1
|
Mu Z, Zheng P, Liu S, Kang Y, Xie H. Plk4 regulates centriole duplication in the embryonic development of zebrafish. Dev Biol 2025; 517:148-156. [PMID: 39304174 DOI: 10.1016/j.ydbio.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
PLK4 plays a crucial role in centriole duplication, which is essential for maintaining cellular processes such as cell division, cytoskeletal stability, and cilia formation. However, the mechanisms of PLK4 remain incompletely understood, especially in the embryonic development of vertebrate species. In this study, we observed that Plk4 dysfunction led to abnormal embryonic development in zebrafish, characterized by symptoms such as dark and wrinkled skin, microphthalmia, and body axis curvature. In plk4 mutants, defects in centriole duplication led to abnormal cell division, apoptosis, and ciliogenesis defects. Moreover, overexpression of plk4 in zebrafish embryos caused excessive centrosome amplification, disrupting embryonic gastrulation through abnormal cell division and ultimately resulting in embryonic lethality. Furthermore, we identified the "cryptic" polo box (CPB) domain, consisting of two PBs (PB1 and PB2), as the critical centrosome localization domain of Plk4. Surprisingly, overexpression of these two PB domains alone was sufficient to induce embryonic lethality. Additionally, we discovered a truncated form of CPB that localizes to the centrosome without causing defects in embryonic development. Our results demonstrate that Plk4 tightly controls centriole duplication, which is essential for early embryonic development in zebrafish.
Collapse
Affiliation(s)
- Zhiyu Mu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuangyu Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunsi Kang
- Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Pitchika GK, Naik BK, Ramana GVV, Nirupama R, Ranjani TS, Venkaiah K, Reddy MH, Sainath SB, Pradeepkiran JA. Transcriptomic profile in carbendazim-induced developmental defects in zebrafish (Danio rerio) embryos/larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109907. [PMID: 38522711 DOI: 10.1016/j.cbpc.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 μg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.
Collapse
Affiliation(s)
- Gopi Krishna Pitchika
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India.
| | - B Krishna Naik
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - G V V Ramana
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - R Nirupama
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - T Sri Ranjani
- Department of Zoology, D.K. Govt. College for Women (A), Dargamitta, Nellore 524003, A.P., India
| | - K Venkaiah
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524324, A.P., India
| | - M Hanuma Reddy
- Department of Marine Biology, Vikrama Simhapuri University, Nellore 524324, A.P., India
| | - S B Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524324, A.P., India.
| | | |
Collapse
|
3
|
Lin X, Yang X, Chen C, Ma W, Wang Y, Li X, Zhao K, Deng Q, Feng W, Ma Y, Wang H, Zhu L, Sahu SK, Chen F, Zhang X, Dong Z, Liu C, Liu L, Liu C. Single-nucleus chromatin landscapes during zebrafish early embryogenesis. Sci Data 2023; 10:464. [PMID: 37468546 PMCID: PMC10356945 DOI: 10.1038/s41597-023-02373-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Vertebrate embryogenesis is a remarkable process, during which numerous cell types of different lineages arise within a short time frame. An overwhelming challenge to understand this process is the lack of dynamic chromatin accessibility information to correlate cis-regulatory elements (CREs) and gene expression within the hierarchy of cell fate decisions. Here, we employed single-nucleus ATAC-seq to generate a chromatin accessibility dataset on the first day of zebrafish embryogenesis, including 3.3 hpf, 5.25 hpf, 6 hpf, 10 hpf, 12 hpf, 18 hpf and 24 hpf, obtained 51,620 high-quality nuclei and 23 clusters. Furthermore, by integrating snATAC-seq data with single-cell RNA-seq data, we described the dynamics of chromatin accessibility and gene expression across developmental time points, which validates the accuracy of the chromatin landscape data. Together, our data could serve as a fundamental resource for revealing the epigenetic regulatory mechanisms of zebrafish embryogenesis.
Collapse
Affiliation(s)
- Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Xueqian Yang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Wen Ma
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yiqi Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xuerong Li
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Hui Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lveming Zhu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Fengzhen Chen
- China National GeneBank, Shenzhen, Guangdong, 518120, China
| | | | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Bay Laboratory, Shenzhen, 518000, China.
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Shenzhen Bay Laboratory, Shenzhen, 518000, China.
| | - Chang Liu
- BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
4
|
Brown W, Wesalo J, Samanta S, Luo J, Caldwell SE, Tsang M, Deiters A. Genetically Encoded Aminocoumarin Lysine for Optical Control of Protein-Nucleotide Interactions in Zebrafish Embryos. ACS Chem Biol 2023; 18:1305-1314. [PMID: 37272594 PMCID: PMC10278064 DOI: 10.1021/acschembio.3c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
The strategic placement of unnatural amino acids into the active site of kinases and phosphatases has allowed for the generation of photocaged signaling proteins that offer spatiotemporal control over activation of these pathways through precise light exposure. However, deploying this technology to study cell signaling in the context of embryo development has been limited. The promise of optical control is especially useful in the early stages of an embryo where development is driven by tightly orchestrated signaling events. Here, we demonstrate light-induced activation of Protein Kinase A and a RASopathy mutant of NRAS in the zebrafish embryo using a new light-activated amino acid. We applied this approach to gain insight into the roles of these proteins in gastrulation and heart development and forge a path for further investigation of RASopathy mutant proteins in animals.
Collapse
Affiliation(s)
- Wes Brown
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Subhas Samanta
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ji Luo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Steven E. Caldwell
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department
of Developmental Biology, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Wallace SJ, de Solla SR, Langlois VS. Phenology of the transcriptome coincides with the physiology of double-crested cormorant embryonic development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101029. [PMID: 36302318 DOI: 10.1016/j.cbd.2022.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
The rigorous timing of the dynamic transcriptome within the embryo has to be well orchestrated for normal development. Identifying the phenology of the transcriptome along with the physiology of embryonic development in birds may suggest periods of increased sensitivity to contaminant exposure depending on the contaminant's mechanism of action. Double-crested cormorants (Nannopterum auritum, formerly Phalacrocorax auritus) are commonly used in ecotoxicological studies, but relatively little is known about their functional transcriptome profile in early development. In this study, we tracked the phenology of the transcriptome during N. auritum embryogenesis. Fresh eggs were collected from a reference site and artificially incubated from collection until four days prior to hatching. Embryos were periodically sampled throughout incubation for a total of seven time points. A custom microarray was designed for cormorants (over 14,000 probes) and used for transcriptome analysis in whole body (days 5, 8) and liver tissue (days 12, 14, 16, 20, 24). Three main developmental periods (early, mid, and late incubation) were identified with differentially expressed genes, gene sets, and pathways within and between each developmental transition. Overall, the timing of differentially expressed genes and enriched pathways corresponded to previously documented changes in morphology, neurology, or physiology during avian embryonic development. Targeted investigation of a subset of genes involved in endogenous and xenobiotic metabolism (e.g., cytochrome P450 cyp1a, cyp1b1, superoxide dismutase 1 sod1) were expressed in a pattern similar to reported endogenous compound levels. These data can provide insights on normal embryonic development in an ecologically relevant species without any environmental contaminant exposure.
Collapse
Affiliation(s)
- Sarah J Wallace
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada. https://twitter.com/@sjwallace06
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
6
|
Talbot CD, Walsh MD, Cutty SJ, Elsayed R, Vlachaki E, Bruce AEE, Wardle FC, Nelson AC. Eomes function is conserved between zebrafish and mouse and controls left-right organiser progenitor gene expression via interlocking feedforward loops. Front Cell Dev Biol 2022; 10:982477. [PMID: 36133924 PMCID: PMC9483813 DOI: 10.3389/fcell.2022.982477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.
Collapse
Affiliation(s)
- Conor D. Talbot
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mark D. Walsh
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Stephen J. Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Randa Elsayed
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Eirini Vlachaki
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Andrew C. Nelson
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Zhou C, Zhao W, Zhang S, Ma J, Sultan Y, Li X. High-throughput transcriptome sequencing reveals the key stages of cardiovascular development in zebrafish embryos. BMC Genomics 2022; 23:587. [PMID: 35964013 PMCID: PMC9375324 DOI: 10.1186/s12864-022-08808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The cardiovascular developmental process is a tightly regulated network involving multiple genes. The current understanding of the molecular mechanism behind cardiovascular development is insufficient and requires further research. RESULTS Transcriptome sequencing of three developmental stages in zebrafish embryos was performed and revealed three key cardiovascular developmental stages. Then, the differentially expressed genes (DEGs) involved in cardiovascular development were screened out. The three developmental stages were 18 (T1), 24 (T2), and 42 h post fertilization (hpf) (T3), and the three stages were confirmed by detecting differences in expression between cardiomyocyte and endothelial marker genes (cmlc2, fli1) using in situ hybridization, which represents the characteristics of cardiovascular development. Thousands of DEGs were identified using transcriptome analysis. Of them, 2605 DEGs were in T1-vs-T2, including 2003 up-regulated and 602 down-regulated genes, 6446 DEGs were in T1-vs-T3, consisting of 4608 up-regulated and 1838 down-regulated genes, and 3275 DEGs were in T2-vs-T3, including 2420 up-regulated and 855 down-regulated genes. There were 644 common DEGs and 167 common five-fold higher differentially expressed genes (HDEGs) identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Significant differences was observed in the levels of gene expression among different developmental stages in multiple GO terms and KEGG pathways, such as cell migration to the midline involved in heart development, cardiovascular system development, circulatory system process for biological processes of GO terms; and cardiac muscle contraction, adrenergic signaling in cardiomyocytes for KEGG pathways. These results demonstrated that these three stages were important period for the development of the cardiovascular system. Lastly, we used quantitative real-time PCR (qPCR) to validate the reliability of RNA-sequencing by selecting 21 DEGs. CONCLUSIONS These results demonstrated that these three stages represented the important periods for cardiovascular system development of zebrafish and some candidate genes was obtained and provided a solid foundation for additional functional studies of the DEGs.
Collapse
Affiliation(s)
- Chune Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
8
|
McAndry C, Collins M, Tills O, Spicer JI, Truebano M. Regulation of gene expression during ontogeny of physiological function in the brackishwater amphipod Gammarus chevreuxi. Mar Genomics 2022; 63:100948. [PMID: 35427917 DOI: 10.1016/j.margen.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Embryonic development is a complex process involving the co-ordinated onset and integration of multiple morphological features and physiological functions. While the molecular basis of morphological development in embryos is relatively well known for traditional model species, the molecular underpinning of the development of physiological functions is not. Here, we used global gene expression profiling to investigate the transcriptional changes associated with the development of morphological and physiological function in the amphipod crustacean Gammarus chevreuxi. We compared the transcriptomes at three timepoints during the latter half of development, characterised by different stages of the development of heart form and function: 10 days post fertilisation (dpf, Early: no heart structure visible), 15 dpf (Middle: heart present but not fully functional), and 18 dpf (Late: regular heartbeat). Gene expression profiles differed markedly between developmental stages, likely representing a change in the activity of different processes throughout the latter period of G. chevreuxi embryonic development. Differentially expressed genes belonged to one of three distinct clusters based on their expression patterns across development. One of these clusters, which included key genes relating to cardiac contractile machinery and calcium handling, displayed a pattern of sequential up-regulation throughout the developmental period studied. Further analyses of these transcripts could reveal genes that may influence the onset of a regular heartbeat. We also identified morphological and physiological processes that may occur alongside heart development, such as development of digestive caeca and the cuticle. Elucidating the mechanisms underpinning morphological and physiological development of non-model organisms will support improved understanding of conserved mechanisms, addressing the current phylogenetic gap between relatively well known model species.
Collapse
Affiliation(s)
- C McAndry
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - O Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - J I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
9
|
Transcriptome Sequencing Analysis Reveals Dynamic Changes in Major Biological Functions during the Early Development of Clearhead Icefish, Protosalanx chinensis. FISHES 2022. [DOI: 10.3390/fishes7030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early development, when many important developmental events occur, is a critical period for fish. However, research on the early development of clearhead icefish is very limited, especially in molecular research. In this study, we aimed to explore the dynamic changes in the biological functions of five key periods in clearhead icefish early development, namely the YL (embryonic), PM (first day after hatching), KK (fourth day after hatching), LC (seventh day after hatching), and SL (tenth day after hatching) stages, through transcriptome sequencing and different analysis strategies. A trend expression analysis and an enrichment analysis revealed that the expression ofgenes encoding G protein-coupled receptors and their ligands, i.e., prss1_2_3, pomc, npy, npb, sst, rln3, crh, gh, and prl that are associated with digestion and feeding regulation gradually increased during early development. In addition, a weighted gene co-expression network analysis (WGCNA) showed that eleven modules were significantly associated with early development, among which nine modules were significantly positively correlated. Through the enrichment analysis and hub gene identification results of these nine modules, it was found that the pathways related to eye, bone, and heart development were significantly enriched in the YL stage, and the ccnd2, seh1l, kdm6a, arf4, and ankrd28 genes that are associated with cell proliferation and differentiation played important roles in these developmental processes; the pak3, dlx3, dgat2, and tas1r1 genes that are associated with jaw and tooth development, TG (triacylglycerol) synthesis, and umami amino acid receptors were identified as hub genes for the PM stage; the pathways associated with aerobic metabolism and unsaturated fatty acid synthesis were significantly enriched in the KK stage, with the foxk, slc13a2_3_5, ndufa5, and lsc2 genes playing important roles; the pathways related to visual perception were significantly enriched in the LC stage; and the bile acid biosynthetic and serine-type peptidase activity pathways were significantly enriched in the SL stage. These results provide a more detailed understanding of the processes of early development of clearhead icefish.
Collapse
|
10
|
Rosato M, Hoelscher B, Lin Z, Agwu C, Xu F. Transcriptome analysis provides genome annotation and expression profiles in the central nervous system of Lymnaea stagnalis at different ages. BMC Genomics 2021; 22:637. [PMID: 34479505 PMCID: PMC8414863 DOI: 10.1186/s12864-021-07946-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pond snail, Lymnaea stagnalis (L. stagnalis), has served as a valuable model organism for neurobiology studies due to its simple and easily accessible central nervous system (CNS). L. stagnalis has been widely used to study neuronal networks and recently gained popularity for study of aging and neurodegenerative diseases. However, previous transcriptome studies of L. stagnalis CNS have been exclusively carried out on adult L. stagnalis only. As part of our ongoing effort studying L. stagnalis neuronal growth and connectivity at various developmental stages, we provide the first age-specific transcriptome analysis and gene annotation of young (3 months), adult (6 months), and old (18 months) L. stagnalis CNS. RESULTS Using the above three age cohorts, our study generated 55-69 millions of 150 bp paired-end RNA sequencing reads using the Illumina NovaSeq 6000 platform. Of these reads, ~ 74% were successfully mapped to the reference genome of L. stagnalis. Our reference-based transcriptome assembly predicted 42,478 gene loci, of which 37,661 genes encode coding sequences (CDS) of at least 100 codons. In addition, we provide gene annotations using Blast2GO and functional annotations using Pfam for ~ 95% of these sequences, contributing to the largest number of annotated genes in L. stagnalis CNS so far. Moreover, among 242 previously cloned L. stagnalis genes, we were able to match ~ 87% of them in our transcriptome assembly, indicating a high percentage of gene coverage. The expressional differences for innexins, FMRFamide, and molluscan insulin peptide genes were validated by real-time qPCR. Lastly, our transcriptomic analyses revealed distinct, age-specific gene clusters, differentially expressed genes, and enriched pathways in young, adult, and old CNS. More specifically, our data show significant changes in expression of critical genes involved in transcription factors, metabolisms (e.g. cytochrome P450), extracellular matrix constituent, and signaling receptor and transduction (e.g. receptors for acetylcholine, N-Methyl-D-aspartic acid, and serotonin), as well as stress- and disease-related genes in young compared to either adult or old snails. CONCLUSIONS Together, these datasets are the largest and most updated L. stagnalis CNS transcriptomes, which will serve as a resource for future molecular studies and functional annotation of transcripts and genes in L. stagnalis.
Collapse
Affiliation(s)
- Martina Rosato
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Brittany Hoelscher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Chidera Agwu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA. .,Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Developmental and Neurotoxicity of Acrylamide to Zebrafish. Int J Mol Sci 2021; 22:ijms22073518. [PMID: 33805345 PMCID: PMC8037265 DOI: 10.3390/ijms22073518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Acrylamide is a commonly used industrial chemical that is known to be neurotoxic to mammals. However, its developmental toxicity is rarely assessed in mammalian models because of the cost and complexity involved. We used zebrafish to assess the neurotoxicity, developmental and behavioral toxicity of acrylamide. At 6 h post fertilization, zebrafish embryos were exposed to four concentrations of acrylamide (10, 30, 100, or 300 mg/L) in a medium for 114 h. Acrylamide caused developmental toxicity characterized by yolk retention, scoliosis, swim bladder deficiency, and curvature of the body. Acrylamide also impaired locomotor activity, which was measured as swimming speed and distance traveled. In addition, treatment with 100 mg/L acrylamide shortened the width of the brain and spinal cord, indicating neuronal toxicity. In summary, acrylamide induces developmental toxicity and neurotoxicity in zebrafish. This can be used to study acrylamide neurotoxicity in a rapid and cost-efficient manner.
Collapse
|
12
|
Yang H, Luan Y, Liu T, Lee HJ, Fang L, Wang Y, Wang X, Zhang B, Jin Q, Ang KC, Xing X, Wang J, Xu J, Song F, Sriranga I, Khunsriraksakul C, Salameh T, Li D, Choudhary MNK, Topczewski J, Wang K, Gerhard GS, Hardison RC, Wang T, Cheng KC, Yue F. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature 2020; 588:337-343. [PMID: 33239788 DOI: 10.1038/s41586-020-2962-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
The zebrafish (Danio rerio) has been widely used in the study of human disease and development, and about 70% of the protein-coding genes are conserved between the two species1. However, studies in zebrafish remain constrained by the sparse annotation of functional control elements in the zebrafish genome. Here we performed RNA sequencing, assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing, whole-genome bisulfite sequencing, and chromosome conformation capture (Hi-C) experiments in up to eleven adult and two embryonic tissues to generate a comprehensive map of transcriptomes, cis-regulatory elements, heterochromatin, methylomes and 3D genome organization in the zebrafish Tübingen reference strain. A comparison of zebrafish, human and mouse regulatory elements enabled the identification of both evolutionarily conserved and species-specific regulatory sequences and networks. We observed enrichment of evolutionary breakpoints at topologically associating domain boundaries, which were correlated with strong histone H3 lysine 4 trimethylation (H3K4me3) and CCCTC-binding factor (CTCF) signals. We performed single-cell ATAC-seq in zebrafish brain, which delineated 25 different clusters of cell types. By combining long-read DNA sequencing and Hi-C, we assembled the sex-determining chromosome 4 de novo. Overall, our work provides an additional epigenomic anchor for the functional annotation of vertebrate genomes and the study of evolutionarily conserved elements of 3D genome organization.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hyung Joo Lee
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yanli Wang
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Bo Zhang
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Khai Chung Ang
- Department of Pathology and Penn State Zebrafish Functional Genomics Core, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xiaoyun Xing
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fan Song
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Iyyanki Sriranga
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | | | - Tarik Salameh
- Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Mayank N K Choudhary
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Keith C Cheng
- Department of Pathology and Penn State Zebrafish Functional Genomics Core, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
Rathbun LI, Aljiboury AA, Bai X, Hall NA, Manikas J, Amack JD, Bembenek JN, Hehnly H. PLK1- and PLK4-Mediated Asymmetric Mitotic Centrosome Size and Positioning in the Early Zebrafish Embryo. Curr Biol 2020; 30:4519-4527.e3. [PMID: 32916112 PMCID: PMC8159022 DOI: 10.1016/j.cub.2020.08.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Factors that regulate mitotic spindle positioning remain unclear within the confines of extremely large embryonic cells, such as the early divisions of the vertebrate embryo, Danio rerio (zebrafish). We find that the mitotic centrosome, a structure that assembles the mitotic spindle [1], is notably large in the zebrafish embryo (246.44 ± 11.93 μm2 in a 126.86 ± 0.35 μm diameter cell) compared to a C. elegans embryo (5.78 ± 0.18 μm2 in a 55.83 ± 1.04 μm diameter cell). During embryonic cell divisions, cell size changes rapidly in both C. elegans and zebrafish [2, 3], where mitotic centrosome area scales more closely with changes in cell size compared to changes in spindle length. Embryonic zebrafish spindles contain asymmetrically sized mitotic centrosomes (2.14 ± 0.13-fold difference between the two), with the larger mitotic centrosome placed toward the embryo center in a polo-like kinase (PLK) 1- and PLK4-dependent manner. We propose a model in which uniquely large zebrafish embryonic centrosomes direct spindle placement within disproportionately large cells.
Collapse
Affiliation(s)
- Lindsay I Rathbun
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Abrar A Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Xiaofei Bai
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1311 Cumberland Avenue, Knoxville, TN 37916, USA
| | - Nicole A Hall
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Julie Manikas
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Jeffrey D Amack
- SUNY Upstate Medical School, Department of Cell and Developmental Biology, 766 Irving Avenue, Syracuse, NY 13210, USA
| | - Joshua N Bembenek
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1311 Cumberland Avenue, Knoxville, TN 37916, USA; University of Michigan Medical School, Department of Molecular, Cellular, Developmental Biology, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Chen L, Wang Z, Gu W, Zhang XX, Ren H, Wu B. Single-Cell Sequencing Reveals Heterogeneity Effects of Bisphenol A on Zebrafish Embryonic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9537-9546. [PMID: 32644799 DOI: 10.1021/acs.est.0c02428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The embryonic period is a sensitive window for bisphenol A (BPA) exposure. However, embryonic development is a highly dynamic process with changing cell populations. The heterogeneity effects of BPA on fish embryo cells during development remain unclear. We applied single-cell RNA sequencing to analyze the impact of BPA exposure on transcriptome heterogeneity of 64 683 cells from zebrafish embryos at 8, 12, and 30 h postfertilization (hpf). Thirty-eight cell populations were identified and gene expression profiles of 16 cell populations were significantly altered by BPA. At 8 hpf, BPA mainly influenced the outer layer cell populations of embryos, such as neural plate border and enveloping layer cells. At 12 and 30 hpf, nervous system formation and heart morphogenesis were disturbed. The altered differential processes of the neural plate border, neural crest, and neuronal cells were found to lead to increased neurogenesis in zebrafish larvae. In the forebrain, midbrain, neurons, and optic cells, pathways related to cell division and DNA replication and repair were altered. Moreover, BPA also changed transforming growth factor (TGF) β signaling and heart tube morphogenesis in heart cells, leading to a decreased heartbeat in zebrafish larvae. Our study provides a comprehensive understanding of BPA toxicity on fish embryonic development at a single-cell level.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish ( Ictalurus punctatus). Int J Mol Sci 2020; 21:ijms21155535. [PMID: 32748829 PMCID: PMC7432863 DOI: 10.3390/ijms21155535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The transition from fertilized egg to larva in fish is accompanied with various biological processes. We selected seven early developmental stages in channel catfish, Ictalurus punctatus, for transcriptome analysis, and covered 22,635 genes with 590 million high-quality RNA-sequencing (seq) reads. Differential expression analysis between neighboring developmental timepoints revealed significantly enriched biological categories associated with growth, development and morphogenesis, which was most evident at 2 vs. 5 days post fertilization (dpf) and 5 vs. 6 dpf. A gene co-expression network was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA) approach and four critical modules were identified. Among candidate hub genes, GDF10, FOXA2, HCEA and SYCE3 were involved in head formation, egg development and the transverse central element of synaptonemal complexes. CK1, OAZ2, DARS1 and UBE2V2 were mainly associated with regulation of cell cycle, growth, brain development, differentiation and proliferation of enterocytes. IFI44L and ZIP10 were critical for the regulation of immune activity and ion transport. Additionally, TCK1 and TGFB1 were related to phosphate transport and regulating cell proliferation. All these genes play vital roles in embryogenesis and regulation of early development. These results serve as a rich dataset for functional genomic studies. Our work reveals new insights of the underlying mechanisms in channel catfish early development.
Collapse
|
16
|
Kottmann JS, Jørgensen MGP, Bertolini F, Loh A, Tomkiewicz J. Differential impacts of carp and salmon pituitary extracts on induced oogenesis, egg quality, molecular ontogeny and embryonic developmental competence in European eel. PLoS One 2020; 15:e0235617. [PMID: 32634160 PMCID: PMC7340298 DOI: 10.1371/journal.pone.0235617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Low egg quality and embryonic survival are critical challenges in aquaculture, where assisted reproduction procedures and other factors may impact egg quality. This includes European eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is applied to override a dopaminergic inhibition of the neuroendocrine system, preventing gonadotropin secretion and gonadal development. The present study used either CPE or SPE to induce vitellogenesis in female European eel and compared impacts on egg quality and offspring developmental competence with emphasis on the maternal-to-zygotic transition (MZT). Females treated with SPE produced significantly higher proportions of floating eggs with fewer cleavage abnormalities and higher embryonic survival. These findings related successful embryogenesis to higher abundance of mRNA transcripts of genes involved in cell adhesion, activation of MZT, and immune response (dcbld1, epcam, oct4, igm) throughout embryonic development. The abundance of mRNA transcripts of cldnd, foxr1, cea, ccna1, ccnb1, ccnb2, zar1, oct4, and npm2 was relatively stable during the first eight hours, followed by a drop during MZT and low levels thereafter, indicating transfer and subsequent clearance of maternal mRNA. mRNA abundance of zar1, epcam, and dicer1 was associated with cleavage abnormalities, while mRNA abundance of zar1, sox2, foxr1, cldnd, phb2, neurod4, and neurog1 (before MZT) was associated with subsequent embryonic survival. In a second pattern, low initial mRNA abundance with an increase during MZT and higher levels persisting thereafter indicating the activation of zygotic transcription. mRNA abundance of ccna1, npm2, oct4, neurod4, and neurog1 during later embryonic development was associated with hatch success. A deviating pattern was observed for dcbld1, which mRNA levels followed the maternal-effect gene pattern but only for embryos from SPE treated females. Together, the differences in offspring production and performance reported in this study show that PE composition impacts egg quality and embryogenesis and in particular, the transition from initial maternal transcripts to zygotic transcription.
Collapse
Affiliation(s)
- Johanna S. Kottmann
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Adrian Loh
- School of Science, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Ranjani TS, Pitchika GK, Yedukondalu K, Gunavathi Y, Daveedu T, Sainath SB, Philip GH, Pradeepkiran JA. Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure. CHEMOSPHERE 2020; 249:126148. [PMID: 32062212 DOI: 10.1016/j.chemosphere.2020.126148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cypermethrin is one of the widely used type-II pyrethroid and the indiscriminate use of this pesticide leads to life threatening effects and in particular showed developmental effects in sensitive populations such as children and pregnant woman. However, the molecular mechanisms underlying cypermethrin-induced development toxicity is not well defined. To address this gap, the present study was designed to investigate the phenotypic and transcriptomic (next generation RNA-Seq method) impact of cypermethrin in zebrafish embryos as a model system. Zebrafish embryos at two time points, 24 h postfertilization (hpf) and 48 hpf were exposed to cypermethrin at a concentration of 10 μg/L. Respective control groups were maintained. Cypermethrin induced both phenotypic and transcriptomic changes in zebrafish embryos at 48 hpf. The phenotypic anomalies such as delayed hatching rate, increased heartbeat rate and deformed axial spinal curvature in cypermethrin exposed zebrafish embryos at 48 hpf as compared to its respective controls. Transcriptomic analysis indicated that cypermethrin exposure altered genes associated with visual/eye development and gene functional profiling also revealed that cypermethrin stress over a period of 48 h disrupts phototransduction pathway in zebrafish embryos. Interestingly, cypermethrin exposure resulted in up regulation of only one gene, tnnt3b, fast muscle troponin isoform 3T in 24 hpf embryos as compared to its respective controls. The present model system, cypermethrin exposed zebrafish embryos elaborates the toxic consequences of cypermethrin exposure during developmental stages, especially in fishes. The present findings paves a way to understand the visual impairment in sensitive populations such as children exposed to cypermethrin during their embryonic period and further research is warranted.
Collapse
Affiliation(s)
- T Sri Ranjani
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India; Department of Zoology, D.K. Govt. Degree College for Women (Autonomous), Dargamitta, Nellore, 524003, India
| | - Gopi Krishna Pitchika
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - K Yedukondalu
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - Y Gunavathi
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - T Daveedu
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India
| | - S B Sainath
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India.
| | - G H Philip
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India.
| | | |
Collapse
|
18
|
Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 2020; 8:373. [PMID: 32548116 PMCID: PMC7270345 DOI: 10.3389/fcell.2020.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.
Collapse
Affiliation(s)
- Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kitti Csályi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Bertyák
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- HAS-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard J Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kara L Cerveny
- Biology Department, Reed College, Portland, OR, United States
| | - Dorottya Kövesdi
- Office of Supported Research Groups of the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannah Rouse
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Zsuzsa Vad
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Medical and Biomedical Education, St. George's University of London, London, United Kingdom
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Nesmith JE, Hostelley TL, Leitch CC, Matern MS, Sethna S, McFarland R, Lodh S, Westlake CJ, Hertzano R, Ahmed ZM, Zaghloul NA. Genomic knockout of alms1 in zebrafish recapitulates Alström syndrome and provides insight into metabolic phenotypes. Hum Mol Genet 2020; 28:2212-2223. [PMID: 31220269 DOI: 10.1093/hmg/ddz053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Alström syndrome (OMIM #203800) is an autosomal recessive obesity ciliopathy caused by loss-of-function mutations in the ALMS1 gene. In addition to multi-organ dysfunction, such as cardiomyopathy, retinal degeneration and renal dysfunction, the disorder is characterized by high rates of obesity, insulin resistance and early-onset type 2 diabetes mellitus (T2DM). To investigate the underlying mechanisms of T2DM phenotypes, we generated a loss-of-function deletion of alms1 in the zebrafish. We demonstrate conservation of hallmark clinical characteristics alongside metabolic syndrome phenotypes, including a propensity for obesity and fatty livers, hyperinsulinemia and glucose response defects. Gene expression changes in β-cells isolated from alms1-/- mutants revealed changes consistent with insulin hypersecretion and glucose sensing failure, which were corroborated in cultured murine β-cells lacking Alms1. We also found evidence of defects in peripheral glucose uptake and concomitant hyperinsulinemia in the alms1-/- animals. We propose a model in which hyperinsulinemia is the primary and causative defect underlying generation of T2DM associated with alms1 deficiency. These observations support the alms1 loss-of-function zebrafish mutant as a monogenic model for mechanistic interrogation of T2DM phenotypes.
Collapse
Affiliation(s)
- Jessica E Nesmith
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Timothy L Hostelley
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen C Leitch
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maggie S Matern
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saumil Sethna
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca McFarland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Marquette University, Department of Biological Sciences, Milwaukee, WI, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Membrane Trafficking and Signaling Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Triclosan induces zebrafish neurotoxicity by abnormal expression of miR-219 targeting oligodendrocyte differentiation of central nervous system. Arch Toxicol 2020; 94:857-871. [PMID: 32060586 DOI: 10.1007/s00204-020-02661-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
Triclosan (TCS) is ubiquitous in a wide range of personal care and consumer products, and it is acute/chronic exposure may result in several nervous system disorders. Previous studies demonstrated TCS-induced abnormal expression of miRNAs, but no investigations focused on upstream changes of miRNAs and associated molecular mechanisms. Herein, phenotype observation and behavioral analysis confirmed that TCS exposure (0, 62.5, 125, 250 μg/L) led to developmental neurotoxicity in zebrafish larvae, especially for oligodendrocyte precursor cells (OPCs). High-throughput sequencing demonstrated the critical role of miR-219 in the differentiation of OPCs. Larvae with miR-219 depletion showed the same phenotype caused by TCS. Functional tests with miR-219 knock-down and over-expression showed that miR-219 promoted differentiation of OPCs by acting on myelination inhibitors. The miR-219 also protected against TCS-induced inhibition of cell differentiation. Several epigenetic features were identified to reveal potential upstream regulatory mechanisms of miR-219. In particular, five CpG islands hyper-methylated with increasing TCS concentrations in the promoter region of miR-219. TCS inhibited OPC differentiation by influencing epigenetic effects on miR-219-related pathways, contributing to severe neurotoxicity. These findings enhance our understanding of epigenetic mechanisms affecting demyelination diseases due to TCS exposure, and also provide theoretical guidance for early intervention and gene therapy of environmentally induced diseases.
Collapse
|
21
|
Rojo-Bartolomé I, Santana de Souza JE, Diaz de Cerio O, Cancio I. Duplication and subfunctionalisation of the general transcription factor IIIA (gtf3a) gene in teleost genomes, with ovarian specific transcription of gtf3ab. PLoS One 2020; 15:e0227690. [PMID: 31999691 PMCID: PMC6991959 DOI: 10.1371/journal.pone.0227690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/25/2019] [Indexed: 01/02/2023] Open
Abstract
Fish oogenesis is characterised by a massive growth of oocytes each reproductive season. This growth requires the stockpiling of certain molecules, such as ribosomal RNAs to assist the rapid ribosomal assembly and protein synthesis required to allow developmental processes in the newly formed embryo. Massive 5S rRNA expression in oocytes, facilitated by transcription factor 3A (Gtf3a), serves as marker of intersex condition in fish exposed to xenoestrogens. Our present work on Gtf3a gene evolution has been analysed in silico in teleost genomes and functionally in the case of the zebrafish Danio rerio. Synteny-analysis of fish genomes has allowed the identification of two gtf3a paralog genes, probably emerged from the teleost specific genome duplication event. Functional analyses demonstrated that gtf3ab has evolved as a gene specially transcribed in oocytes as observed in Danio rerio, and also in Oreochromis niloticus. Instead, gtf3aa was observed to be ubiquitously expressed. In addition, in zebrafish embryos gtf3aa transcription began with the activation of the zygotic genome (~8 hpf), while gtf3ab transcription began only at the onset of oogenesis. Under exposure to 100 ng/L 17β-estradiol, fully feminised 61 dpf zebrafish showed transcription of ovarian gtf3ab, while masculinised (100 ng/L 17α-methyltestosterone treated) zebrafish only transcribed gtf3aa. Sex related transcription of gtf3ab coincided with that of cyp19a1a being opposite to that of amh and dmrt1. Such sex dimorphic pattern of gtf3ab transcription was not observed earlier in larvae that had not yet shown any signs of gonad formation after 26 days of oestradiol exposure. Thus, gtf3ab transcription is a consequence of oocyte differentiation and not a direct result of estrogen exposure, and could constitute a useful marker of gonad feminisation and intersex condition.
Collapse
Affiliation(s)
- Iratxe Rojo-Bartolomé
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Jorge Estefano Santana de Souza
- Bioinformatics Multidisciplinary Environment – BioME, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Oihane Diaz de Cerio
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- * E-mail:
| |
Collapse
|
22
|
Fu J, Zhu W, Wang L, Luo M, Song F, Dong Z. Dynamic transcriptome sequencing and analysis during early development in the bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2019; 20:781. [PMID: 31660854 PMCID: PMC6819325 DOI: 10.1186/s12864-019-6181-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early development is a key process of the life history of fish. However, the relationship between the transcriptome and the dynamic regulation of early development is still uncharacterized in the bighead carp (Hypophthalmichthys nobilis). In the present study, we performed transcriptome analysis of six development stages in H. nobilis, aiming to understand the dynamic molecular regulation of early development in this fish. RESULTS A total of 76,573 unigenes were assembled from clean sequence reads, with an average length of 1768 base. Among which, 41,742 (54.54%) unigenes were annotated to public protein databases, and an additional 59,014 simple sequence repeat (SSR) loci were identified among the unigenes. Furthermore, 30,199 differentially expressed transcripts (DETs) (fold change > 4 or < 0.25, and the false discovery rate FDR < 0.01) were observed in comparisons between the adjacent developmental stages, and nine expression patterns (profiles) were simulated using series-cluster analysis across six developmental stages. The unigenes expression level markedly increased after the DS1 stage (early blastula), and the numbers of DETs gradually decreased during subsequent development. The largest transcriptomic change (up- or down-regulated) was detected during the period from DS1 to DS2 (6-somite stage), which was enriched for many biological processes and metabolic pathways related to maternal to zygotic transition (MZT). Distinctly protein-protein interaction (PPI) networks were plotted for DETs during the period from DS1 to DS2. The genes (or proteins) from the same pathways were integrated together, and showed with obvious co-regulation patterns. In the series-cluster analysis, a remarkable profile of gene expression (profile_48) was identified that is probably related to the hatching during H. nobilis development, and the strict co-expression of a hatching enzyme gene (hce1) with 33 other annotated genes was identified from this profile. CONCLUSIONS The results indicated that strict dynamic regulation occurs during the early development in H. nobilis, especially in embryogenesis before hatching. This study provides valuable new information and transcriptomic resources related to H. nobilis early development, and for certain events such as MZT and hatching.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Feibiao Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
23
|
Zhang X, Li X, Li R, Zhang Y, Li Y, Li S. Transcriptomic profile of early zebrafish PGCs by single cell sequencing. PLoS One 2019; 14:e0220364. [PMID: 31412047 PMCID: PMC6693734 DOI: 10.1371/journal.pone.0220364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
Single cell RNA-seq is a powerful and sensitive way to capture the genome-wide gene expression. Here, single cell RNA-seq was utilized to study the transcriptomic profile of early zebrafish PGCs (primordial germ cells) at three different developmental stages. The three stages were 6, 11 and 24 hpf (hours post fertilization). For each developmental stage, three zebrafish PGCs from one embryo were collected, and 9 samples in total were used in this experiment. Single cell RNA-seq results showed that 5099–7376 genes were detected among the 9 samples, and the number of expressed genes decreased as development progressed. Based on the gene expression pattern, samples from 6 and 11 hpf clustered closely, while samples from 24 hpf were more dispersed. By WGCNA (weighted gene co-expression network analysis), the two biggest modules that had inverse gene expression patterns were found to be related to PGC formation or migration. Functional enrichment analysis for these two modules showed that PGCs mainly conducted migration and cell division in early development (6/11 hpf) and translation activity became active in late development (24 hpf). Differentially expressed gene analyses showed that more genes were downregulated than upregulated between two adjacent stages, and genes related to PGC formation or migration reported by previous studies decreased significantly from 11 to 24 hpf. Our results provide base knowledge about zebrafish PGC development at the single cell level and can be further studied by other researchers interested in biological development.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xintian Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ronghong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Lai JKH, Gagalova KK, Kuenne C, El-Brolosy MA, Stainier DYR. Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish. Dev Biol 2019; 454:21-28. [PMID: 31201802 DOI: 10.1016/j.ydbio.2019.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023]
Abstract
The phenotypes caused by morpholino-mediated interference of gene function in zebrafish are often not observed in the corresponding mutant(s). We took advantage of the availability of a relatively large collection of transcriptomic datasets to identify common signatures that characterize morpholino-injected animals (morphants). In addition to the previously reported activation of tp53 expression, we observed increased expression of the interferon-stimulated genes (ISGs), isg15 and isg20, the cell death pathway gene casp8, and other cellular stress response genes including phlda3, mdm2 and gadd45aa. Studies involving segmentation stage embryos were more likely to show upregulation of these genes. We also found that the expression of these genes could be upregulated by increasing doses of an egfl7 morpholino, or even high doses of the standard control morpholino. Thus, these data show that morpholinos can induce the expression of ISGs in zebrafish embryos and further our understanding of morpholino effects.
Collapse
Affiliation(s)
- Jason K H Lai
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Kristina K Gagalova
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mohamed A El-Brolosy
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany.
| |
Collapse
|
25
|
Full-Length Transcriptome Sequencing and the Discovery of New Transcripts in the Unfertilized Eggs of Zebrafish ( Danio rerio). G3-GENES GENOMES GENETICS 2019; 9:1831-1838. [PMID: 30872328 PMCID: PMC6553537 DOI: 10.1534/g3.119.200997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding early gene expression in zebrafish embryos is a prerequisite for developmental biology research. In this study, 1,629,447 polymerase reads were obtained from the unfertilized eggs of zebrafish via full-length transcriptome sequencing using the PacBio RS II platform first. Then, 102,920 unique isoforms were obtained by correction, clustering and comparison with the zebrafish genome. 12,782 genes in the genome were captured, accounting for 39.71% of the all annotated genes. Approximately 62.27% of the 12,782 genes have been alternatively spliced. GO and KEGG annotations revealed that the unfertilized eggs primarily stored genes that participate in RNA processing and nuclear protein complex composition. According to this PacBio data that aligned with the genome, 3,970 fusion genes, 819 ncRNAs, and 84 new transcripts were predicted. Illumina RNA-seq and RT-qPCR detection found that the expression of two new transcripts, PB.5289.1 and PB.10209.1, were significantly up-regulated at the 2-cell stage and down-regulated rapidly thereafter, suggesting their involvement in minor ZGA during early embryonic development. This study indicated that the unfertilized eggs of zebrafish may have retained genes directly related to cell division and development to initiate the subsequent development in a limited space and time. On the other hand, NTRs or new transcriptome regions in the genome were discovered, which provided new clues regarding ZGA of MZT during early embryonic development in fish.
Collapse
|
26
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
27
|
Lombard-Banek C, Moody SA, Manzini MC, Nemes P. Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos. Anal Chem 2019; 91:4797-4805. [PMID: 30827088 PMCID: PMC6688183 DOI: 10.1021/acs.analchem.9b00345] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Label-free single-cell proteomics by mass spectrometry (MS) is currently incompatible with complex tissues without requiring cell culturing, single-cell dissection, or tissue dissociation. We here report the first example of label-free single-cell MS-based proteomics directly in single cells in live vertebrate embryos. Our approach integrates optically guided in situ subcellular capillary microsampling, one-pot extraction-digestion of the collected proteins, peptide separation by capillary electrophoresis, ionization by an ultrasensitive electrokinetically pumped nanoelectrospray, and detection by high-resolution MS (Orbitrap). With a 700 zmol (420 000 copies) lower limit of detection, this trace-sensitive technology confidently identified and quantified ∼750-800 protein groups (<1% false-discovery rate) by analyzing just ∼5 ng of protein digest, viz. <0.05% of the total protein content from individual cells in a 16-cell Xenopus laevis (frog) embryo. After validating the approach by recovering animal-vegetal-pole proteomic asymmetry in the frog zygote, the technology was applied to uncover proteomic reorganization as the animal-dorsal (D11) cell of the 16-cell embryo gave rise to its neural-tissue-fated clone in the embryo developing to the 32-, 64-, and 128-cell stages. In addition to enabling proteomics on smaller cells in X. laevis, we also demonstrated this technology to be scalable to single cells in live zebrafish embryos. Microsampling single-cell MS-based proteomics raises exciting opportunities to study cell and developmental processes directly in complex tissues and whole organisms at the level of the building block of life: the cell.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
| | - Sally A. Moody
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| | - M. Chiara Manzini
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC 20052
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| |
Collapse
|
28
|
Zhu W, Xu X, Wang X, Liu J. Reprogramming histone modification patterns to coordinate gene expression in early zebrafish embryos. BMC Genomics 2019; 20:248. [PMID: 30922236 PMCID: PMC6437866 DOI: 10.1186/s12864-019-5611-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multicellular organisms require precise gene regulation during ontogeny, and epigenetic modifications, such as DNA methylation and histone modification, facilitate this precise regulation. The conservative reprogramming patterns of DNA methylation in vertebrates have been well described. However, knowledge of how histone modifications are passed on from gametes to early embryos is limited, and whether histone modification reprogramming is conserved is not clear. RESULTS We profiled H3K4me3/H3K27me3 modifications in gametes and early embryos in zebrafish and found that the patterns in gene promoter regions have been largely set to either co-occupied or active states in gametes and then passed on to early embryos. Co-occupied states are partially maintained, while active states are largely restored to nearly match the sperm's pattern prior to zygotic genome activation (ZGA). However, repressive H3K27me3 modifications in promoter regions are largely discarded in early embryos. Prior to ZGA, patterns of genes that initialize ZGA are converted to nonrepressive states to coordinate gene expression. Moreover, promoter peaks that mark stage-specific genes are hypermethylated, and histone modifications in these regions are erased independently of DNA methylation reprogramming. Furthermore, comparative analysis revealed that the functions of co-occupied and active genes passed on from gametes are conserved in vertebrates. Gene age preferences by co-occupied and active histone modifications are also confirmed in vertebrates. CONCLUSIONS Our data provide fundamental resources for understanding H3K4me3/H3K27me3 modifications in early zebrafish embryos. The data also reveal that the reprogramming progress of histone modifications is conserved in vertebrates and coordinates with gene expression during ZGA.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaocui Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinxin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
29
|
Kaitetzidou E, Katsiadaki I, Lagnel J, Antonopoulou E, Sarropoulou E. Unravelling paralogous gene expression dynamics during three-spined stickleback embryogenesis. Sci Rep 2019; 9:3752. [PMID: 30842559 PMCID: PMC6403355 DOI: 10.1038/s41598-019-40127-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Development requires the implementation of a plethora of molecular mechanisms, involving a large set of genes to ensure proper cell differentiation, morphogenesis of tissues and organs as well as the growth of the organism. Genome duplication and resulting paralogs are considered to provide the raw genetic materials important for new adaptation opportunities and boosting evolutionary innovation. The present study investigated paralogous genes, involved in three-spined stickleback (Gasterosteus aculeatus) development. Therefore, the transcriptomes of five early stages comprising developmental leaps were explored. Obtained expression profiles reflected the embryo's needs at different stages. Early stages, such as the morula stage comprised transcripts mainly involved in energy requirements while later stages were mostly associated with GO terms relevant to organ development and morphogenesis. The generated transcriptome profiles were further explored for differential expression of known and new paralogous genes. Special attention was given to hox genes, with hoxa13a being of particular interest and to pigmentation genes where itgb1, involved in the melanophore development, displayed a complementary expression pattern throughout studied stages. Knowledge obtained by untangling specific paralogous gene functions during development might not only significantly contribute to the understanding of teleost ontogenesis but might also shed light on paralogous gene evolution.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science, (Cefas), Weymouth, UK
| | - Jacques Lagnel
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.,Institut National de la Recherche Agronomique (INRA), Génétique et Amélioration des Fruits et Légumes (GALF), Montfavet Cedex, France
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| |
Collapse
|
30
|
Kulatunga DCM, Dananjaya SHS, Nikapitiya C, Godahewa GI, Cho J, Kim CH, Lee J, De Zoysa M. Stress-immune responses and DNA protection function of thioredoxin domain containing 12 in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1030-1040. [PMID: 30359749 DOI: 10.1016/j.fsi.2018.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Proteins with dithiol-disulfide oxidoreductase catalytic domain are well known for their capacity in the cellular redox homeostasis. In this study, we characterized the zebrafish thioredoxin domain containing 12 (Zftxndc12) gene, analyzed the transcriptional responses and studied the functional properties of its recombinant protein. Full-length cDNA of Zftxndc12 consists 519 bp coding region encoding 172 amino acids (AA) including the signal peptide. Highly consensus active motif (65WCGAC69) and probable ER retrieval motif (169GDEL172) were identified. Ubiquitous expression of Zftxndc12 mRNA was observed from one cell to juvenile stage as well as different organs of adult zebrafish. Moreover, whole mount in situ hybridization (WISH) results showed a higher expression of Zftxndc12 in primordial gills, central nerves system and eye. The tissue specific expression analysis (by qRT-PCR) also showed the highest expression in gills followed by brain in adult zebrafish. In larvae, up-regulated Zftxndc12 mRNA expression upon exposure to H2O2,Edwardsiella tarda and Saprolegnia parasitica suggests that it may involve in both stress and immune responses. Moreover, transcriptional expression of Zftxndc12 was up-regulated upon Streptococcus iniae challenge in gills of adult zebrafish. The recombinant ZfTxndc12 (rZfTxndc12) was overexpressed, purified and tested for its biological activities. Results revealed that rZfTxndc12 is able to reduce the DNA damage and detoxify the H2O2 toxicity in concentration dependent manner. Overall results suggest that Zftxndc12 is important antioxidant and immune functional member of the host defense system in zebrafish.
Collapse
Affiliation(s)
- D C M Kulatunga
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
31
|
Silva WTAF. Methylation dynamics during the maternal-to-zygotic genome transition in dioecious species. PLoS One 2018; 13:e0200028. [PMID: 29990374 PMCID: PMC6039002 DOI: 10.1371/journal.pone.0200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 11/18/2022] Open
Abstract
The starting point of a new generation in sexually reproducing species is fertilization. In many species, fertilization is followed by cell divisions controlled primarily by maternal transcripts, with little to no zygotic transcription. The activation of the zygotic genome (ZGA) is part of a process called maternal-to-zygotic transition (MZT), during which transcripts from the zygotic genome take control of development, setting the conditions for cellular specialization. While we know that epigenetic processes (e.g. methylation) are involved in the MZT, their roles and interplay in the transition are largely unknown. I developed a model and used simulations to elucidate the interaction between possible epigenetic processes, namely methylation processes, involved in the MZT. The model focuses on the dynamics of global methylation levels and how these interact with factors such as a parental repressor and the nucleocytoplasmic ratio to trigger the ZGA, followed by development from fertilization to adulthood. In addition, I included transgenerational effects transmitted to the zygote from both parents through their gametes to show that these may set the stage for plastic developmental processes. I demonstrate that the rates of maintenance methylation and demethylation, which are important for the achievement of the final methylation levels of an individual, exhibit a certain level of flexibility in terms of parameter values. I find that high final methylation levels require more restricted combinations of parameter values. The model is discussed in the context of the current empirical knowledge and provide suggestions for directions of future empirical and theoretical studies.
Collapse
Affiliation(s)
- Willian T. A. F. Silva
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 753 10 Uppsala, Sweden
| |
Collapse
|
32
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018; 77:80-93. [PMID: 29458080 PMCID: PMC5878140 DOI: 10.1016/j.reprotox.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
There continues to be a need to develop in vivo high-throughput screening (HTS) and computational methods to screen chemicals for interaction with the estrogen, androgen, and thyroid pathways and as complements to in vitro HTS assays. This study explored the utility of an embryonic zebrafish HTS approach to identify and classify endocrine bioactivity using phenotypically-anchored transcriptome profiling. Transcriptome analysis was conducted on zebrafish embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at concentrations that elicited adverse malformations or mortality at 120 h post-fertilization in 80% of animals exposed. Analysis of the top 1000 significant differentially expressed transcripts and developmental toxicity profiles across all treatments identified a unique transcriptional and phenotypic signature for thyroid hormone receptor agonists. This unique signature has the potential to be used as a tiered in vivo HTS and may aid in identifying chemicals that interact with the thyroid hormone receptor.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Current: National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
33
|
Kindt LM, Coughlin AR, Perosino TR, Ersfeld HN, Hampton M, Liang JO. Identification of transcripts potentially involved in neural tube closure using RNA sequencing. Genesis 2018; 56:e23096. [PMID: 29488319 DOI: 10.1002/dvg.23096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
Anencephaly is a fatal human neural tube defect (NTD) in which the anterior neural tube remains open. Zebrafish embryos with reduced Nodal signaling display an open anterior neural tube phenotype that is analogous to anencephaly. Previous work from our laboratory suggests that Nodal signaling acts through induction of the head mesendoderm and mesoderm. Head mesendoderm/mesoderm then, through an unknown mechanism, promotes formation of the polarized neuroepithelium that is capable of undergoing the movements required for closure. We compared the transcriptome of embryos treated with a Nodal signaling inhibitor at sphere stage, which causes NTDs, to embryos treated at 30% epiboly, which does not cause NTDs. This screen identified over 3,000 transcripts with potential roles in anterior neurulation. Expression of several genes encoding components of tight and adherens junctions was significantly reduced, supporting the model that Nodal signaling regulates formation of the neuroepithelium. mRNAs involved in Wnt, FGF, and BMP signaling were also differentially expressed, suggesting these pathways might regulate anterior neurulation. In support of this, we found that pharmacological inhibition of FGF-receptor function causes an open anterior NTD as well as loss of mesodermal derivatives. This suggests that Nodal and FGF signaling both promote anterior neurulation through induction of head mesoderm.
Collapse
Affiliation(s)
- Lexy M Kindt
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | - Alicia R Coughlin
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | | | - Haley N Ersfeld
- Department of Biology, University of Minnesota Duluth, Duluth
| | - Marshall Hampton
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth.,Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth
| | - Jennifer O Liang
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| |
Collapse
|
34
|
Despic V, Neugebauer KM. RNA tales – how embryos read and discard messages from mom. J Cell Sci 2018; 131:jcs.201996. [DOI: 10.1242/jcs.201996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following fertilization, embryos develop for a substantial amount of time with a transcriptionally silent genome. Thus, early development is maternally programmed, as it solely relies on RNAs and proteins that are provided by the female gamete. However, these maternal instructions are not sufficient to support later steps of embryogenesis and are therefore gradually replaced by novel products synthesized from the zygotic genome. This switch in the origin of molecular players that drive early development is known as the maternal-to-zygotic transition (MZT). MZT is a universal phenomenon among all metazoans and comprises two interconnected processes: maternal mRNA degradation and the transcriptional awakening of the zygotic genome. The recent adaptation of high-throughput methods for use in embryos has deepened our knowledge of the molecular principles underlying MZT. These mechanisms comprise conserved strategies for RNA regulation that operate in many well-studied cellular contexts but that have adapted differently to early development. In this Review, we will discuss advances in our understanding of post-transcriptional regulatory pathways that drive maternal mRNA clearance during MZT, with an emphasis on recent data in zebrafish embryos on codon-mediated mRNA decay, the contributions of microRNAs (miRNAs) and RNA-binding proteins to this process, and the roles of RNA modifications in the stability control of maternal mRNAs.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Rabani M, Pieper L, Chew GL, Schier AF. A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Mol Cell 2017; 68:1083-1094.e5. [PMID: 29225039 DOI: 10.1016/j.molcel.2017.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
The stability of mRNAs is regulated by signals within their sequences, but a systematic and predictive understanding of the underlying sequence rules remains elusive. Here we introduce UTR-seq, a combination of massively parallel reporter assays and regression models, to survey the dynamics of tens of thousands of 3' UTR sequences during early zebrafish embryogenesis. UTR-seq revealed two temporal degradation programs: a maternally encoded early-onset program and a late-onset program that accelerated degradation after zygotic genome activation. Three signals regulated early-onset rates: stabilizing poly-U and UUAG sequences and destabilizing GC-rich signals. Three signals explained late-onset degradation: miR-430 seeds, AU-rich sequences, and Pumilio recognition sites. Sequence-based regression models translated 3' UTRs into their unique decay patterns and predicted the in vivo effect of sequence signals on mRNA stability. Their application led to the successful design of artificial 3' UTRs that conferred specific mRNA dynamics. UTR-seq provides a general strategy to uncover the rules of RNA cis regulation.
Collapse
Affiliation(s)
- Michal Rabani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindsey Pieper
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guo-Liang Chew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Broad Institute, Cambridge, MA 02140, USA.
| |
Collapse
|
36
|
Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10162-10172. [PMID: 28768411 DOI: 10.1021/acs.est.7b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Alex J Khursigara
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Jason Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Gary Hardiman
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
37
|
Xu EG, Mager EM, Grosell M, Stieglitz JD, Hazard ES, Hardiman G, Schlenk D. Developmental transcriptomic analyses for mechanistic insights into critical pathways involved in embryogenesis of pelagic mahi-mahi (Coryphaena hippurus). PLoS One 2017; 12:e0180454. [PMID: 28692652 PMCID: PMC5503239 DOI: 10.1371/journal.pone.0180454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 12/03/2022] Open
Abstract
Mahi-mahi (Coryphaena hippurus) is a commercially and ecologically important species of fish occurring in tropical and temperate waters worldwide. Understanding early life events is crucial for predicting effects of environmental stress, which is largely restricted by a lack of genetic resources regarding expression of early developmental genes and regulation of pathways. The need for anchoring developmental stages to transcriptional activities is highlighted by increasing evidence on the impacts of recurrent worldwide oil spills in this sensitive species during early development. By means of high throughput sequencing, we characterized the developmental transcriptome of mahi-mahi at three critical developmental stages, from pharyngula embryonic stage (24 hpf) to 48 hpf yolk-sac larva (transition 1), and to 96 hpf free-swimming larva (transition 2). With comparative analysis by multiple bioinformatic tools, a larger number of significantly altered genes and more diverse gene ontology terms were observed during transition 2 than transition 1. Cellular and tissue development terms were more significantly enriched in transition 1, while metabolism related terms were more enriched in transition 2, indicating a switch progressing from general embryonic development to metabolism during the two transitions. Special focus was given on the most significant common canonical pathways (e.g. calcium signaling, glutamate receptor signaling, cAMP response element-binding protein signaling, cardiac β-adrenergic signaling, etc.) and expression of developmental genes (e.g. collagens, myosin, notch, glutamate metabotropic receptor etc.), which were associated with morphological changes of nervous, muscular, and cardiovascular system. These data will provide an important basis for understanding embryonic development and identifying molecular mechanisms of abnormal development in fish species.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, California, United States of America
| | - Edward M. Mager
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Miami, Florida, United Sates of America
| | - John D. Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Miami, Florida, United Sates of America
| | - E. Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, South Carolina, United Sates of America
- Computational Biology Resource Center, Medical University of South Carolina, Charleston, South Carolina, United Sates of America
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, South Carolina, United Sates of America
- Departments of Medicine & Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United Sates of America
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, South Carolina, United Sates of America
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
38
|
Gonçalves AT, Valenzuela-Muñoz V, Gallardo-Escárate C. Intestinal transcriptome modulation by functional diets in rainbow trout: A high-throughput sequencing appraisal to highlight GALT immunomodulation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:325-338. [PMID: 28300682 DOI: 10.1016/j.fsi.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Functional ingredients such as pre- and probiotics are used in aquaculture to improve fish condition, modulating microbiota and promoting a healthy intestinal functioning. They also exert an active effect on the gut associated lymphoid tissue (GALT), stimulating the immune system. However, the molecular underpinnings of pre- and probiotics effect on intestinal mucosa are still unknown. This study investigated the intestinal mucosa transcriptome modulation when fish were fed functional diets and kept at different stocking densities. Juvenile rainbow trout were kept at low (LD-3Kgm-3) and high density (HD-40 kgm-3) and fed for 30 days functional diets with the prebiotic mannanoligosaccharide (PRE-0.6%), the probiotic Saccharomyces cerevisiae (PRO-0.5%), the mixture of both (MIX) and a control diet (CTRL). Intestinal transcriptome was evaluated by high-throughput sequencing and blood plasma for biochemical parameters. Fish fed functional diets presented better condition regardless density, and that functional diets modulate intestinal transcriptome in different manner depending on the stocking density. At LD, fish from PRO presented stronger modulation with the majority of transcripts being down-regulated, including the immune related ones, whereas at HD both PRO and MIX groups were more modulated, when comparing to the respective CTRL groups. Density had an overwhelming suppressive effect on the immune-related genes, but this effect was counteracted by feeding functional diets, especially in fish fed with probiotics. This study shows for the first time the intestinal transcriptomic modulation when fish are fed functional diets at different stocking densities, and it shows the mitigating effect of these diets against deleterious conditions such as high density.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
39
|
Wang H, Wang B, Liu X, Liu Y, Du X, Zhang Q, Wang X. Identification and expression of piwil2 in turbot Scophthalmus maximus, with implications of the involvement in embryonic and gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:84-93. [PMID: 28438683 DOI: 10.1016/j.cbpb.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 11/17/2022]
Abstract
Piwil2, a member of the Argonaute family, is involved in the biogenesis of PIWI-interacting RNAs (piRNAs) and plays an important role in regulating gametogenesis. In the present study, we identified turbot Scophthalmus maximus piwil2 gene, named Smpiwil2, which contained a PAZ domain and a PIWI domain. Sequence comparison, genomic structure and phylogenetic analyses showed that Smpiwil2 is homologous to that of teleosts and tetrapods. The Smpiwil2 transcript showed higher expression in the ovary than in the testis, demonstrating a sexually dimorphic gene expression pattern. In situ hybridization (ISH) showed that Smpiwil2 was expressed in the oogonia and all the stages of oocytes in the ovary as well as in spermatogonia and spermatocytes in the testis. Embryonic expression profile revealed that Smpiwil2 was maternally inherited, and its level was higher from the zygote to the blastula stage and subsequently decreased until hatching. Moreover, a CpG island was predicted to locate in the 5'-flanking region of Smpiwil2 gene, and its methylation levels detected by sodium bisulfite sequencing showed significant disparity between females and males, implying that the sexually dimorphic expression of Smpiwil2 might be regulated by methylation. These results indicated that Smpiwil2 had potentially vital functions in embryonic and gonadal development in this species. In addition, the temporal and sex differences in Smpiwil2 expression indicated that this gene may play different roles in gonadal development of different sexes.
Collapse
Affiliation(s)
- Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - XuBo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
40
|
Romney AL, Podrabsky JE. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 2017; 8:6. [PMID: 28439397 PMCID: PMC5401559 DOI: 10.1186/s13227-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. Results Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1–2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. Conclusions Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1–2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amie L Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
41
|
Rauwerda H, Pagano JFB, de Leeuw WC, Ensink W, Nehrdich U, de Jong M, Jonker M, Spaink HP, Breit TM. Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics 2017; 18:287. [PMID: 28399811 PMCID: PMC5387192 DOI: 10.1186/s12864-017-3672-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023] Open
Abstract
Background Recently, much progress has been made in the field of gene-expression in early embryogenesis. However, the dynamic behaviour of transcriptomes in individual embryos has hardly been studied yet and the time points at which pools of embryos are collected are usually still quite far apart. Here, we present a high-resolution gene-expression time series with 180 individual zebrafish embryos, obtained from nine different spawns, developmentally ordered and profiled from late blastula to mid-gastrula stage. On average one embryo per minute was analysed. The focus was on identification and description of the transcriptome dynamics of the expressed genes in this embryonic stage, rather than to biologically interpret profiles in cellular processes and pathways. Results In the late blastula to mid-gastrula stage, we found 6,734 genes being expressed with low variability and rather gradual changes. Ten types of dynamic behaviour were defined, such as genes with continuously increasing or decreasing expression, and all expressed genes were grouped into these types. Also, the exact expression starting and stopping points of several hundred genes during this developmental period could be pinpointed. Although the resolution of the experiment was so high, that we were able to clearly identify four known oscillating genes, no genes were observed with a peaking expression. Additionally, several genes showed expression at two or three distinct levels that strongly related to the spawn an embryo originated from. Conclusion Our unique experimental set-up of whole-transcriptome analysis of 180 individual embryos, provided an unparalleled in-depth insight into the dynamics of early zebrafish embryogenesis. The existence of a tightly regulated embryonic transcriptome program, even between individuals from different spawns is shown. We have made the expression profile of all genes available for domain experts. The fact that we were able to separate the different spawns by their gene-expression variance over all expressed genes, underlines the importance of spawn specificity, as well as the unexpectedly tight gene-expression regulation in early zebrafish embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3672-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim C de Leeuw
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Nehrdich
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Present address: GenomeScan B.V., Plesmanlaan, Leiden, The Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands. .,Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands. .,MAD/AB&RB, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Fu B, Wang X, Feng X, Yu X, Tong J. Comparative transcriptomic analyses of two bighead carp (Hypophthalmichthys nobilis) groups with different growth rates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:111-117. [PMID: 27639030 DOI: 10.1016/j.cbd.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023]
Abstract
Growth is one of the most important and desired economic traits for aquaculture species, and identification of loci controlling growth is a difficult task without genomic sequences. In this study, the liver transcriptomes of two groups (F and S) of bighead carp (Hypophthalmichthys nobilis) within a full-sib family with significant differences in growth rate were sequenced. Following de novo assembly of the combined reads from the two groups, a total of 410 differentially expressed genes were identified. Functional annotation and analysis of these genes indicated that some of these were involved in regulation of glucose levels and lipid metabolism, particularly fatty acid oxidation and transport. In addition to the differences on expression levels between the two groups, we also identified many non-synonymous coding single-nucleotide polymorphisms (SNPs) that were specific to each group, including SNPs from 4 genes involved in the lipid metabolism process (GO: 0006629). These differences in gene expression and DNA sequences may in part comprise the genetic background for the regulation of early growth rate in bighead carp.
Collapse
Affiliation(s)
- Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xiu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
45
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Prieto D, Zolessi FR. Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:119-138. [PMID: 27554589 DOI: 10.1002/jez.b.22691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Myristoylated alanin-rich C-kinase substrate (MARCKS) and MARCKS-like 1, each encoded by a different gene, comprise a very small family of actin-modulating proteins with essential roles in mammalian neural development. We show here that four genes (two marcks and two marcksl1) are present in teleosts including zebrafish, while ancient actinopterigians, sarcopterigian fishes, and chondrichtyans only have two. No marcks genes were found in agnaths or invertebrates. All four zebrafish genes are expressed during development, and we show here how their early knockdown causes defects in neural development, with some phenotypical differences. Knockdown of marcksa generated embryos with smaller brain and eyes, while marcksb caused different morphogenetic defects, such as larger hindbrain ventricle and folded retina. marcksl1a and marcksl1b morpholinos also caused smaller eyes and brain, although marcksl1a alone generated larger brain ventricles. At 24 hpf, marcksb caused a wider angle of the hindbrain walls, while marcksl1a showed a "T-shaped" neural tube and alterations in neuroepithelium organization. The double knockdown surprisingly produced new features, which included an increased neuroepithelial disorganization and partial neural tube duplications evident at 48 hpf, suggesting defects in convergent extension. This disorganization was also evident in the retina, although retinal ganglion cells were still able to differentiate. marcksl1b morphants presented a unique retinal phenotype characterized by the occurrence of sporadic ectopic neuronal differentiation. Although only marcksl1a morphant had a clear "ciliary phenotype," all presented significantly shorter cilia. Altogether, our data show that all marcks genes have functions in zebrafish neural development, with some differences that suggest the onset of protein diversification.
Collapse
Affiliation(s)
- Daniel Prieto
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay
| | - Flavio R Zolessi
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
47
|
Jiang P, Nelson JD, Leng N, Collins M, Swanson S, Dewey CN, Thomson JA, Stewart R. Analysis of embryonic development in the unsequenced axolotl: Waves of transcriptomic upheaval and stability. Dev Biol 2016; 426:143-154. [PMID: 27475628 DOI: 10.1016/j.ydbio.2016.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022]
Abstract
The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9-11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and neurulation. These results yield new insights into global gene expression during early stages of amphibian embryogenesis and will help to further develop the axolotl as a model species for developmental and regenerative biology.
Collapse
Affiliation(s)
- Peng Jiang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Jeffrey D Nelson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Ning Leng
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Michael Collins
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Scott Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, United States
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States.
| |
Collapse
|
48
|
Identification of Novel Transcribed Regions in Zebrafish (Danio rerio) Using RNA-Sequencing. PLoS One 2016; 11:e0160197. [PMID: 27462902 PMCID: PMC4962977 DOI: 10.1371/journal.pone.0160197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/17/2016] [Indexed: 11/28/2022] Open
Abstract
Zebrafish (Danio rerio) has emerged as a model organism to investigate vertebrate development and human genetic diseases. However, the zebrafish genome annotation is still ongoing and incomplete, and there are still new gene transcripts to be found. With the introduction of massive parallel sequencing, whole transcriptome studies became possible. In the present study, we aimed to discover novel transcribed regions (NTRs) using developmental transcriptome data from RNA sequencing. In order to achieve this, we developed an in-house bioinformatics pipeline for NTR discovery. Using the pipeline, we detected 152 putative NTRs that at the time of discovery were not annotated in Ensembl and NCBI gene database. Four randomly selected NTRs were successfully validated using RT-PCR, and expression profiles of 10 randomly selected NTRs were evaluated using qRT-PCR. The identification of these 152 NTRs provide new information for zebrafish genome annotation as well as new candidates for studies of zebrafish gene function.
Collapse
|
49
|
The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Sci Rep 2016; 6:25929. [PMID: 27181905 PMCID: PMC4867433 DOI: 10.1038/srep25929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.
Collapse
|
50
|
Yang KY, Chen Y, Zhang Z, Ng PKS, Zhou WJ, Zhang Y, Liu M, Chen J, Mao B, Tsui SKW. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci Rep 2016; 6:23195. [PMID: 26979494 PMCID: PMC4793263 DOI: 10.1038/srep23195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.
Collapse
Affiliation(s)
- Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Chen
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zuming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Patrick Kwok-Shing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|