1
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
2
|
May O, Yu H, Riederer B, Manns MP, Seidler U, Bachmann O. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C. PLoS One 2014; 9:e92275. [PMID: 24642792 PMCID: PMC3958514 DOI: 10.1371/journal.pone.0092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.
Collapse
Affiliation(s)
- Oliver May
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Haoyang Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
3
|
Ogando DG, Jalimarada SS, Zhang W, Vithana EN, Bonanno JA. SLC4A11 is an EIPA-sensitive Na(+) permeable pHi regulator. Am J Physiol Cell Physiol 2013; 305:C716-27. [PMID: 23864606 DOI: 10.1152/ajpcell.00056.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slc4a11, a member of the solute linked cotransporter 4 family that is comprised predominantly of bicarbonate transporters, was described as an electrogenic 2Na(+)-B(OH)4(-) (borate) cotransporter and a Na(+)-2OH(-) cotransporter. The goal of the current study was to confirm and/or clarify the function of SLC4A11. In HEK293 cells transfected with SLC4A11 we tested if SLC4A11 is a: 1) Na(+)-HCO3(-) cotransporter, 2) Na(+)-OH(-)(H(+)) transporter, and/or 3) Na(+)-B(OH)4(-) cotransporter. CO2/HCO3(-) perfusion yielded no significant differences in rate or extent of pHi changes or Na(+) flux in SLC4A11-transfected compared with control cells. Similarly, in CO2/HCO3(-), acidification on removal of Na(+) and alkalinization on Na(+) add back were not significantly different between control and transfected indicating that SLC4A11 does not have Na(+)-HCO3(-) cotransport activity. In the absence of CO2/HCO3(-), SLC4A11-transfected cells showed higher resting intracelllular Na(+) concentration ([Na(+)]i; 25 vs. 17 mM), increased NH4(+)-induced acidification and increased acid recovery rate (160%) after an NH4 pulse. Na(+) efflux and influx were faster (80%) following Na(+) removal and add back, respectively, indicative of Na(+)-OH(-)(H(+)) transport by SLC4A11. The increased alkalinization recovery was confirmed in NHE-deficient PS120 cells demonstrating that SLC4A11 is a bonafide Na(+)-OH(-)(H(+)) transporter and not an activator of NHEs. SLC4A11-mediated H(+) efflux is inhibited by 5-(N-ethyl-N-isopropyl) amiloride (EIPA; EC50: 0.1 μM). The presence of 10 mM borate did not alter dpHi/dt or ΔpH during a Na(+)-free pulse in SLC4A11-transfected cells. In summary our results show that SLC4A11 is not a bicarbonate or borate-linked transporter but has significant EIPA-sensitive Na(+)-OH(-)(H(+)) and NH4(+) permeability.
Collapse
Affiliation(s)
- Diego G Ogando
- School of Optometry, Indiana University, Bloomington, Indiana
| | | | | | | | | |
Collapse
|
4
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
5
|
Singh AK, Xia W, Riederer B, Juric M, Li J, Zheng W, Cinar A, Xiao F, Bachmann O, Song P, Praetorius J, Aalkjaer C, Seidler U. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo. J Physiol 2013; 591:2189-204. [PMID: 23401617 DOI: 10.1113/jphysiol.2012.247874] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 2011; 286:42435-42445. [PMID: 22020933 DOI: 10.1074/jbc.m110.212845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).
Collapse
Affiliation(s)
- Bassam G Abu Jawdeh
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Isabelle Deschênes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Malcolm Hoshi
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Monu Goel
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey T Lock
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Krekwit Shinlapawittayatorn
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gerald Babcock
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Garren DeCaro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Satya P Yadav
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | - Maradumane L Mohan
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | | | - William P Schilling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Eckhard Ficker
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.
| |
Collapse
|
7
|
Bachmann O, Seidler U. News from the end of the gut--how the highly segmental pattern of colonic HCO₃⁻ transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 2011; 34:794-802. [PMID: 21628874 DOI: 10.1248/bpb.34.794] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of transport mechanisms in the colonic epithelium contribute to HCO₃⁻ movement across the apical and basolateral membranes, but this ion has been largely regarded as a by-product of the transport functions it is involved in, such as NaCl or short chain fatty acid (SCFA) absorption. However, emerging data points to several specific roles of HCO₃⁻ for colonic epithelial physiology, including pH control in the colonic surface microenvironment, which is important for transport and immune functions, as well as the secretion and the rheological properties of the mucus gel. Furthermore, recent studies have demonstrated that colonic HCO₃⁻ transporters are expressed in a highly segmental as well as species-specific manner. This review summarizes recently gathered information on the functional anatomy of the colon, the roles of HCO₃⁻ in the colonic epithelium, colonic mucosal integrity, and the expression and function of HCO₃⁻ transporting mechanisms in health and disease.
Collapse
Affiliation(s)
- Oliver Bachmann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
8
|
Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+-HCO3- cotransporter NBCe1A. Pflugers Arch 2011; 461:249-59. [PMID: 21234596 DOI: 10.1007/s00424-010-0918-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 12/22/2022]
Abstract
The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1 encoded by SLC4A4 plays essential roles in the regulation of intracellular/extracellular pH. Homozygous mutations in NBCe1 cause proximal renal tubular acidosis associated with ocular abnormalities. In the present study, we tried to perform functional characterization of the four nonsynonymous single nucleotide polymorphisms (SNPs), E122G, S356Y, K558R, and N640I in NBCe1A. Functional analysis in Xenopus oocytes revealed that while the K558R variant had a significantly reduced transport activity corresponding to 47% of the wild-type activity, the remaining variants E122G, S356Y, and N640I did not change the NBCe1A activity. Apparent Na(+) affinity of K558R was not different from that of wild-type NBCe1A. Immunohistological analyses in HEK293 cells and MDCK cells indicated that none of these SNPs changed the trafficking behaviors of NBCe1A. Functional analysis in HEK293 cells also revealed that only the K558R variant had a reduced transport activity, corresponding to 41-47% of the wild-type activity. From these results, we conclude that among four SNPs, only the K558R variant, which is predicted to lie in transmembrane segment 5, significantly reduces the NBCe1A activity without changing the trafficking behavior or the apparent extracellular Na(+) affinity.
Collapse
|
9
|
Bachmann O, Juric M, Seidler U, Manns MP, Yu H. Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 2011; 201:33-46. [PMID: 20528802 DOI: 10.1111/j.1748-1716.2010.02153.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrolyte transporters located in the basolateral membrane of the colonic epithelium are increasingly appreciated as elaborately regulated components of specific transport functions and cellular homeostasis: During electrolyte absorption, Na(+) /K(+) ATPase, Cl⁻ conductance, Cl⁻/HCO₃⁻ exchange, K(+) /Cl⁻ cotransport and K(+) channels are candidates for basolateral Na(+) , Cl⁻ and K(+) extrusion. The process of colonic anion secretion involves basolateral Na(+) /K(+) /2Cl⁻ , and probably also Na(+) /HCO₃⁻ cotransport, as well as Na(+) /K(+) ATPase and K(+) channels to supply substrate, stabilize the membrane potential and generate driving force respectively. Together with a multitude of additional transport systems, Na(+) /H(+) exchange and Na(+) /HCO₃⁻ cotransport have been implicated in colonocyte pH(i) and volume homeostasis. The purpose of this article is to summarize recently gathered information on the molecular identity, function and regulation of the involved basolateral transport systems in native tissue. Furthermore, we discuss how these findings can help to integrate these systems into the transport function and the cellular homoeostasis of colonic epithelial cells. Finally, disturbances of basolateral electrolyte transport during disease states such as mucosal inflammation will be reviewed.
Collapse
Affiliation(s)
- O Bachmann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | |
Collapse
|
10
|
Yu H, Riederer B, Stieger N, Boron WF, Shull GE, Manns MP, Seidler UE, Bachmann O. Secretagogue stimulation enhances NBCe1 (electrogenic Na(+)/HCO(3)(-) cotransporter) surface expression in murine colonic crypts. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1223-31. [PMID: 19779011 PMCID: PMC3774290 DOI: 10.1152/ajpgi.00157.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A Na(+)/HCO(3)(-) cotransporter (NBC) is located in the basolateral membrane of the gastrointestinal epithelium, where it imports HCO(3)(-) during stimulated anion secretion. Having previously demonstrated secretagogue activation of NBC in murine colonic crypts, we now asked whether vesicle traffic and exocytosis are involved in this process. Electrogenic NBCe1-B was expressed at significantly higher levels than electroneutral NBCn1 in colonic crypts as determined by QRT-PCR. In cell surface biotinylation experiments, a time-dependent increase in biotinylated NBCe1 was observed, which occurred with a peak of +54.8% after 20 min with forskolin (P < 0.05) and more rapidly with a peak of +59.8% after 10 min with carbachol (P < 0.05) and which corresponded well with the time course of secretagogue-stimulated colonic bicarbonate secretion in Ussing chamber experiments. Accordingly, in isolated colonic crypts pretreated with forskolin and carbachol for 10 min, respectively, and subjected to immunohistochemistry, the NBCe1 signal showed a markedly stronger colocalization with the E-cadherin signal, which was used as a membrane marker, compared with the untreated control. Cytochalasin D did not change the observed increase in membrane abundance, whereas colchicine alone enhanced NBCe1 membrane expression without an additional increase after carbachol or forskolin, and LY294002 had a marked inhibitory effect. Taken together, our results demonstrate a secretagogue-induced increase of NBCe1 membrane expression. Vesicle traffic and exocytosis might thus represent a novel mechanism of intestinal NBC activation by secretagogues.
Collapse
Affiliation(s)
- Haoyang Yu
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| | - Brigitte Riederer
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| | - Nicole Stieger
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| | - Walter F. Boron
- 2Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio;
| | - Gary E. Shull
- 3Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Michael P. Manns
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| | - Ursula E. Seidler
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| | - Oliver Bachmann
- 1Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The pancreatic duct epithelium is remarkable for its capacity to secrete HCO(3)(-) ions at concentrations as high as 140 mmol/l. The properties of the key transporters involved in this process and the central role played by cystic fibrosis transmembrane conductance regulator (CFTR) are the main focus of this review. RECENT FINDINGS The Cl(-)/HCO(3)(-) exchanger at the apical membrane of pancreatic duct cells is now known to be SLC26A6. The 1: 2 stoichiometry and electrogenicity of this exchanger enable it to contribute to the secretion of HCO(3)(-) at high concentrations. The apical CFTR channels also appear to have sufficient HCO(3)(-) permeability to contribute directly to HCO(3)(-) secretion. There is a strong possibility that the Ca(2+)-activated Cl(-) channels at the apical membrane are members of the bestrophin family which, like CFTR, are also permeable to HCO(3)(-). More has been learned about the complex interactions between CFTR and other transporters within macromolecular complexes coordinated at the apical membrane by scaffolding proteins. Further details are also emerging of the protective paracrine roles of nucleotides, nucleosides, bile acids and trypsin in the regulation of ductal secretion. SUMMARY Most of the key transporters involved in Cl(-) and HCO(3)(-) secretion have now been identified and characterized. Current research focuses on the molecular interactions between these transporters and the ways in which they are regulated by extracellular signals.
Collapse
|