1
|
Nichols RA, Ide AD, Morrison CT, Anger AL, Buccilli MJ, Damer CK. Copine C plays a role in adhesion and streaming in Dictyostelium. Cell Adh Migr 2024; 18:1-19. [PMID: 38378453 PMCID: PMC10880500 DOI: 10.1080/19336918.2024.2315629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Copines are a family of calcium-dependent membrane-binding proteins. To study these proteins, anull mutant for cpnC was created in Dictyostelium, which has six copines genes (cpnA-cpnF). During development, cpnC- cells were able to aggregate, but did not form streams. Once aggregated into mounds, they formed large ring structures. cpnC- cells were less adherent to plastic substrates, but more adherent to other cells. These phenotypes correlated with changes in adhesion protein expression with decreased expression of SibA and increased expression of CsaA in developing cpnC- cells. We also measured the expression of RegA, a cAMP phosphodiesterase, and found that cpnC- cells have reduced RegA expression. The reduced RegA expression in cpnC- cells is most likely responsible for the observed phenotypes.
Collapse
Affiliation(s)
- Rodney A. Nichols
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber D. Ide
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Cody T. Morrison
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber L. Anger
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Cynthia K. Damer
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
2
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
3
|
Kong HJ, Kang DH, Ahn TS, Kim KS, Kim TW, Lee SH, Lee DW, Ryu JS, Beak MJ. The Role of CPNE7 (Copine-7) in Colorectal Cancer Prognosis and Metastasis. Int J Mol Sci 2023; 24:16704. [PMID: 38069026 PMCID: PMC10706690 DOI: 10.3390/ijms242316704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world. However, no effective treatment for the disease has yet been found. For this reason, several studies are being carried out on the treatment of CRC. Currently, there is limited understanding of the role of CPNE7 (copine-7) in CRC progression and metastasis. The results of this study show that CPNE7 exerts an oncogenic effect in CRC. First, CPNE7 was shown to be significantly up-regulated in CRC patient tissues and CRC cell lines compared to normal tissues according to IHC staining, qRT-PCR, and western blotting. Next, this study used both systems of siRNA and shRNA to suppress CPNE7 gene expression to check the CPNE7 mechanism in CRC. The suppressed CPNE7 significantly inhibited the growth of CRC cells in in vitro experiments, including migration, invasion, and semisolid agar colony-forming assay. Moreover, the modified expression of CPNE7 led to a decrease in the levels of genes associated with epithelial-mesenchymal transition (EMT). The epithelial genes E-cadherin (CDH1) and Collagen A1 were upregulated, and the levels of mesenchymal genes such as N-cadherin (CDH2), ZEB1, ZEB2, and SNAIL (SNAL1) were downregulated after CPNE7 inhibition. This study suggests that CPNE7 may serve as a potential diagnostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Hye-Jeong Kong
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Dong-Hyun Kang
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Tae-Sung Ahn
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Kwang-Seock Kim
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Tae-Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Soo-Hyeon Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| | - Dong-Woo Lee
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Jae-Sung Ryu
- Department of Medical Life Science, Soonchunhyang University, Asan 31538, Republic of Korea; (H.-J.K.); (K.-S.K.); (T.-W.K.); (D.-W.L.); (J.-S.R.)
| | - Moo-Jun Beak
- Department of Surgery, Soonchunhyang University College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (D.-H.K.); (T.-S.A.); (S.-H.L.)
| |
Collapse
|
4
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
5
|
Xu X, Pots H, Gilsbach BK, Parsons D, Veltman DM, Ramachandra SG, Li H, Kortholt A, Jin T. C2GAP2 is a common regulator of Ras signaling for chemotaxis, phagocytosis, and macropinocytosis. Front Immunol 2022; 13:1075386. [PMID: 36524124 PMCID: PMC9745196 DOI: 10.3389/fimmu.2022.1075386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Phagocytosis, macropinocytosis, and G protein coupled receptor-mediated chemotaxis are Ras-regulated and actin-driven processes. The common regulator for Ras activity in these three processes remains unknown. Here, we show that C2GAP2, a Ras GTPase activating protein, highly expressed in the vegetative growth state in model organism Dictyostelium. C2GAP2 localizes at the leading edge of chemotaxing cells, phagosomes during phagocytosis, and macropinosomes during micropinocytosis. c2gapB- cells lacking C2GAP2 displayed increased Ras activation upon folic acid stimulation and subsequent impaired chemotaxis in the folic acid gradient. In addition, c2gaB- cells have elevated phagocytosis and macropinocytosis, which subsequently results in faster cell growth. C2GAP2 binds multiple phospholipids on the plasma membrane and the membrane recruitment of C2GAP2 requires calcium. Taken together, we show a shared negative regulator of Ras signaling that mediates Ras signaling for chemotaxis, phagocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States,*Correspondence: Xuehua Xu,
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Bernd K. Gilsbach
- Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dustin Parsons
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Douwe M. Veltman
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Sharmila G. Ramachandra
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Haoran Li
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
6
|
Yang J, Wang Y, Ge R, Jia X, Ge C, Cen Y, Pan D. Overexpression of Copines‐1 is associated with clinicopathological parameters and poor outcome in gastric cancer. J Clin Lab Anal 2022; 36. [DOI: 10.1002/jcla.24744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jun Yang
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Yingjing Wang
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Rong Ge
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Xiupeng Jia
- Department of Histopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Congshan Ge
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Youqing Cen
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
| | - Deng Pan
- Department of Cytopathology Ningbo Clinical Pathology Diagnosis Center Ningbo China
- Department of Pathology Ningbo Medical Center Lihuili Hospital Ningbo China
| |
Collapse
|
7
|
Goel M, Aponte AM, Wistow G, Badea TC. Molecular studies into cell biological role of Copine-4 in Retinal Ganglion Cells. PLoS One 2021; 16:e0255860. [PMID: 34847148 PMCID: PMC8631636 DOI: 10.1371/journal.pone.0255860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms underlying morphological diversity in retinal cell types are poorly understood. We have previously reported that several members of the Copine family of Ca-dependent membrane adaptors are expressed in Retinal Ganglion Cells and transcriptionally regulated by Brn3 transcription factors. Several Copines are enriched in the retina and their over-expression leads to morphological changes -formation of elongated processes-, reminiscent of neurites, in HEK293 cells. However, the role of Copines in the retina is largely unknown. We now investigate Cpne4, a Copine whose expression is restricted to Retinal Ganglion Cells. Over-expression of Cpne4 in RGCs in vivo led to formation of large varicosities on the dendrites but did not otherwise visibly affect dendrite or axon formation. Protein interactions studies using yeast two hybrid analysis from whole retina cDNA revealed two Cpne4 interacting proteins-Host Cell Factor 1 and Morn2. Mass Spectrometry analysis of retina lysate pulled down using Cpne4 or its vonWillebrand A domain showed 207 interacting proteins. A Gene Ontology analysis of the discovered proteins suggests that Cpne4 is involved in several metabolic and signaling pathways in the retina.
Collapse
Affiliation(s)
- Manvi Goel
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Angel M. Aponte
- Proteomics Core, NHLBI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tudor C. Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
- Faculty of Medicine, Research and Development Institute, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
8
|
Tang H, Pang P, Qin Z, Zhao Z, Wu Q, Song S, Li F. The CPNE Family and Their Role in Cancers. Front Genet 2021; 12:689097. [PMID: 34367247 PMCID: PMC8345009 DOI: 10.3389/fgene.2021.689097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite significant advances in cancer research and treatment, the overall prognosis of lung cancer patients remains poor. Therefore, the identification for novel therapeutic targets is critical for the diagnosis and treatment of lung cancer. CPNEs (copines) are a family of membrane-bound proteins that are highly conserved, soluble, ubiquitous, calcium dependent in a variety of eukaryotes. Emerging evidences have also indicated CPNE family members are involved in cancer development and progression as well. However, the expression patterns and clinical roles in cancer have not yet been well understood. In this review, we summarize recent advances concerning CPNE family members and provide insights into new potential mechanism involved in cancer development.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pei Pang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu Qin
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ide AD, Wight EM, Damer CK. Phosphatidylserine exposure promotes increased adhesion in Dictyostelium Copine A mutants. PLoS One 2021; 16:e0250710. [PMID: 34043641 PMCID: PMC8158977 DOI: 10.1371/journal.pone.0250710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
The phospholipid phosphatidylserine (PS) is a key signaling molecule and binding partner for many intracellular proteins. PS is normally found on the inner surface of the cell membrane, but PS can be flipped to the outer surface in a process called PS exposure. PS exposure is important in many cell functions, yet the mechanisms that control PS exposure have not been extensively studied. Copines (Cpn), found in most eukaryotic organisms, make up a family of calcium-dependent phospholipid binding proteins. In Dictyostelium, which has six copine genes, CpnA strongly binds to PS and translocates from the cytosol to the plasma membrane in response to a rise in calcium. Cells lacking the cpnA gene (cpnA-) have defects in adhesion, chemotaxis, membrane trafficking, and cytokinesis. In this study we used both flow cytometry and fluorescent microscopy to show that cpnA- cells have increased adhesion to beads and bacteria and that the increased adhesion was not due to changes in the actin cytoskeleton or cell surface proteins. We found that cpnA- cells bound higher amounts of Annexin V, a PS binding protein, than parental cells and showed that unlabeled Annexin V reduced the increased cell adhesion property of cpnA- cells. We also found that cpnA- cells were more sensitive to Polybia-MP1, which binds to external PS and induces cell lysis. Overall, this suggests that cpnA- cells have increased PS exposure and this property contributes to the increased cell adhesion of cpnA- cells. We conclude that CpnA has a role in the regulation of plasma membrane lipid composition and may act as a negative regulator of PS exposure.
Collapse
Affiliation(s)
- Amber D. Ide
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Elise M. Wight
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Cynthia K. Damer
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| |
Collapse
|
10
|
Wang Q, Jiang M, Isupov MN, Chen Y, Littlechild JA, Sun L, Wu X, Wang Q, Yang W, Chen L, Li Q, Wu Y. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1215-1232. [PMID: 32369638 DOI: 10.1111/tpj.14797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+ -binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+ . These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.
Collapse
Affiliation(s)
- Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Michail N Isupov
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jennifer A Littlechild
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Qi Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| |
Collapse
|
11
|
Wight EM, Ide AD, Damer CK. Copine A regulates the size and exocytosis of contractile vacuoles and postlysosomes in Dictyostelium. FEBS Open Bio 2020; 10:979-994. [PMID: 32351039 PMCID: PMC7262877 DOI: 10.1002/2211-5463.12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/12/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
Copines are a family of cytosolic proteins that associate with membranes in a calcium‐dependent manner and are found in many eukaryotic organisms. Dictyostelium discoideum has six copine genes (cpnA‐cpnF), and cells lacking cpnA(cpnA−) have defects in cytokinesis, chemotaxis, adhesion, and development. CpnA has also been shown to associate with the plasma membrane, contractile vacuoles (CV), and organelles of the endolysosomal pathway. Here, we use cpnA− cells to investigate the role of CpnA in CV function and endocytosis. When placed in water, cpnA− cells made abnormally large CVs that took longer to expel. Visualization of CVs with the marker protein GFP‐dajumin indicated that cpnA− cells had fewer CVs that sometimes refilled before complete emptying. In endocytosis assays, cpnA− cells took up small fluorescent beads by macropinocytosis at rates similar to parental cells. However, cpnA− cells reached a plateau sooner than parental cells and had less fluorescence at later time points. p80 antibody labeling of postlysosomes (PL) indicated that there were fewer and smaller PLs in cpnA− cells. In dextran pulse‐chase experiments, the number of PLs peaked earlier in cpnA− cells, and the PLs did not become as large and disappeared sooner as compared to parental cells. PLs in cpnA− cells were also shown to have more actin coats, suggesting CpnA may play a role in actin filament disassembly on PL membranes. Overall, these results indicate that CpnA is involved in the regulation of CV size and expulsion, and the maturation, size, and exocytosis of PLs.
Collapse
Affiliation(s)
- Elise M Wight
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber D Ide
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| | - Cynthia K Damer
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
12
|
Copine A Interacts with Actin Filaments and Plays a Role in Chemotaxis and Adhesion. Cells 2019; 8:cells8070758. [PMID: 31330887 PMCID: PMC6679068 DOI: 10.3390/cells8070758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022] Open
Abstract
Copines make up a family of calcium-dependent, phospholipid-binding proteins found in numerous eukaryotic organisms. Copine proteins consist of two C2 domains at the N-terminus followed by an A domain similar to the von Willebrand A domain found in integrins. We are studying copine protein function in the model organism, Dictyostelium discoideum, which has six copine genes, cpnA-cpnF. Previous research showed that cells lacking the cpnA gene exhibited a cytokinesis defect, a contractile vacuole defect, and developmental defects. To provide insight into the role of CpnA in these cellular processes, we used column chromatography and immunoprecipitation to isolate proteins that bind to CpnA. These proteins were identified by mass spectrometry. One of the proteins identified was actin. Purified CpnA was shown to bind to actin filaments in a calcium-dependent manner in vitro. cpnA− cells exhibited defects in three actin-based processes: chemotaxis, cell polarity, and adhesion. These results suggest that CpnA plays a role in chemotaxis and adhesion and may do so by interacting with actin filaments.
Collapse
|
13
|
Burk K, Ramachandran B, Ahmed S, Hurtado-Zavala JI, Awasthi A, Benito E, Faram R, Ahmad H, Swaminathan A, McIlhinney J, Fischer A, Perestenko P, Dean C. Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6. Cereb Cortex 2019; 28:1087-1104. [PMID: 28158493 DOI: 10.1093/cercor/bhx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 levels affected miniature excitatory post-synaptic current (mEPSC) kinetics and evoked synaptic vesicle recycling in contacting boutons, and post-synaptic knockdown of copine-6 reduced hippocampal LTP and increased LTD. Mechanistically, copine-6 promotes BDNF-TrkB signaling and recycling of activated TrkB receptors back to the plasma membrane surface, and is necessary for BDNF-induced increases in mushroom spines in hippocampal neurons. Thus copine-6 regulates BDNF-dependent changes in dendritic spine morphology to promote synaptic plasticity.
Collapse
Affiliation(s)
- Katja Burk
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Binu Ramachandran
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Saheeb Ahmed
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany.,Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany
| | - Joaquin I Hurtado-Zavala
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Ankit Awasthi
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Eva Benito
- German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Str. 3A, 37075 Göttingen , Germany
| | - Ruth Faram
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH , UK
| | - Hamid Ahmad
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany.,Johannes Gutenberg University Mainz, Saarstrasse 21, 55122 Mainz, Germany
| | - Aarti Swaminathan
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Jeffrey McIlhinney
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH , UK
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Str. 3A, 37075 Göttingen , Germany
| | - Pavel Perestenko
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH , UK
| | - Camin Dean
- Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Ilacqua AN, Price JE, Graham BN, Buccilli MJ, McKellar DR, Damer CK. Cyclic AMP signaling in Dictyostelium promotes the translocation of the copine family of calcium-binding proteins to the plasma membrane. BMC Cell Biol 2018; 19:13. [PMID: 30012091 PMCID: PMC6048903 DOI: 10.1186/s12860-018-0160-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Copines are calcium-dependent phospholipid-binding proteins found in many eukaryotic organisms and are thought to be involved in signaling pathways that regulate a wide variety of cellular processes. Copines are characterized by having two C2 domains at the N-terminus accompanied by an A domain at the C-terminus. Six copine genes have been identified in the Dictyostelium genome, cpnA - cpnF. RESULTS Independent cell lines expressing CpnA, CpnB, CpnC, CpnE, or CpnF tagged with green fluorescent protein (GFP) were created as tools to study copine protein membrane-binding and localization. In general, the GFP-tagged copine proteins appeared to localize to the cytoplasm in live cells. GFP-tagged CpnB, CpnC, and CpnF were also found in the nucleus. When cells were fixed or when live cells were treated with calcium ionophore, the GFP-tagged copine proteins were found associated with the plasma membrane and vesicular organelles. When starved Dictyostelium cells were stimulated with cAMP, which causes a transitory increase in calcium concentration, all of the copines translocated to the plasma membrane, but with varying magnitudes and on and off times, suggesting each of the copines has distinct calcium-sensitivities and/or membrane-binding properties. In vitro membrane binding assays showed that all of the GFP-tagged copines pelleted with cellular membranes in the presence of calcium; yet, each copine displayed distinct calcium-independent membrane-binding in the absence of calcium. A lipid overlay assay with purified GFP-tagged copine proteins was used to screen for specific phospholipid-binding targets. Similar to other proteins that contain C2 domains, GFP-tagged copines bound to a variety of acidic phospholipids. CpnA, CpnB, and CpnE bound strongly to PS, PI(4)P, and PI(4,5)P2, while CpnC and CpnF bound strongly to PI(4)P. CONCLUSIONS Our studies show that the Dictyostelium copines are soluble cytoplasmic and nuclear proteins that have the ability to bind intracellular membranes. Moreover, copines display different membrane-binding properties suggesting they play distinct roles in the cell. The transient translocation of copines to the plasma membrane in response to cAMP suggests copines may play a specific role in chemotaxis signaling.
Collapse
Affiliation(s)
- April N. Ilacqua
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Janet E. Price
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Bria N. Graham
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Matthew J. Buccilli
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Dexter R. McKellar
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Cynthia K. Damer
- Biology Department, Central Michigan University, Mount Pleasant, MI 48859 USA
| |
Collapse
|
15
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
16
|
Zou B, Hong X, Ding Y, Wang X, Liu H, Hua J. Identification and analysis of copine/BONZAI proteins among evolutionarily diverse plant species. Genome 2016; 59:565-73. [PMID: 27484220 DOI: 10.1139/gen-2016-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copines are evolutionarily conserved calcium-dependent membrane-binding proteins with potentially critical biological functions. In plants, the function of these proteins has not been analyzed except for in Arabidopsis thaliana where they play critical roles in development and disease resistance. To facilitate functional studies of copine proteins in crop plants, genome-wide identification, curation, and phylogeny analysis of copines in 16 selected plant species were conducted. All the identified 32 plant copines have conserved features of the two C2 domains (C2A and C2B) and the von Willebrand factor A (vWA) domain. Different from animal and protozoa copines, plant copines have glycine at the second residue potentially acquiring a unique protein myristoylation modification. Phylogenetic analysis suggests that copine was present as one copy when evolving from green algae to basal flowering plants, and duplicated before the divergence of monocots and dicots. In addition, gene expression and protein localization study of rice copines suggests both conserved and different properties of copines in dicots and monocots. This study will contribute to uncovering the role of copine genes in different plant species.
Collapse
Affiliation(s)
- Baohong Zou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuexue Hong
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Ding
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - He Liu
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Hua
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.,b Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun 2016; 7:11613. [PMID: 27194588 PMCID: PMC4874034 DOI: 10.1038/ncomms11613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show that Copine-6 is recruited from the cytosol of dendrites to postsynaptic spine membranes by calcium transients that precede LTP. Cpne6 knockout mice are deficient in hippocampal LTP, learning and memory. Hippocampal neurons from Cpne6 knockouts lack spine structural plasticity as do wild-type neurons that express a Copine-6 calcium mutant. The function of Copine-6 is based on its binding, activating and recruiting the Rho GTPase Rac1 to cell membranes. Consistent with this function, the LTP deficit of Cpne6 knockout mice is rescued by the actin stabilizer jasplakinolide. These data show that Copine-6 links activity-triggered calcium signals to spine structural plasticity necessary for learning and memory.
Collapse
|
18
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
19
|
Increased expression of copine VI in patients with refractory epilepsy and a rat model. J Neurol Sci 2015; 360:30-6. [PMID: 26723968 DOI: 10.1016/j.jns.2015.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
Copine VI (CPNE6) is a member of copines family, a calcium-dependent phospholipids-binding protein group found in many diverse eukaryotic organisms. Although earlier studies have shown that CPNE6 is almost exclusively expressed in brain, the exact biological functions remain unclear. The purpose of this study is to explore the relationship between epilepsy and CPNE6 expression. In present study, we investigated the expression pattern and distribution of CPNE6 in patients with refractory epilepsy and in a chronic pilocarpine-induced epileptic rat model by quantitative real-time PCR, Western blot and immunofluorescence. The results showed that the expression of CPNE6 increased remarkably in epileptic patients and in experimental epileptic rats. Double immunofluorescence labeling studies have revealed that CPNE6 protein is mainly expressed in neurons, demonstrated by co-localization with the dendritic marker, MAP2. Our results are the first to indicate that the abnormal expression of the CPNE6 in epileptic brain tissue may play an important role in epilepsy, especially refractory epilepsy.
Collapse
|
20
|
Perestenko P, Watanabe M, Beusnard-Bee T, Guna P, McIlhinney J. The second C2-domain of copine-2, copine-6 and copine-7 is responsible for their calcium-dependent membrane association. FEBS J 2015; 282:3722-36. [DOI: 10.1111/febs.13370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/13/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Pavel Perestenko
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford; UK
| | - Masanori Watanabe
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford; UK
| | - Tobias Beusnard-Bee
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford; UK
| | - Prakash Guna
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford; UK
| | - Jeffrey McIlhinney
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford; UK
| |
Collapse
|
21
|
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 2015; 57:123-32. [DOI: 10.1016/j.ceca.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
|
22
|
Linkner J, Witte G, Zhao H, Junemann A, Nordholz B, Runge-Wollmann P, Lappalainen P, Faix J. The inverse BAR-domain protein IBARa drives membrane remodelling to control osmoregulation, phagocytosis and cytokinesis. J Cell Sci 2014; 127:1279-92. [DOI: 10.1242/jcs.140756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we analyzed the single I-BAR family member IBARa from D. discoideum. The X-ray structure of the N-terminal I-BAR domain solved at 2.2 Å resolution revealed an all-α helical structure that self-associates into a 165 Å zeppelin-shaped antiparallel dimer. The structural data are consistent with its shape in solution obtained by small-angle X-ray-scattering. Cosedimentation, fluorescence-anisotropy as well as fluorescence and electron microscopy revealed the I-BAR domain to bind preferentially to phosphoinositide-containing vesicles and drive the formation of negatively curved tubules. Immunofluorescence labelling further showed accumulation of endogenous IBARa at the tips of filopodia, the rim of constricting phagocytic cups, in foci connecting dividing cells during the final stage of cytokinesis, and most prominently at the osmoregulatory contractile vacuole (CV). Consistently, IBARa-null mutants displayed defects in CV formation and discharge, growth, phagocytosis and mitotic cell division, whereas filopodia formation was not compromised. Of note, IBARa-null mutants were also strongly impaired in cell spreading. Together, these data suggest IBARa to constitute an important regulator of numerous cellular processes intimately linked with the dynamic rearrangement of cellular membranes.
Collapse
|
23
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Abstract
Autophagy is a membrane trafficking pathway responsible for the breakdown of unwanted intracellular materials and crucial for the cell healthiness and survival. In the autophagic flux, various dynamic membrane rearrangements occurs starting with the elongation of the phagophore and its closure to build an autophagosome and ending with its fusion with late endosomes and lysosomes to form an autolysosome. Although Ca2+ is a well established regulator of membrane fusion events, little is known about its role in these processes during autophagy. Recent studies, based on proteomic analyses of lysosomal membranes, have provided new insights into this field of study. Thus, the levels on lysosomal membranes of annexin A1, annexin A5 and copine 1, three proteins that bind to phospholipid membranes in a Ca2+-dependent manner, increased under nutrient deprivation, a condition that promotes autophagic degradation. In addition, two different studies showed that annexin A5 and annexin A1 are involved in autophagosome maturation. Here, we discuss the molecular mechanisms by which the fusion of autophagosomes with endosomes and lysosomes could be regulated by these three proteins and Ca2+.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular; Centro de Investigación Príncipe; Valencia, Spain
| | | |
Collapse
|
25
|
Flegel KA, Pineda JM, Smith TS, Laszczyk AM, Price JM, Karasiewicz KM, Damer CK. Copine A is expressed in prestalk cells and regulates slug phototaxis and thermotaxis in developing Dictyostelium. Dev Growth Differ 2011; 53:948-59. [PMID: 21950343 DOI: 10.1111/j.1440-169x.2011.01300.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.
Collapse
Affiliation(s)
- Kerry A Flegel
- Biology Department, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Perestenko PV, Pooler AM, Noorbakhshnia M, Gray A, Bauccio C, Jeffrey McIlhinney RA. Copines-1, -2, -3, -6 and -7 show different calcium-dependent intracellular membrane translocation and targeting. FEBS J 2010; 277:5174-89. [DOI: 10.1111/j.1742-4658.2010.07935.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 2010; 11:606. [PMID: 20979643 PMCID: PMC3091748 DOI: 10.1186/1471-2164-11-606] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 10/27/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Jatropha curcas L. is promoted as an important non-edible biodiesel crop worldwide. Jatropha oil, which is a triacylglycerol, can be directly blended with petro-diesel or transesterified with methanol and used as biodiesel. Genetic improvement in jatropha is needed to increase the seed yield, oil content, drought and pest resistance, and to modify oil composition so that it becomes a technically and economically preferred source for biodiesel production. However, genetic improvement efforts in jatropha could not take advantage of genetic engineering methods due to lack of cloned genes from this species. To overcome this hurdle, the current gene discovery project was initiated with an objective of isolating as many functional genes as possible from J. curcas by large scale sequencing of expressed sequence tags (ESTs). RESULTS A normalized and full-length enriched cDNA library was constructed from developing seeds of J. curcas. The cDNA library contained about 1 × 10(6) clones and average insert size of the clones was 2.1 kb. Totally 12,084 ESTs were sequenced to average high quality read length of 576 bp. Contig analysis revealed 2258 contigs and 4751 singletons. Contig size ranged from 2-23 and there were 7333 ESTs in the contigs. This resulted in 7009 unigenes which were annotated by BLASTX. It showed 3982 unigenes with significant similarity to known genes and 2836 unigenes with significant similarity to genes of unknown, hypothetical and putative proteins. The remaining 191 unigenes which did not show similarity with any genes in the public database may encode for unique genes. Functional classification revealed unigenes related to broad range of cellular, molecular and biological functions. Among the 7009 unigenes, 6233 unigenes were identified to be potential full-length genes. CONCLUSIONS The high quality normalized cDNA library was constructed from developing seeds of J. curcas for the first time and 7009 unigenes coding for diverse biological functions including oil biosynthesis were identified. These genes will serve as invaluable genetic resource for crop improvement in jatropha to make it an ideal and profitable crop for biodiesel production.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu, 603 203, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li H, Deng Y, Wu T, Subramanian S, Yu O. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. PLANT PHYSIOLOGY 2010; 153:1759-70. [PMID: 20508137 PMCID: PMC2923892 DOI: 10.1104/pp.110.156950] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/20/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant growth and development. Previously, we identified a group of conserved and novel miRNA families from soybean (Glycine max) roots. Many of these miRNAs are specifically induced during soybean-Bradyrhizobium japonicum interactions. Here, we examined the gene expression levels of six families of novel miRNAs and investigated their functions in nodule development. We used northern-blot analyses to study the tissue specificity and time course of miRNA expression. Transgenic expression of miR482, miR1512, and miR1515 led to significant increases of nodule numbers, while root length, lateral root density, and the number of nodule primordia were not altered in all tested miRNA lines. We also found differential expression of these miRNAs in nonnodulating and supernodulating soybean mutants. The expression levels of 22 predicted target genes regulated by six novel miRNAs were studied by real-time polymerase chain reaction and quantitative real-time polymerase chain reaction. These results suggested that miRNAs play important roles in soybean nodule development.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Yu
- Shanghai JiaoTong University, School of Agriculture and Biology, Shanghai 200240, China (H.L., T.W.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.D., S.S., O.Y.); Plant Science Department, South Dakota State University, Brookings, South Dakota 57007 (S.S.)
| |
Collapse
|
29
|
Li Y, Gou M, Sun Q, Hua J. Requirement of calcium binding, myristoylation, and protein-protein interaction for the Copine BON1 function in Arabidopsis. J Biol Chem 2010; 285:29884-91. [PMID: 20634289 DOI: 10.1074/jbc.m109.066100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Copines are highly conserved proteins with lipid-binding activities found in animals, plants, and protists. They contain two calcium-dependent phospholipid binding C2 domains at the amino terminus and a VWA domain at the carboxyl terminus. The biological roles of most copines are not understood and the biochemical properties required for their functions are largely unknown. The Arabidopsis copine gene BON1/CPN1 is a negative regulator of cell death and defense responses. Here we probed the potential biochemical activities of BON1 through mutagenic studies. We found that mutations of aspartates in the C2 domains did not alter plasma membrane localization but compromised BON1 activity. Mutation at putative myristoylation residue glycine 2 altered plasma membrane localization of BON1 and rendered BON1 inactive. Mass spectrometry analysis of BON1 further suggests that the N-peptide of BON1 is modified. Furthermore, mutations that affect the interaction between BON1 and its functional partner BAP1 abolished BON1 function. This analysis reveals an unanticipated regulation of copine protein localization and function by calcium and lipid modification and suggests an important role in protein-protein interaction for the VWA domain of copines.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
30
|
Smith TS, Pineda JM, Donaghy AC, Damer CK. Copine A plays a role in the differentiation of stalk cells and the initiation of culmination in Dictyostelium development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:59. [PMID: 20525180 PMCID: PMC2890595 DOI: 10.1186/1471-213x-10-59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/02/2010] [Indexed: 12/23/2022]
Abstract
Background Copines are calcium-dependent phospholipid-binding proteins found in diverse eukaryotic organisms. We are studying the function of copines in Dictyostelium discoideum, a single-celled amoeba that undergoes cell differentiation and morphogenesis to form multicellular fruiting bodies when placed in starvation conditions. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to complete the developmental cycle, arresting at the slug stage. The aim of this study is to further characterize the developmental defect of the cpnA- cells. Results Time-lapse imaging revealed that cpnA- cells exhibited delayed aggregation and made large mounds that formed one large slug as compared to the smaller slugs of the wild-type cells. While the prespore cell patterning appeared to be normal within the cpnA- slugs, the prestalk cell patterning was different from wild-type. When cpnA- cells were mixed with a small percentage of wild-type cells, chimeric fruiting bodies with short stalks formed. When a small percentage of cpnA- cells was mixed with wild-type cells, the cpnA- cells labeled with GFP were found located throughout the chimeric slug and in both the stalk and sporehead of the fruiting bodies. However, there appeared to be a small bias towards cpnA- cells becoming spore cells. When cpnA- cells were developed in buffer containing EGTA, they were also able to differentiate into either stalk or spore cells to form fruiting bodies with short stalks. Conclusions Our results indicate that CpnA is involved in the regulation of aggregation, slug size, and culmination during Dictyostelium development. More specifically, CpnA appears to be involved in the function and differentiation of prestalk cells and plays a role in a calcium-regulated signaling pathway critical to triggering the initiation of culmination.
Collapse
Affiliation(s)
- Tasha S Smith
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | | | | | | |
Collapse
|
31
|
Phospholipid-binding protein EhC2A mediates calcium-dependent translocation of transcription factor URE3-BP to the plasma membrane of Entamoeba histolytica. EUKARYOTIC CELL 2009; 9:695-704. [PMID: 20023071 DOI: 10.1128/ec.00346-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Entamoeba histolytica upstream regulatory element 3-binding protein (URE3-BP) is a transcription factor that binds DNA in a Ca(2+)-inhibitable manner. The protein is located in both the nucleus and the cytoplasm but has also been found to be enriched in the plasma membrane of amebic trophozoites. We investigated the reason for the unusual localization of URE3-BP at the amebic plasma membrane. Here we identify and characterize a 22-kDa Ca(2+)-dependent binding partner of URE3-BP, EhC2A, a novel member of the C2-domain superfamily. Immunoprecipitations of URE3-BP and EhC2A showed that the proteins interact and that such interaction was enhanced in the presence of Ca(2+). Recombinant and native EhC2A bound phospholipid liposomes in a Ca(2+)-dependent manner, with half-maximal binding occurring at 3.4 muM free Ca(2+). A direct interaction between EhC2A and URE3-BP was demonstrated by the ability of recombinant EhC2A to recruit recombinant URE3-BP to phospholipid liposomes in a Ca(2+)-dependent manner. URE3-BP and EhC2A were observed to translocate to the amebic plasma membrane upon an increase in the intracellular Ca(2+) concentration of trophozoites, as revealed by subcellular fractionation and immunofluorescent staining. Short hairpin RNA-mediated knockdown of EhC2A protein expression significantly modulated the mRNA levels of URE3-BP-regulated transcripts. Based on these results, we propose a model for EhC2A-mediated regulation of the transcriptional activities of URE3-BP via Ca(2+)-dependent anchoring of the transcription factor to the amebic plasma membrane.
Collapse
|
32
|
Lee TF, McNellis TW. Evidence that the BONZAI1/COPINE1 protein is a calcium- and pathogen-responsive defense suppressor. PLANT MOLECULAR BIOLOGY 2009; 69:155-166. [PMID: 18855102 DOI: 10.1007/s11103-008-9413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/29/2008] [Indexed: 05/26/2023]
Abstract
Copines are calcium-responsive, phospholipid-binding proteins involved in cellular signaling. The Arabidopsis BONZAI1/COPINE1 (BON1/CPN1) gene is a suppressor of defense responses controlled by the disease resistance (R) gene homolog SNC1. The BON1/CPN1 null mutant cpn1-1 has a recessive, temperature- and humidity-dependent, lesion mimic phenotype that includes activation of Pathogenesis-Related (PR) gene expression. Here, we demonstrated that the accumulation of BON1/CPN1 protein in wild-type plants was up-regulated by bacterial pathogen inoculation and by the activation of defense signaling responses controlled by two R genes, SNC1 and RPS2. Interestingly, however, over-accumulation of BON1/CPN1 in two BON1/CPN1 promoter T-DNA insertion mutants did not affect resistance to a bacterial pathogen. Promoter deletion analysis identified a 280 bp segment of the BON1/CPN1 promoter as being required for pathogen-induced gene expression; the same promoter region was also required for calcium ionophore-induced gene expression. Leaf infiltration with calcium ionophore triggered high-level PR gene expression specifically in cpn1-1 plants grown under permissive conditions, while co-infiltration of the calcium chelator EGTA attenuated this effect. These results explain the conditional nature of the cpn1-1 phenotype and are consistent with BON1/CPN1 being a calcium- and pathogen-responsive plant defense suppressor.
Collapse
Affiliation(s)
- Tzuu-Fen Lee
- 211 Buckhout Laboratory, Plant Pathology Department, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
33
|
Kirsten JH, Xiong Y, Davis CT, Singleton CK. Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 2008; 9:71. [PMID: 19108721 PMCID: PMC2653498 DOI: 10.1186/1471-2121-9-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. RESULTS Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. CONCLUSION Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that is important for coupling ammonia levels to the slug versus culmination choice, but rather a sensor and/or signaling function of these proteins that is important.
Collapse
Affiliation(s)
- Janet H Kirsten
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Carter T Davis
- LSU School of Medicine – New Orleans, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
34
|
Zhang Y, Gao Q, Duan S, He Y, Sun X, Jiang R, Duan Y, Zhong X, Ge J. Upregulation of Copine1 in trabecular meshwork cells of POAG patients: a membrane proteomics approach. Mol Vis 2008; 14:1028-36. [PMID: 18523666 PMCID: PMC2408776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/22/2008] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, and its pathogenesis is still unknown. The purpose of this study was to determine molecular changes in membrane proteins in trabecular meshwork (TM) cells from POAG patients compared to those of age-matched normal controls. METHODS Two-dimensional (2-D) gel electrophoresis profiles of membrane extracts from normal and glaucomatous TM cells were compared. The desired spots were identified after trypsin digestion and mass spectrometric analysis. Based on the results, a calcium-dependant membrane-binding protein, copine1, was further approached for a possible role in glaucomatous TM cells. The intracellular calcium concentration ([Ca(2+)]i) of TM cells was increased by incubating with calcium ionophore, A23187. Relative quantification real-time polymerase chain reaction (PCR) and western blot analysis measured copine1 expression and localization both in untreated and A23187-treated TM cells. RESULTS Real-time PCR and western blot analysis confirmed that copine1 mRNA and protein expression were upregulated in glaucomatous TM cells when compared to normal ones. The cell distribution studies further showed that copine1 existed both in the membrane and cytoplasm fractions of glaucomatous TM cells but existed exclusively in cytoplasm fractions of their normal counterparts. More importantly, an influx of Ca(2+) markedly promoted the translocation of copine1 from the cytoplasm to membranes in glaucomatous TM cells. CONCLUSIONS Copine1 is upregulated in plasma membranes of TM cells in individuals with POAG, which may be partly explained by its Ca(2+)-dependent translocation from the cytoplasm to the membranes. Investigation of the role and functions of copine1 in TM cells should offer new insight into the abnormal intracellular Ca(2+)-signaling pathway in glaucomatous TM and help to clarify the molecular mechanism of POAG.
Collapse
|
35
|
Damer CK, Bayeva M, Kim PS, Ho LK, Eberhardt ES, Socec CI, Lee JS, Bruce EA, Goldman-Yassen AE, Naliboff LC. Copine A is required for cytokinesis, contractile vacuole function, and development in Dictyostelium. EUKARYOTIC CELL 2007; 6:430-42. [PMID: 17259548 PMCID: PMC1828924 DOI: 10.1128/ec.00322-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copines make up a family of soluble, calcium-dependent, membrane binding proteins found in a variety of eukaryotic organisms. In an earlier study, we identified six copine genes in the Dictyostelium discoideum genome and focused our studies on cpnA. Our previous localization studies of green fluorescent protein-tagged CpnA in Dictyostelium suggested that CpnA may have roles in contractile vacuole function, endolysosomal trafficking, and development. To test these hypotheses, we created a cpnA- knockout strain, and here we report the initial characterization of the mutant phenotype. The cpnA- cells exhibited normal growth rates and a slight cytokinesis defect. When placed in starvation conditions, cpnA- cells appeared to aggregate into mounds and form fingers with normal timing; however, they were delayed or arrested in the finger stage. When placed in water, cpnA- cells formed unusually large contractile vacuoles, indicating a defect in contractile vacuole function, while endocytosis and phagocytosis rates for the cpnA- cells were similar to those seen for wild-type cells. These studies indicate that CpnA plays a role in cytokinesis and contractile vacuole function and is required for normal development, specifically in the later stages prior to culmination. We also used real-time reverse transcription-PCR to determine the expression patterns of all six copine genes during development. The six copine genes were expressed in vegetative cells, with each gene exhibiting a distinct pattern of expression throughout development. All of the copine genes except cpnF showed an upregulation of mRNA expression at one or two developmental transitions, suggesting that copines may be important regulators of Dictyostelium development.
Collapse
Affiliation(s)
- Cynthia K Damer
- Biology Department, Vassar College, Box 566, 124 Raymond Ave., Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|