saberi
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuko Masutani
- ADP-ribosylation in Oncology Project, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Noritaka Adachi
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan
| | - Hideki Koyama
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan
| | - Gilbert de Murcia
- Département Intégrité du génome de l'UMR7175 du CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Shunichi Takeda
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University; Sakyo-ku, 606-8501 Kyoto, Japan. Tel.: +81 75 753 4410; Fax: +81 75 753 4419; E-mail:
| |
Collapse
|
42
|
Yin H, Glass J. In prostate cancer cells the interaction of C/EBPalpha with Ku70, Ku80, and poly(ADP-ribose) polymerase-1 increases sensitivity to DNA damage. J Biol Chem 2006; 281:11496-505. [PMID: 16490787 DOI: 10.1074/jbc.m511138200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer cell lines were examined for proteins that partnered with the transcription factor C/EBPalpha by use of a pull-down assay with S-tagged C/EBPalpha combined with matrix-assisted laser desorption ionization time-of-flight mass spectroscopy analysis. Ku70, Ku80, and poly(ADP-ribose) polymerase-1 (PARP-1) were identified as proteins that associated with C/EBPalpha. The physical interaction of C/EBPalpha with these partner proteins was further demonstrated by glutathione S-transferase (GST) pull-downs using purified protein expressed in Escherichia coli. The strongest binding was between C/EBPalpha and PARP-1. Immunoprecipitation of C/EBPalpha expressed in prostate cancer cells co-precipitated Ku70, Ku80, and PARP-1. Deletion analysis of C/EBPalpha indicated that the C terminus of C/EBPalpha was essential for the interaction of C/EBPalpha with Ku70, Ku80, and PARP-1. Functional analysis of the interaction between C/EBPalpha and the Ku proteins as well as PARP-1 showed that cells exhibiting these interactions had increased radiation sensitivity and decreased ability to repair double strand DNA breaks. Deficient DNA repair was dependent on the prostate cancer cell line tested, suggesting a complex process. We conclude that the association of C/EBPalpha with Ku proteins and PARP-1 raises the likelihood that C/EBPalpha-expressing prostate cancer cells may be more sensitive to DNA-damaging agents and may be important in the design of new prostate cancer therapies.
Collapse
Affiliation(s)
- Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | |
Collapse
|
43
|
Vidaković M, Poznanović G, Bode J. DNA break repair: refined rules of an already complicated game. Biochem Cell Biol 2005; 83:365-73. [PMID: 15959562 DOI: 10.1139/o05-044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Of the many types of DNA-damage repair, this review concentrates on the aspects of DNA single- and double-strand break repair. Originally considered to represent separate routes based on distinct enzymatic machineries, it has recently been shown that these pathways converge and are interlinked at a number of points. Poly(ADP-ribose) polymerase-1 (PARP-1) is a central player in this complicated game. We present new data and our view on the mechanisms by which PARP-1 is guided to its respective interaction partners to coordinate or participate in repair or apoptosis.Key words: DNA strand break repair (DSBR), non-homologous end joining (NHEJ), nuclear architecture, nuclear matrix, PARP-1.
Collapse
Affiliation(s)
- Melita Vidaković
- Molecular Biology Laboratory, Institute for Biological Research, Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
44
|
Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 2005; 65:4020-30. [PMID: 15899791 DOI: 10.1158/0008-5472.can-04-3055] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biochemical and genetic studies support the view that the majority of DNA double-strand breaks induced in the genome of higher eukaryotes by ionizing radiation are removed by two pathways of nonhomologous end joining (NHEJ) termed D-NHEJ and B-NHEJ. Whereas D-NHEJ depends on the activities of the DNA-dependent protein kinase and DNA ligase IV/XRCC4, components of B-NHEJ have not been identified. Using extract fractionation, we show that the majority of DNA end joining activity in extracts of HeLa cells derives from DNA ligase III. DNA ligase III fractionates through two columns with the maximum in DNA end joining activity and its depletion from the extract causes loss of activity that can be recovered by the addition of purified enzyme. The same fractionation protocols provide evidence for an additional factor strongly enhancing DNA end joining and shifting the product spectrum from circles to multimers. An in vivo plasmid assay shows that DNA ligase IV-deficient mouse embryo fibroblasts retain significant DNA end joining activity that can be reduced by up to 80% by knocking down DNA ligase III using RNA interference. These in vivo and in vitro observations identify DNA ligase III as a candidate component for B-NHEJ and point to additional factors contributing to NHEJ efficiency.
Collapse
Affiliation(s)
- Huichen Wang
- Department of Radiation Oncology, Division of Experimental Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|