1
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
3
|
Sellin ML, Seyfarth-Sehlke A, Aziz M, Fabry C, Wenke K, Høl PJ, Rios-Mondragon I, Cimpan MR, Frank M, Bader R, Jonitz-Heincke A. Isolation of TiNbN wear particles from a coated metal-on-metal bearing: Morphological characterization and in vitro evaluation of cytotoxicity in human osteoblasts. J Biomed Mater Res B Appl Biomater 2024; 112:e35357. [PMID: 38247242 DOI: 10.1002/jbm.b.35357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
To improve the wear resistance of articulating metallic joint endoprostheses, the surfaces can be coated with titanium niobium nitride (TiNbN). Under poor tribological conditions or malalignment, wear can occur on these implant surfaces in situ. This study investigated the biological response of human osteoblasts to wear particles generated from TiNbN-coated hip implants. Abrasive particles were generated in a hip simulator according to ISO 14242-1/-2 and extracted with Proteinase K. Particle characteristics were evaluated by electron microscopy and energy dispersive x-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and dynamic light scattering (DLS) measurements. Human osteoblasts were exposed to different particle dilutions (1:20, 1:50, and 1:100), and cell viability and gene expression levels of osteogenic markers and inflammatory mediators were analyzed after 4 and 7 days. Using ICP-MS, EDS, and DLS measurements, ~70% of the particles were identified as TiNbN, ranging from 39 to 94 nm. The particles exhibited a flat and subangular morphology. Exposure to particles did not influence cell viability and osteoblastic differentiation capacity. Protein levels of collagen type 1, osteoprotegerin, and receptor activator of nuclear factor κB ligand were almost unaffected. Moreover, the pro-inflammatory response via interleukins 6 and 8 was minor induced after particle contact. A high number of TiNbN wear particles only slightly affected osteoblasts' differentiation ability and inflammatory response compared to metallic particles. Nevertheless, further studies should investigate the role of these particles in peri-implant bone tissue, especially concerning other cell types.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Anika Seyfarth-Sehlke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Mahammad Aziz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | | | | | - Paul Johan Høl
- Department of Orthopaedic Surgery, Biomatlab, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Biomaterials, University of Bergen, Bergen, Norway
| | - Ivan Rios-Mondragon
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Zymovets V, Rakhimova O, Wadelius P, Schmidt A, Brundin M, Kelk P, Landström M, Vestman NR. Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response. Front Cell Infect Microbiol 2023; 13:1257433. [PMID: 38089810 PMCID: PMC10711090 DOI: 10.3389/fcimb.2023.1257433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP's inflammatory response and mineralization potential. Methods To assess the effect of bacterial remnants on SCAP, we used UV-C-inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA. Results We showed that mineralization promotion was greater with UV C-inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C-inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP's secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C-killed bacteria. Discussion The results suggest that long term stimulation (for 21 days) of SCAP with UV-C-inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.
Collapse
Affiliation(s)
| | | | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, Umeå, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Salga M, Samuel SG, Tseng HW, Gatin L, Girard D, Rival B, Barbier V, Bisht K, Shatunova S, Debaud C, Winkler IG, Paquereau J, Dinh A, Genêt G, Kerever S, Abback PS, Banzet S, Genêt F, Lévesque JP, Alexander KA. Bacterial Lipopolysaccharides Exacerbate Neurogenic Heterotopic Ossification Development. J Bone Miner Res 2023; 38:1700-1717. [PMID: 37602772 DOI: 10.1002/jbmr.4905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-β (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marjorie Salga
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Selwin G Samuel
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, India
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laure Gatin
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
- Department of Orthopedic Surgery, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Valérie Barbier
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kavita Bisht
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Svetlana Shatunova
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Charlotte Debaud
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Ingrid G Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Julie Paquereau
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Aurélien Dinh
- Department of Infectious Diseases, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Guillaume Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Sébastien Kerever
- Department of Anesthesiology and Critical Care, Lariboisière University Hospital, AP-HP, Paris, France
| | - Paer-Sélim Abback
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP, Clichy, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - François Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
6
|
Liu Z, Yu Q, Liu H. Mesenchymal Stem Cells in Heterotopic Ossification in Ankylosing Spondylitis: A Bibliometric Study Based on CiteSpace and VOSViewer. J Inflamm Res 2023; 16:4389-4398. [PMID: 37814636 PMCID: PMC10560485 DOI: 10.2147/jir.s421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
Background Heterotopic ossification is a complication in the late stage of ankylosing spondylitis (AS), and involves abnormal osteogenesis by mesenchymal stem cells (MSC). Research activity in this area has been rapidly expanding, but there is a lack of bibliometric studies that summarize the progresses. Methods We searched the Web of Science (WoS) for articles pertaining to the role of MSCs in heterotopic ossification in AS from the database inception to December 2022 and visualized the countries, authors, institutions, references, and keywords using CiteSpace 6.1.R6 and VOSViewer. Results A total of 127 publications from 188 institutions were identified, with a trend for increasing number of articles per year. China published the largest number of literature, followed by the United States and France. There were 47 core authors. The most recent research in this area mainly focused on "osteogenic differentiation", "gene expression", "inflammation", "TNF-α" and "bone formation". Current research can be broadly summarized into two topics: abnormalities in the inflammatory microenvironment and abnormalities in the MSCs. Aberrant expression of a variety of surface proteins in MSCs predisposes these cells to undergo osteogenic differentiation, and pro-inflammatory cytokines in the inflammatory milieu stimulate osteogenic differentiation of MSCs. Conclusion MSCs in heterotopic ossification in AS is a relatively new area of research. Research activities primarily consist abnormalities in the inflammatory microenvironment and abnormalities in the MSCs.
Collapse
Affiliation(s)
- Zhaoyi Liu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Yu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hongxiao Liu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Yang W, Zhang W, Li F, Xu N, Sun P. Dysregulation of circRNA-0076906 and circRNA-0134944 is Correlated with Susceptibility to Osteoporosis and Osteoporotic Fracture in Postmenopausal Females from the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:183-194. [PMID: 36926413 PMCID: PMC10013579 DOI: 10.2147/pgpm.s394757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Many circRNAs, such as circRNA-0076906 and circRNA-0134944, have been reported to participate in the pathogenesis of osteoporosis via sponging miRNAs in postmenopausal female patients. In this study, we aimed to study potential signaling pathways underlying the role of certain circRNAs, miRNAs and their target genes in the pathogenesis of osteoporotic fracture in postmenopausal females. Methods Quantitative real-time PCR was performed to analyze the expression of circRNAs, miRNAs and their targets genes. Luciferase assays were carried out to explore the regulatory relationship between circ_0076906/miR-548i/OGN and circ_0134944/miR-630/TLR4. Results Osteoporosis and fracture were positively correlated to the expression of circ_0134944, miR-548i and TLR4, but negatively correlated to the expression of circ_0076906, miR-630 and OGN in the peripheral blood and bone tissue samples of postmenopausal women. Luciferase activities of wild-type circ_0076906 and OGN were inhibited by miR-548i, and the luciferase activities of wild-type circ_0134944 and TLR4 were suppressed by miR-630 in MG-63 and U-2 OS cells. Inhibition of circ_0076906 expression in MG-63 and U-2 OS cells activated the expression of miR-548i and inhibited the expression of OGN. Moreover, the overexpression of circ_0134944 in MG-63 and U-2 OS cells suppressed the expression of miR-630 and enhanced the expression of TLR4. Conclusion This study implied that the dysregulation of circRNA-0076906 and circRNA-0134944 modulated their specific signaling and thus contributed to the severity of osteoporosis, increasing the risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Fengqian Li
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ning Xu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| |
Collapse
|
9
|
Ishihata K, Seong CH, Kibe T, Nakazono K, Mardiyantoro F, Tada R, Nishimura M, Matsuguchi T, Nakamura N. Lipoteichoic Acid and Lipopolysaccharides Are Affected by p38 and Inflammatory Markers and Modulate Their Promoting and Inhibitory Effects on Osteogenic Differentiation. Int J Mol Sci 2022; 23:12633. [PMID: 36293485 PMCID: PMC9604490 DOI: 10.3390/ijms232012633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/25/2024] Open
Abstract
Lipoteichoic acid (LTA) and lipopolysaccharide (LPS) are cell wall components of Gram-positive and Gram-negative bacteria, respectively. Notably, oral microflora consists of a variety of bacterial species, and osteomyelitis of the jaw caused by dental infection presents with symptoms of bone resorption and osteosclerosis. However, the effects of LTA and LPS on osteogenic differentiation have not yet been clarified. We examined the effects of LTA and LPS on osteoblasts and found that LTA alone promoted alizarin red staining at low concentrations and inhibited it at high concentrations. Additionally, gene expression of osteogenic markers (ALP, OCN, and OPG) were enhanced at low concentrations of LTA. High concentrations of LPS suppressed calcification potential, and the addition of low concentrations of LTA inhibited calcification suppression, restoring the gene expression levels of suppressed bone differentiation markers (ALP, BSP, and OCN). Moreover, the suppression of p38, a signaling pathway associated with bone differentiation, had opposing effects on gene-level expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), suggesting that mixed LTA and LPS infections have opposite effects on bone differentiation through concentration gradients, involving inflammatory markers (TNF-α and IL-6) and the p38 pathway.
Collapse
Affiliation(s)
- Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kenta Nakazono
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Fredy Mardiyantoro
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
10
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|
11
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Inamoto Y, Zeiser R, Chan GCF. Novel Treatment for Graft-versus-Host Disease. BLOOD CELL THERAPY 2021; 4:101-109. [PMID: 36714067 PMCID: PMC9847314 DOI: 10.31547/bct-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 02/01/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a curative therapy for a variety of hematological diseases, but its success is hampered by acute and chronic graft-versus-host disease (GvHD). In the last five years, multiple novel therapeutic approaches for GvHD have entered the arena. The National Institutes of Health consensus criteria for chronic GvHD have set standards for designing and reporting clinical trials, and preclinical experiments of chronic GvHD have revealed the central roles of regulatory T cells, B-cell signaling, Th17 cells, Tc17 cells, follicular helper T cells, follicular regulatory T cells, and fibrosis-promoting factors. These scientific efforts and the resulting clinical studies led to the approval of ibrutinib, belumosudil and ruxolitinib for the treatment of refractory chronic GvHD. Recently, large randomized phase III trials showed that ruxolitinib was superior to the best available therapy for glucocorticoid-refractory acute GvHD (REACH2 trial) and glucocorticoid-refractory chronic GvHD (REACH3 trial). Furthermore, novel regenerative approaches, including IL-22, R-spondin, and glucogon-like peptide-2, and cellular therapies, such as the transfer of mesenchymal stem cells and regulatory T cells, are under intensive investigation. GvHD prevention using abatacept, dipeptidyl peptidase 4 inhibition, and post-transplant cyclophosphamide are also promising strategies that require further evaluation. In this article, we summarize the emerging knowledge of acute GvHD, chronic GvHD, and preclinical and clinical data of mesenchymal stem cells as GvHD therapy. In the next five years, basic and clinical studies will further advance the field, and dramatic changes in GvHD management will be encountered.
Collapse
Affiliation(s)
- Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital,Department of Paediatrics and Adolescent Medicine, HKU-Shenzhen Hospital
| |
Collapse
|
14
|
Seria E, Galea G, Borg J, Schembri K, Grech G, Tagliaferro SS, Felice A. Novel leukocyte-depleted platelet-rich plasma-based skin equivalent as an in vitro model of chronic wounds: a preliminary study. BMC Mol Cell Biol 2021; 22:28. [PMID: 33971814 PMCID: PMC8111747 DOI: 10.1186/s12860-021-00366-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic leg ulcerations are associated with Haemoglobin disorders, Type2 Diabetes Mellitus, and long-term venous insufficiency, where poor perfusion and altered metabolism develop into a chronic inflammation that impairs wound closure. Skin equivalent organotypic cultures can be engineered in vitro to study skin biology and wound closure by modelling the specific cellular components of the skin. This study aimed to develop a novel bioactive platelet-rich plasma (PRP) leukocyte depleted scaffold to facilitate the study of common clinical skin wounds in patients with poor chronic skin perfusion and low leukocyte infiltration. A scratch assay was performed on the skin model to mimic two skin wound conditions, an untreated condition and a condition treated with recombinant tumour necrotic factor (rTNF) to imitate the stimulation of an inflammatory state. Gene expression of IL8 and TGFA was analysed in both conditions. Statistical analysis was done through ANOVA and paired student t-test. P < 0.05 was considered significant. RESULTS A skin model that consisted of a leukocyte-depleted, platelet-rich plasma scaffold was setup with embedded fibroblasts as dermal equivalents and seeded keratinocytes as multi-layered epidermis. Gene expression levels of IL8 and TGFA were significantly different between the control and scratched conditions (p < 0.001 and p < 0.01 respectively), as well as between the control and treated conditions (p < 0.01 and p < 0.001 respectively). The scratch assay induced IL8 upregulation after 3 h (p < 0.05) which continued to increase up to day 1 (p < 0.05). On the other hand, the administration of TNF led to the downregulation of IL8 (p < 0.01), followed by an upregulation on day 2. IL8 gene expression decreased in the scratched condition after day 1 as the natural healing process took place and was lower than in the treated condition on day 8 (p < 0.05). Both untreated and treated conditions showed a downregulation of TGFA 3 h after scratch when compared with the control condition (p < 0.01). Administration of rTNF showed significant downregulation of TGFA after 24 h when compared with the control (p < 0.01) and treated conditions (p < 0.05). CONCLUSION This study suggests that a leukocyte-depleted PRP-based skin equivalent can be a useful model for the in vitro study of chronic skin wounds related to poor skin perfusion.
Collapse
Affiliation(s)
- Elisa Seria
- Department of Physiology and Biochemistry and Centre of Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta.
| | - George Galea
- National Blood Transfusion Centre and Department of Pathology, University of Malta, Msida, MSD2080, Malta
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Kevin Schembri
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta Medical School and Mater Dei Hospital, Msida, MSD2080, Malta
| | - Gabriella Grech
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta Medical School and Mater Dei Hospital, Msida, MSD2080, Malta
| | - Sarah Samut Tagliaferro
- Department of Physiology and Biochemistry and Centre of Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Alexander Felice
- Department of Physiology and Biochemistry and Centre of Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
15
|
Khodabandehloo F, Aflatoonian R, Zandieh Z, Rajaei F, Sayahpour FA, Nassiri-Asl M, Baghaban Eslaminejad M. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J Cell Mol Med 2021; 25:5138-5149. [PMID: 33939261 PMCID: PMC8178267 DOI: 10.1111/jcmm.16506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Forugh-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Keong JY, Low LW, Chong JM, Ong YY, Pulikkotil SJ, Singh G, Nagendrababu V, Banavar SR, Khoo SP. Effect of lipopolysaccharide on cell proliferation and vascular endothelial growth factor secretion of periodontal ligament stem cells. Saudi Dent J 2020; 32:148-154. [PMID: 32180672 PMCID: PMC7063416 DOI: 10.1016/j.sdentj.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Periodontal ligament stem cells (PDLSCs) have considerable potential for use as a means of achieving periodontal regeneration due to their noteworthy proliferative properties and secretory functions. In particular, PDLSCs secrete vascular endothelial growth factor (VEGF) which enhances angiogenesis and osteogenesis. The resulting repair and development of blood vessels and hard tissues which would occur in the presence of these cells could be central to an effective periodontal regeneration procedure.The bacterial biofilm of tooth surface related to the periodontium might provide either an inhibition or a stimulus to different factors involved in a regenerative process. Cell culture experiments have been investigated in vitro by adding lipopolysaccharide (LPS) to the culture medium but the effect of various concentration of LPS in these circumstances has not been investigated. Therefore, this study aimed to investigate the effect of LPS concentrations on proliferation of PDLSCs in vitro and on their secretion of VEGF. MATERIALS AND METHODS PDLSCs were treated with 0, 5, 10 and 20 µg/mL of Escherichia coli LPS. At 48 and 96 h, total cell numbers of control and LPS treated PDLSCs were counted by haemocytometer under a microscope. The VEGF concentration in the conditioned media of the PDLSCs was measured by ELISA. RESULTS Rate of cell proliferation of PDLSCs decreased significantly in all LPS treated groups at both 48 h and 96 h except for the group treated with 5 µg/mL of LPS at 48 h. At both 48 and 96 h, VEGF secretion from PDLSCs was reduced significantly at all three LPS concentrations. There was no statistically significant difference in cell proliferation and the amount of VEGF secretion of PDLSCs among the groups treated with different LPS concentrations. No statistically significant change was found in cell proliferation of LPS treated PDLSCs over time, whereas VEGF secretion of PDLSCs was found to have increased significantly with time despite the LPS treatment. CONCLUSIONS LPS reduced cell proliferation and VEGF secretion of PDLSCs, suggesting that periodontal pathogens might reduce the capability of PDLSCs in periodontal regeneration. Yet, LPS treated PDLSCs remained viable and VEGF secretion increased significantly over time. Further research is needed to study the potential use of PDLSCs in periodontal regeneration and the relationship of biofilm LPS accumulations.
Collapse
Affiliation(s)
- Jia Yee Keong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Li Wei Low
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Jean Mun Chong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Yan Yi Ong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Shaju Jacob Pulikkotil
- Department of Periodontology and Implantology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Gurbind Singh
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Department of Endodontics, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Spoorthi Ravi Banavar
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Shiomi K, Yamawaki I, Taguchi Y, Kimura D, Umeda M. Osteogenic Effects of Glucose Concentration for Human Bone Marrow Stromal Cells after Stimulation with Porphyromonas gingivalis Lipopolysaccharide. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kei Shiomi
- Department of Periodontology, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University
| | | | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
18
|
Rosteius T, Rausch V, Pätzholz S, Lotzien S, Baecker H, Schildhauer TA, Geßmann J. Incidence and risk factors for heterotopic ossification following periprosthetic joint infection of the hip. Arch Orthop Trauma Surg 2019; 139:1307-1314. [PMID: 31187256 DOI: 10.1007/s00402-019-03215-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Heterotopic ossifications (HOs) commonly occur following total hip arthroplasty. Data regarding the appearance of HO after periprosthetic joint infection (PJI) of the hip are rare. Therefore, the aim of this study was to analyze the incidence and potential risk factors for the development of HO in patients with PJI of the hip. MATERIALS AND METHODS We performed a single-center, retrospective study including patients treated with a two- or multistage operation and patients undergoing salvage procedure in cases of PJI of the hip with a minimum follow-up of 6 months. A total of 150 patients were included in the analysis. The Brooker-scale was used to classify HO. Patients were divided in three groups: (1) No HO, (2) HO Brooker type 1-4, and (3) high-grade HO (HO Brooker type 3 and 4). In each group, we checked possible risk factors for the development of HO for statistical significance. RESULTS Patients included in our study had a mean age of 70.4 ± 12.1 years. Of all patients, 75 were women (50%). HOs could be found in 70 patients (46.7%). Twenty-seven patients showed HO Brooker type 1, 23 type 2, 15 type 3 and 5 type 4. Male gender [odds ratio (OR) 2.14; p = 0.022], smoking (OR 5.75; p = 0.025) were significant risk factors for HO. A chronic infection (OR 3.54; p = 0.029) and a higher number of procedures (p = 0.009) were significant risk factors for the development of high-grade HO. CONCLUSIONS HOs often occur following surgical care of PJI. Male gender, smoking, a chronic infection and high number of operations are risk factors for developing HO after PJI.
Collapse
Affiliation(s)
- Thomas Rosteius
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany.
| | - Valentin Rausch
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Simon Pätzholz
- Department of Radiological Diagnostics, Interventional Radiology and Nuclear Medicine, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Sebastian Lotzien
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Hinnerk Baecker
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Thomas Armin Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Jan Geßmann
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
19
|
Ramenzoni LL, Russo G, Moccia MD, Attin T, Schmidlin PR. Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells. PLoS One 2019; 14:e0219181. [PMID: 31269072 PMCID: PMC6609032 DOI: 10.1371/journal.pone.0219181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC. Therefore this study investigated whether proliferation, migration, inflammatory cytokines expression and transcriptional profile would be affected by exposure to endotoxins from bacterial species found in the subgingival plaque. PDLSC were cultured with the following bacterial supernatants: S. mutans, S. anginosus, P. intermedia, F. nucleatum, P. gingivalis and T. denticola. These supernatants were prepared in dilutions of 1:1000, 1:500, 1:300 and 1:50. Using quantitative RT-PCR, gene expression of selected inflammatory cytokines (IL-6, IL-8 and IL-1β) and cell-surface receptors (TLR2, TLR4) showed upregulation of ≈2.0- to 3.0-fold, when exposed to P. intermedia, F. nucleatum, P. gingivalis and T. denticola. However, supernatants did not affect proliferation (MTT) and migration (wound scratch assays) of PDLSC. Next generation RNA sequencing confirmed modified lineage commitment of PDLSC by stimulating chondrogenesis, adipogenesis and inhibition of osteogenesis under P. gingivalis supernatant treatment compared to control. Taken together, this study shows stem cell immunomodulatory response to different periodontal bacteria supernatant and suggests that stem cell transcriptional capacity, migration/proliferation and osteogenesis may differ in the presence of those pathogens. These results bring into question stem cell contribution to periodontal tissue regeneration and onset of inflammation.
Collapse
Affiliation(s)
- Liza L. Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Maria D. Moccia
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Fawzy El-Sayed KM, Elahmady M, Adawi Z, Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D, Dörfer CE. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J Periodontal Res 2019; 54:81-94. [PMID: 30295324 DOI: 10.1111/jre.12616] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Adult multipotent stem/progenitor cells, with remarkable regenerative potential, have been isolated from various components of the human periodontium. These multipotent stem/progenitor cells include the periodontal ligament stem/progenitor cells (PDLSCs), stem cells from the apical papilla (SCAP), the gingival mesenchymal stem/progenitor cells (G-MSCs), and the alveolar bone proper stem/progenitor cells (AB-MSCs). Whereas inflammation is regarded as the reason for tissue damage, it also remains a fundamental step of any early healing process. In performing their periodontal tissue regenerative/reparative activity, periodontal stem/progenitor cells interact with their surrounding inflammatory micro-environmental, through their expressed receptors, which could influence their fate and the outcome of any periodontal stem/progenitor cell-mediated reparative/regenerative activity. The present review discusses the current understanding about the interaction of periodontal stem/progenitor cells with their surrounding inflammatory micro-environment, elaborates on the inflammatory factors influencing their stemness, proliferation, migration/homing, differentiation, and immunomodulatory attributes, the possible underlying intracellular mechanisms, as well as their proposed relationship to the canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | - Zeina Adawi
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | - Ali Elnaggar
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Maryam Eid
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Nayera Hamdy
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Dalia Sanaa
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
21
|
Clemente-Postigo M, Oliva-Olivera W, Coin-Aragüez L, Ramos-Molina B, Giraldez-Perez RM, Lhamyani S, Alcaide-Torres J, Perez-Martinez P, El Bekay R, Cardona F, Tinahones FJ. Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol Endocrinol Metab 2019; 316:E319-E332. [PMID: 30422702 DOI: 10.1152/ajpendo.00277.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Impaired adipose tissue (AT) lipid handling and inflammation is associated with obesity-related metabolic diseases. Circulating lipopolysaccharides (LPSs) from gut microbiota (metabolic endotoxemia), proposed as a triggering factor for the low-grade inflammation in obesity, might also be responsible for AT dysfunction. Nevertheless, this hypothesis has not been explored in human obesity. To analyze the relationship between metabolic endotoxemia and AT markers for lipogenesis, lipid handling, and inflammation in human obesity, 33 patients with obesity scheduled for surgery were recruited and classified according to their LPS levels. Visceral and subcutaneous AT gene and protein expression were analyzed and adipocyte and AT in vitro assays performed. Subjects with obesity with a high degree of metabolic endotoxemia had lower expression of key genes for AT function and lipogenesis ( SREBP1, FABP4, FASN, and LEP) but higher expression of inflammatory genes in visceral and subcutaneous AT than subjects with low LPS levels. In vitro experiments corroborated that LPS are responsible for adipocyte and AT inflammation and downregulation of PPARG, SCD, FABP4, and LEP expression and LEP secretion. Thus, metabolic endotoxemia influences AT physiology in human obesity by decreasing the expression of factors involved in AT lipid handling and function as well as by increasing inflammation.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Wilfredo Oliva-Olivera
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Leticia Coin-Aragüez
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Rosa María Giraldez-Perez
- Departamento Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga , Spain
| | - Said Lhamyani
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario/Universidad de Málaga , Málaga , Spain
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Pablo Perez-Martinez
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
- Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba , Cordoba , Spain
| | - Rajaa El Bekay
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario/Universidad de Málaga , Málaga , Spain
| | - Fernando Cardona
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria/Universidad de Málaga. Málaga, Spain
- Centro de Investigación Biomédica En Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Málaga , Spain
| |
Collapse
|
22
|
Xing Y, Zhang Y, Jia L, Xu X. Lipopolysaccharide from Escherichia coli stimulates osteogenic differentiation of human periodontal ligament stem cells through Wnt/β-catenin-induced TAZ elevation. Mol Oral Microbiol 2018; 34. [PMID: 30387555 DOI: 10.1111/omi.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/β-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/β-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Linglu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Zhu Y, Li Q, Zhou Y, Li W. TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88- or TRIF-dependent manner. J Periodontol 2018; 90:400-415. [PMID: 30362568 DOI: 10.1002/jper.18-0251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study investigated the effects of Toll-like receptors (TLRs) on human periodontal ligament stem cells (hPDLSCs) osteogenic differentiation and the associated mechanisms. METHODS TLR1, TLR3, TLR4, and TLR6 expression in hPDLSCs was evaluated by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and flow cytometry, whereas their functional roles were assessed based on nuclear factor (NF)-κB activation and proinflammatory cytokine expression. The osteogenic effects of these TLRs were analyzed by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. The roles of Myd88, TRIF, and downstream molecules mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) in TLR-mediated impaired osteogenic differentiation were examined by real-time RT-PCR and western blotting using specific small interfering RNA siRNA and pharmacologic inhibitors. The involvement of Akt activation in restoring TLR1-, 4-, and 6-mediated osteogenic suppression was verified using the Akt activator SC-79. RESULTS TLR1, TLR3, TLR4, and TLR6 were highly expressed functionally in hPDLSCs and high doses of TLR ligands inhibited osteogenic potential. Furthermore, blocking Myd88 partly rescued the decrease in osteogenesis mediated by TLR1, TLR4, and TLR6 activation by enhancing Akt phosphorylation; likewise, TRIF suppression partially rescued lipopolysaccharide (LPS)-mediated osteogenic inhibition through ERK and Akt activation. Moreover, Akt activation restored the TLR-mediated inhibition of hPDLSC osteogenic differentiation. CONCLUSIONS High doses of TLR1, TLR4, and TLR6 ligands suppress hPDLSC osteogenic differentiation by inhibiting Akt activation through Myd88- or TRIF-dependent signaling pathways. Blocking these adaptors or reactivating Akt could restore the TLR-mediated decrease in hPDLSC osteogenesis, and might be an ideal strategy for periodontitis treatment.
Collapse
Affiliation(s)
- Yunyan Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
24
|
Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. Sci Rep 2018; 8:12529. [PMID: 30131595 PMCID: PMC6104064 DOI: 10.1038/s41598-018-30658-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
Regenerative endodontics exploits the mineralization potential of stem cells from the apical papilla (SCAPs) in order to promote root maturation of permanent immature teeth. SCAPs may encounter post-disinfection residual bacteria either in planktonic or in biofilm growth mode. Bacterial components bind to Toll-like receptors (TLRs) and trigger pro-inflammatory responses. We hypothesized that biofilm-triggered TLR activation affects the mineralization potential of human SCAPs. SCAPs were challenged with conditioned media derived from standardized dual-species biofilms and planktonic bacterial cultures and their inflammatory status and mineralization capacity were studied. Bacterial products from both growth modes (planktonic vs. biofilm) compromised cell viability, proliferation and mineralization capacity of SCAPs, but in a species- and growth mode-dependent fashion. While TLR4 expression remained unaffected, TLR2 expression was upregulated coinciding with a pro-inflammatory activation of SCAPs. Moreover, TLR and its downstream TGF-β-associated kinase (TAK1) appeared to be blocking mineralization, as inhibition of these factors restored it. In conclusion, bacterial products promoted the pro-inflammatory status and inhibited mineralization of human SCAPs in a TLR-, species-, and culture-dependent fashion. TLR2 emerged as the pivotal mediator of these responses and further research is warranted towards the judicious manipulation of SCAPs in order to modify the untoward events of TLR-priming and signaling.
Collapse
|
25
|
Alonso-Pérez A, Franco-Trepat E, Guillán-Fresco M, Jorge-Mora A, López V, Pino J, Gualillo O, Gómez R. Role of Toll-Like Receptor 4 on Osteoblast Metabolism and Function. Front Physiol 2018; 9:504. [PMID: 29867550 PMCID: PMC5952219 DOI: 10.3389/fphys.2018.00504] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a process whose main function is to fight against invading pathogens or foreign agents. Nonetheless, it is widely accepted that inflammation takes part in multiple processes in a physiological or pathophysiological context. Among these processes the inflammation has been closely related to bone metabolism. It is well-known that in systemic inflammatory diseases such as rheumatoid arthritis the inflammatory environment contributes to the reduction of the bone mineral density. This has been further evidenced in different animals models of osteoporosis where the deletion of key inflammatory molecules dramatically reduced the bone loss. On the contrary, it is also well-known that certain degree of inflammation is required to allow bone fractures healing. In fact, excessive use of anti-inflammatory drugs inhibits bone fracture consolidation. The innate immune responses (IIRs) contribute to the development and maintenance of the inflammation. These responses have been observed in cells of the musculoskeletal system. Chondrocytes and osteoblasts are equipped with the molecular repertoire necessary to setting up these IIR, including the expression of several toll-like receptors. Specifically, toll-like receptor 4 (TLR4) activation in mesenchymal stem cells, osteoblasts, and osteocytes has been involved in catabolic and anabolic process. Accordingly, in this review we have summarized the current knowledge about the physiology of TLR4, including its signaling, and its endogenous agonists. In addition we have focused on its role on osteoblast metabolism and function.
Collapse
Affiliation(s)
- Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Verónica López
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Jesús Pino
- Division of Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID LAB, Laboratory 9, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| |
Collapse
|
26
|
Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania(V.) braziliensis and Leishmania (L.) amazonensis. PLoS One 2018; 13:e0194383. [PMID: 29543867 PMCID: PMC5854399 DOI: 10.1371/journal.pone.0194383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/03/2018] [Indexed: 11/20/2022] Open
Abstract
Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL.
Collapse
|
27
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Engelgardt P, Wojtkiewicz J. Role of Stem Cells in Pathophysiology and Therapy of Spondyloarthropathies-New Therapeutic Possibilities? Int J Mol Sci 2017; 19:ijms19010080. [PMID: 29283375 PMCID: PMC5796030 DOI: 10.3390/ijms19010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Considerable progress has been made recently in understanding the complex pathogenesis and treatment of spondyloarthropathies (SpA). Currently, along with traditional disease modifying anti-rheumatic drugs (DMARDs), TNF-α, IL-12/23 and IL-17 are available for treatment of such diseases as ankylosing spondylitis (AS) and psoriatic arthritis (PsA). Although they adequately control inflammatory symptoms, they do not affect the abnormal bone formation processes associated with SpA. However, the traditional therapeutic approach does not cover the regenerative treatment of damaged tissues. In this regards, stem cells may offer a promising, safe and effective therapeutic option. The aim of this paper is to present the role of mesenchymal stromal cells (MSC) in pathogenesis of SpA and to highlight the opportunities for using stem cells in regenerative processes and in the treatment of inflammatory changes in articular structures.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Piotr Engelgardt
- Department of Forensic Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland.
| |
Collapse
|
28
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Zhou L, Dörfer CE, Chen L, Fawzy El-Sayed KM. Porphyromonas gingivalislipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not Wnt/β-catenin, pathway. J Clin Periodontol 2017; 44:1112-1122. [DOI: 10.1111/jcpe.12777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lili Zhou
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Christof E. Dörfer
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
| | - Lili Chen
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Karim M. Fawzy El-Sayed
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Oral Medicine and Periodontology Department; Faculty of Oral and Dental Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
30
|
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Netw 2017; 17:89-102. [PMID: 28458620 PMCID: PMC5407987 DOI: 10.4110/in.2017.17.2.89] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are potential cellular candidates for several immunotherapy purposes. Their multilineage potential and immunomodulatory properties make them interesting tools for the treatment of various immunological diseases. However, depending on the local microenvironment, diverse biological functions of MSCs can be modulated. Indeed, during infections such as obtained following TLR-agonist engagement (called as TLR priming), the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs can present critical changes, which could further affect their therapeutic potential. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects in particular during infectious episodes and to find the suitable experimental settings to study that. Pre-stimulation of MSCs with a specific TLR ligand may serve as an effective priming step to modulate one of its function to achieve a desired therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| |
Collapse
|
31
|
Herzmann N, Salamon A, Fiedler T, Peters K. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp Cell Res 2017; 350:115-122. [DOI: 10.1016/j.yexcr.2016.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022]
|
32
|
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, Goodman SB. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:117-154. [PMID: 28215222 DOI: 10.1016/bs.apcsb.2016.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system.
Collapse
Affiliation(s)
- T-H Lin
- Stanford University, Stanford, CA, United States
| | - J Pajarinen
- Stanford University, Stanford, CA, United States
| | - L Lu
- Stanford University, Stanford, CA, United States
| | - A Nabeshima
- Stanford University, Stanford, CA, United States
| | - L A Cordova
- Stanford University, Stanford, CA, United States; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Z Yao
- Stanford University, Stanford, CA, United States
| | - S B Goodman
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
33
|
NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model. Acta Biomater 2016; 41:273-81. [PMID: 27260104 DOI: 10.1016/j.actbio.2016.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. STATEMENT OF SIGNIFICANCE Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone-resorbing cells), and osteoblasts (bone-forming cells) could potentially mitigate this disease. Here we demonstrated that local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) mitigated ultra-high molecular weight polyethylene (UHMWPE) wear particle induced bone loss in a clinically relevant murine model. The protective effects of decoy ODN was associated with reduced macrophage infiltration and osteoclast activation, but had no significant effects on osteoblast numbers. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced bone loss.
Collapse
|
34
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
35
|
TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS One 2016; 11:e0149876. [PMID: 26930594 PMCID: PMC4773221 DOI: 10.1371/journal.pone.0149876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/06/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.
Collapse
|
36
|
Prieto P, Fernández-Velasco M, Fernández-Santos ME, Sánchez PL, Terrón V, Martín-Sanz P, Fernández-Avilés F, Boscá L. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol 2016; 7:548. [PMID: 27899899 PMCID: PMC5110552 DOI: 10.3389/fphys.2016.00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023] Open
Abstract
Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to "cell aging" related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6, and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies.
Collapse
Affiliation(s)
- Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM)Madrid, Spain
| | | | - María E. Fernández-Santos
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio MarañónMadrid, Spain
| | - Pedro L. Sánchez
- Servicio de Cardiología, Hospital Clínico de SalamancaSalamanca, Spain
| | - Verónica Terrón
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM)Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM)Madrid, Spain
| | - Francisco Fernández-Avilés
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio MarañónMadrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Ciudad UniversitariaMadrid, Spain
- *Correspondence: Francisco Fernández-Avilés
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM)Madrid, Spain
- Lisardo Boscá
| |
Collapse
|
37
|
Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 2015; 23:145-52. [PMID: 26018305 PMCID: PMC4428458 DOI: 10.1590/1678-775720140334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Mayra Laino Albiero
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Luciane Martins
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Márcio Zaffalon Casati
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Enilson Antonio Sallum
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Karina Gonzales Silvério
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
38
|
Pavey GJ, Qureshi AT, Hope DN, Pavlicek RL, Potter BK, Forsberg JA, Davis TA. Bioburden Increases Heterotopic Ossification Formation in an Established Rat Model. Clin Orthop Relat Res 2015; 473:2840-7. [PMID: 25822455 PMCID: PMC4523512 DOI: 10.1007/s11999-015-4272-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) develops in a majority of combat-related amputations wherein early bacterial colonization has been considered a potential early risk factor. Our group has recently developed a small animal model of trauma-induced HO that incorporates many of the multifaceted injury patterns of combat trauma in the absence of bacterial contamination and subsequent wound colonization. QUESTIONS/PURPOSES We sought to determine if (1) the presence of bioburden (Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus [MRSA]) increases the magnitude of ectopic bone formation in traumatized muscle after amputation; and (2) what persistent effects bacterial contamination has on late microbial flora within the amputation site. METHODS Using a blast-related HO model, we exposed 48 rats to blast overpressure, femur fracture, crush injury, and subsequent immediate transfemoral amputation through the zone of injury. Control injured rats (n = 8) were inoculated beneath the myodesis with phosphate-buffered saline not containing bacteria (vehicle) and treatment rats were inoculated with 1 × 10(6) colony-forming units of A baumannii (n = 20) or MRSA (n = 20). All animals formed HO. Heterotopic ossification was determined by quantitative volumetric measurements of ectopic bone at 12-weeks postinjury using micro-CT and qualitative histomorphometry for assessment of new bone formation in the residual limb. Bone marrow and muscle tissue biopsies were collected from the residual limb at 12 weeks to quantitatively measure the bioburden load and to qualitatively determine the species-level identification of the bacterial flora. RESULTS At 12 weeks, we observed a greater volume of HO in rats infected with MRSA (68.9 ± 8.6 mm(3); 95% confidence interval [CI], 50.52-85.55) when compared with A baumannii (20.9 ± 3.7 mm(3); 95% CI, 13.61-28.14; p < 0.001) or vehicle (16.3 ± 3.2 mm(3); 95% CI, 10.06-22.47; p < 0.001). Soft tissue and marrow from the residual limb of rats inoculated with A baumannii tested negative for A baumannii infection but were positive for other strains of bacteria (1.33 × 10(2) ± 0.89 × 10(2); 95% CI, -0.42 × 10(2)-3.08 × 10(2) and 1.25 × 10(6) ± 0.69 × 10(6); 95% CI, -0.13 × 10(6)-2.60 × 10(6) colony-forming units in bone marrow and muscle tissue, respectively), whereas tissue from MRSA-infected rats contained MRSA only (4.84 × 10(1) ± 3.22 × 10(1); 95% CI, -1.47 × 10(1)-11.1 × 10(1) and 2.80 × 10(7) ± 1.73 × 10(7); 95% CI, -0.60 × 10(7)-6.20 × 10(7) in bone marrow and muscle tissue, respectively). CONCLUSIONS Our findings demonstrate that persistent infection with MRSA results in a greater volume of ectopic bone formation, which may be the result of chronic soft tissue inflammation, and that early wound colonization may be a key risk factor. CLINICAL RELEVANCE Interventions that mitigate wound contamination and inflammation (such as early débridement, systemic and local antibiotics) may also have a beneficial effect with regard to the mitigation of HO formation and should be evaluated with that potential in mind in future preclinical studies.
Collapse
MESH Headings
- Acinetobacter baumannii/pathogenicity
- Amputation, Surgical
- Animals
- Bacterial Load
- Biopsy
- Blast Injuries/complications
- Colony Count, Microbial
- Disease Models, Animal
- Femoral Fractures/complications
- Male
- Methicillin-Resistant Staphylococcus aureus/pathogenicity
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/injuries
- Muscle, Skeletal/microbiology
- Muscle, Skeletal/pathology
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/microbiology
- Osteogenesis
- Rats, Sprague-Dawley
- Risk Factors
- Staphylococcal Infections/diagnosis
- Staphylococcal Infections/microbiology
- Time Factors
- Wound Infection/diagnosis
- Wound Infection/microbiology
- X-Ray Microtomography
Collapse
Affiliation(s)
- Gabriel J. Pavey
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Ammar T. Qureshi
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Donald N. Hope
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Rebecca L. Pavlicek
- />Department of Wound Infections, Naval Medical Research Center, Silver Spring, MD USA
| | - Benjamin K. Potter
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Jonathan A. Forsberg
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Thomas A. Davis
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
39
|
Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA, Alblas J. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS One 2015; 10:e0132781. [PMID: 26176237 PMCID: PMC4503569 DOI: 10.1371/journal.pone.0132781] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023] Open
Abstract
Several inflammatory processes underlie excessive bone formation, including chronic inflammation of the spine, acute infections, or periarticular ossifications after trauma. This suggests that local factors in these conditions have osteogenic properties. Mesenchymal stem cells (MSCs) and their differentiated progeny contribute to bone healing by synthesizing extracellular matrix and inducing mineralization. Due to the variation in experimental designs used in vitro, there is controversy about the osteogenic potential of proinflammatory factors on MSCs. Our goal was to determine the specific conditions allowing the pro-osteogenic effects of distinct inflammatory stimuli. Human bone marrow MSCs were exposed to tumor necrosis factor alpha (TNF-α) and lipopolysaccharide (LPS). Cells were cultured in growth medium or osteogenic differentiation medium. Alternatively, bone morphogenetic protein 2 (BMP-2) was used as osteogenic supplement to simulate the conditions in vivo. Alkaline phosphatase activity and calcium deposition were indicators of osteogenicity. To elucidate lineage commitment-dependent effects, MSCs were pre-differentiated prior treatment. Our results show that TNF-α and LPS do not affect the expression of osteogenic markers by MSCs in the absence of an osteogenic supplement. In osteogenic differentiation medium or together with BMP-2 however, these mediators highly stimulated their alkaline phosphatase activity and subsequent matrix mineralization. In pre-osteoblasts, matrix mineralization was significantly increased by these mediators, but irrespective of the culture conditions. Our study shows that inflammatory factors potently enhance the osteogenic capacity of MSCs. These properties may be harnessed in bone regenerative strategies. Importantly, the commitment of MSCs to the osteogenic lineage greatly enhances their responsiveness to inflammatory signals.
Collapse
Affiliation(s)
- Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. Cumhur Oner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Taco J. Blokhuis
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Okan Bastian
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter J. A. Dhert
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
40
|
Ebert R, Benisch P, Krug M, Zeck S, Meißner-Weigl J, Steinert A, Rauner M, Hofbauer L, Jakob F. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res 2015; 15:231-9. [PMID: 26135899 DOI: 10.1016/j.scr.2015.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/20/2015] [Accepted: 06/21/2015] [Indexed: 01/05/2023] Open
Abstract
The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation and mineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1β, CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| | - Peggy Benisch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Jutta Meißner-Weigl
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Andre Steinert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes Bone Metabolism, Technical University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lorenz Hofbauer
- Division of Endocrinology, Diabetes Bone Metabolism, Technical University of Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
41
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
42
|
Ward CL, Sanchez CJ, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC. Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol 2015; 15:75. [PMID: 25886581 PMCID: PMC4381664 DOI: 10.1186/s12866-015-0412-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Background Chronic, non-healing wounds are often characterized by the persistence of bacteria within biofilms - aggregations of cells encased within a self-produced polysaccharide matrix. Biofilm bacteria exhibit unique characteristics from planktonic, or culture-grown, bacterial phenotype, including diminished responses to antimicrobial therapy and persistence against host immune responses. Mesenchymal stromal cells (MSCs) are host cells characterized by their multifunctional ability to undergo differentiation into multiple cell types and modulation of host-immune responses by secreting factors that promote wound healing. While these characteristics make MSCs an attractive therapeutic for wounds, these pro-healing activities may be differentially influenced in the context of an infection (i.e., biofilm related infections) within chronic wounds. Herein, we evaluated the effect of soluble factors derived from biofilms of clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa on the viability, differentiation, and paracrine activity of human MSCs to evaluate the influence of biofilms on MSC activity in vitro. Results Exposure of MSCs to biofilm-conditioned medias of S. aureus and P. aeruginosa resulted in reductions in cell viability, in part due to activation of apoptosis. Similarly, exposure to soluble factors from biofilms was also observed to diminish the migration ability of cells and to hinder multi-lineage differentiation of MSCs. In contrast to these findings, exposure of MSCs to soluble factors from biofilms resulted in significant increases in the release of paracrine factors involved in inflammation and wound healing. Conclusions Collectively, these findings demonstrate that factors produced by biofilms can negatively impact the intrinsic properties of MSCs, in particular limiting the migratory and differentiation capacity of MSCs. Consequently, these studies suggest use/application of stem-cell therapies in the context of infection may have a limited therapeutic effect. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0412-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine L Ward
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Carlos J Sanchez
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Beth E Pollot
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Desiree R Romano
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sharanda K Hardy
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sandra C Becerra
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Christopher R Rathbone
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Joseph C Wenke
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| |
Collapse
|
43
|
Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells 2015; 7:408-417. [PMID: 25815124 PMCID: PMC4369496 DOI: 10.4252/wjsc.v7.i2.408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells (MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes (i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. This article reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration.
Collapse
|
44
|
Abstract
In addition to their stem/progenitor properties, mesenchymal stromal cells (MSCs) possess broad immunoregulatory properties that are being investigated for potential clinical application in treating immune-based disorders. An informed view of the scope of this clinical potential will require a clear understanding of the dynamic interplay between MSCs and the innate and adaptive immune systems. In this Review, we outline current insights into the ways in which MSCs sense and control inflammation, highlighting the central role of macrophage polarization. We also draw attention to functional differences seen between vivo and in vitro contexts and between species. Finally, we discuss progress toward clinical application of MSCs, focusing on GvHD as a case study.
Collapse
Affiliation(s)
- Maria Ester Bernardo
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy
| | | |
Collapse
|
45
|
TLR signaling that induces weak inflammatory response and SHIP1 enhances osteogenic functions. Bone Res 2014; 2:14031. [PMID: 26273527 PMCID: PMC4472124 DOI: 10.1038/boneres.2014.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/12/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR)-mediated inflammatory response could negatively affect bone metabolism. In this study, we determined how osteogenesis is regulated during inflammatory responses that are downstream of TLR signaling. Human primary osteoblasts were cultured in collagen gels. Pam3CSK4 (P3C) and Escherichia coli lipopolysaccharide (EcLPS) were used as TLR2 and TLR4 ligand respectively. Porphyromonas gingivalis LPS having TLR2 activity with either TLR4 agonism (Pg1690) or TLR4 antagonism (Pg1449) and mutant E. coli LPS (LPxE/LPxF/WSK) were used. IL-1β, SH2-containing inositol phosphatase-1 (SHIP1) that has regulatory roles in osteogenesis, alkaline phosphatase and mineralization were analyzed. 3α-Aminocholestane (3AC) was used to inhibit SHIP1. Our results suggest that osteoblasts stimulated by P3C, poorly induced IL-1β but strongly upregulated SHIP1 and enhanced osteogenic mediators. On the contrary, EcLPS significantly induced IL-1β and osteogenic mediators were not induced. While Pg1690 downmodulated osteogenic mediators, Pg1449 enhanced osteogenic responses, suggesting that TLR4 signaling annuls osteogenesis even with TLR2 activity. Interestingly, mutant E. coli LPS that induces weak inflammation upregulated osteogenesis, but SHIP1 was not induced. Moreover, inhibiting SHIP1 significantly upregulated TLR2-mediated inflammatory response and downmodulated osteogenesis. In conclusion, these results suggest that induction of weak inflammatory response through TLR2 (with SHIP1 activity) and mutant TLR4 ligands could enhance osteogenesis.
Collapse
|
46
|
Li C, Li B, Dong Z, Gao L, He X, Liao L, Hu C, Wang Q, Jin Y. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther 2014; 5:67. [PMID: 24887697 PMCID: PMC4076620 DOI: 10.1186/scrt456] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/19/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Periodontitis is initiated and sustained by bacteria. However, the mechanism of bacteria induced periodontitis is still unknown. We hypothesized that bacterial components can affect the functions of stem cells in the periodontium. In this study, we comparatively investigated the influence of Lipopolysaccharide (LPS) on the osteogenesis potential of human periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs). Methods Human PDLSCs and BMMSCs were harvested and mineralized nodule formation was assessed by alizarin red S staining. Expression level of osteogenic related gene was detected by quantitative RT-PCR (qRT-PCR). The expression of Toll-like receptor 4 (TLR4) and its downstream signaling pathway were examined by western blot. The role of TLR4 and related signaling pathway in LPS impairing the osteogenic potential of human PDLSCs and BMMSCs were also studied by alizarin red S staining and qRT-PCR. Experimental periodontitis was induced in adult Sprague–Dawley rats and the alveolar bone loss was measured by micro computed tomography analysis. The expression of alkaline phosphatase (ALP) was assessed by immunohistochemistry and the number of osteoclasts was shown by Tartrate-resistant acid phosphatase (TRAP) staining. Results LPS decreased the osteogenic differentiation of human PDLSCs through TLR4 regulated nuclear factor (NF)-κB pathway, but not for BMMSCs. Blocking TLR4 or NF-κB signaling partially reversed the decreased osteogenic potential of PDLSCs and prevented the alveolar bone loss caused by LPS experimental periodontitis in rats. The ALP expression in the periodontal ligament was elevated after treatment with anti-TLR4 antibody or pyrrolidinedithiocarbamate, whereas there was no statistical significance among groups for the number of osteoclasts. Conclusions These data suggest that LPS can activate TLR4 regulated NF-κB pathway of human PDLSCs, thus decreasing their osteogenic potential. Blockage of TLR4 or NF-κB pathway might provide a new approach for periodontitis treatment.
Collapse
|
47
|
He W, Wang Z, Zhou Z, Zhang Y, Zhu Q, Wei K, Lin Y, Cooper PR, Smith AJ, Yu Q. Lipopolysaccharide Enhances Wnt5a Expression through Toll-like Receptor 4, Myeloid Differentiating Factor 88, Phosphatidylinositol 3-OH Kinase/AKT and Nuclear Factor Kappa B Pathways in Human Dental Pulp Stem Cells. J Endod 2014; 40:69-75. [DOI: 10.1016/j.joen.2013.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/31/2022]
|
48
|
Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm 2013; 2013:181020. [PMID: 24391353 PMCID: PMC3872440 DOI: 10.1155/2013/181020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/14/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After myocardial infarction (MI), the inflammatory response is indispensable for initiating reparatory processes. However, the intensity and duration of the inflammation cause additional damage to the already injured myocardium. Treatment with mesenchymal stem cells (MSC) upon MI positively affects cardiac function. This happens likely via a paracrine mechanism. As MSC are potent modulators of the immune system, this could influence this postinfarct immune response. Since MSC express toll-like receptors (TLR), danger signal (DAMP) produced after MI could influence their immunomodulatory properties. SCOPE OF REVIEW Not much is known about the direct immunomodulatory efficiency of MSC when injected in a strong inflammatory environment. This review focuses first on the interactions between MSC and the immune system. Subsequently, an overview is provided of the effects of DAMP-associated TLR activation on MSC and their immunomodulative properties after myocardial infarction. MAJOR CONCLUSIONS MSC can strongly influence most cell types of the immune system. TLR signaling can increase and decrease this immunomodulatory potential, depending on the available ligands. Although reports are inconsistent, TLR3 activation may boost immunomodulation by MSC, while TLR4 activation suppresses it. GENERAL SIGNIFICANCE Elucidating the effects of TLR activation on MSC could identify new preconditioning strategies which might improve their immunomodulative properties.
Collapse
|
49
|
Fiedler T, Salamon A, Adam S, Herzmann N, Taubenheim J, Peters K. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Exp Cell Res 2013; 319:2883-92. [PMID: 23988607 DOI: 10.1016/j.yexcr.2013.08.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/08/2023]
Abstract
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.
Collapse
Affiliation(s)
- Tomas Fiedler
- Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Chatzivasileiou K, Lux CA, Steinhoff G, Lang H. Dental follicle progenitor cells responses to Porphyromonas gingivalis LPS. J Cell Mol Med 2013; 17:766-73. [PMID: 23560719 PMCID: PMC3823180 DOI: 10.1111/jcmm.12058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/15/2013] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is a bacterially induced chronic inflammatory disease. Dental follicle progenitor cells (DFPCs) have been proposed as biological graft for periodontal regenerative therapies. The potential impact of bacterial toxins on DFPCs properties is still poorly understood. The aim of this study was to investigate whether DFPCs are able to sense and respond to lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major periopathogenic bacterium. Specifically, we hypothesized that LPS could influence the migratory capacity and IL-6 secretion of DFPCs. DFPCs properties were compared to bone marrow mesenchymal stem cells (BMSCs), a well-studied class of adult stem cells. The analysis by flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels of both toll-like receptor (TLR) 2 and 4. The TLR4 mRNA expression was down-regulated in response to LPS in both cell populations, while on protein level TLR4 was significantly up-regulated on BMSCs. The TLR2 expression was not influenced by the LPS treatment in both DFPCs and BMSCs. The migratory efficacy of LPS-treated DFPCs was evaluated by in vitro scratch wound assays and found to be significantly increased. Furthermore, we assayed the secretion of interleukin-6 (IL-6), a potent stimulator of cell migration. Interestingly, the levels of IL-6 secretion of DFPCs and BMSCs remained unchanged after the LPS treatment. Taken together, these results suggest that DFPCs are able to sense and respond to P. gingivalis LPS. Our study provides new insights into understanding the physiological role of dental-derived progenitor cells in sites of periodontal infection.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Conservative Dentistry and Periodontology, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|