1
|
Zhang B, Jia C, Li M, Wang K, Chen J, Zhao J. Multiomics integration for the function of bacterial outer membrane vesicles in the larval settlement of marine sponges. Front Microbiol 2024; 15:1268813. [PMID: 38468855 PMCID: PMC10925772 DOI: 10.3389/fmicb.2024.1268813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bacterial outer membrane vesicles (OMVs) contain a variety of chemical compounds and play significant roles in maintaining symbiotic relationships in a changing ocean, but little is known about their function, particularly in sponge larval development. During the growth of sponge Tedania sp., OMVs from Bacteroidetes species significantly promoted larval settlement, and Tenacibaculum mesophilum SP-7-OMVs were selected as a representative strain for further investigation. According to OMVs metabolomics, larval settlement might be connected to organic acids and derivatives. The multiomics analysis of the T. mesophilum genome, SP-7-OMVs metabolome, and larval transcriptome revealed 47 shared KEGG pathways. Among the number of candidate metabolites, arginine was chosen for its greater ability to increase the settlement rate and its role as the principal substrate for nitric oxide (NO) synthesis of sponge larvae. In summary, these results demonstrated that sponge-associated bacteria might utilize OMVs and their cargo to support host development and make up for host metabolic pathway deficiencies. This study enhances our fundamental knowledge of OMVs in interactions between metazoan hosts and microorganisms that are crucial in the coevolution of marine ecosystems and the complex marine environment.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Chenzheng Jia
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Mingyu Li
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Kai Wang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jun Chen
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Xu M, Li Z, Liang X, Li J, Ye Y, Qi P, Yan X. Transcriptomic Analysis Provides Insights into Candidate Genes and Molecular Pathways Involved in Growth of Mytilus coruscus Larvae. Int J Mol Sci 2024; 25:1898. [PMID: 38339176 PMCID: PMC10855951 DOI: 10.3390/ijms25031898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-β) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.
Collapse
Affiliation(s)
| | | | | | | | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | | |
Collapse
|
3
|
Kotsyuba E, Pahlevaniane A, Maslennikov S, Dyachuk V. Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. BIOLOGY 2024; 13:35. [PMID: 38248466 PMCID: PMC10813508 DOI: 10.3390/biology13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
This article presents recent findings as regards distribution of cells producing serotonin and dopamine in the larval central nervous system at different developmental stages, including four pelagic larval stages (zoea I-IV), a semibenthic postlarval stage glaucothoe (megalopa), benthic juveniles, and adult red king crabs, Paralithodes camtschaticus, made by using immunocytochemistry and confocal laser scanning microscopy. We have shown that the serotonergic and dopaminergic neurons are present long before the onset of metamorphosis. In the red king crab b larval nervous system, the changes become particularly pronounced during the first metamorphosis from zoea IV to glaucothoe, which may be related to the development of the segmental appendages and maturation of motor behaviors in decapods. This work presents the distribution and dynamics of the development of serotonergic and dopaminergic neuronal networks in king crab show, the potential roles of serotonin and dopamine in the modulation of olfactory and visual processing in the early stages of larval development, and also the mechanosensory and chemosensory processing in the glaucothoe stage during settlement and in their transition from a pelagic to benthic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (E.K.); (A.P.); (S.M.)
| |
Collapse
|
4
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
5
|
Voronezhskaya EE. Serotonin as a volume transmission signal in the “simple nervous system” of mollusks: From axonal guidance to behavioral orchestration. Front Synaptic Neurosci 2022; 14:1024778. [DOI: 10.3389/fnsyn.2022.1024778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
|
6
|
Yamindago A, Lee N, Lee N, Jo Y, Woo S, Yum S. Fluoxetine in the environment may interfere with the neurotransmission or endocrine systems of aquatic animals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112931. [PMID: 34715500 DOI: 10.1016/j.ecoenv.2021.112931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Antidepressants are extensively used to treat the symptoms of depression in humans, and the environmentally discharged drugs potentially threaten aquatic organisms. In this study, the acute toxic effects of fluoxetine (FLX) were investigated in two aquatic organisms, the freshwater polyp (Hydra magnipapillata) and Javanese medaka (Oryzias javanicus). The median lethal concentration (LC50) of FLX in H. magnipapillata was 3.678, 3.082, and 2.901 mg/L after 24, 48, and 72 h, respectively. Morphological observations of the FLX-exposed H. magnipapillata showed that 1.5 mg/L FLX induced the contraction of the tentacles and body column. The LC50 of FLX in O. javanicus was 2.046, 1.936, 1.532, and 1.237 mg/L after 24, 48, 72, and 96 h, respectively. Observation of the behavior of the FLX-exposed fish showed that FLX reduced their swimming performance at a minimum concentration of 10 µg/L. The half-maximal effective concentration (EC50) of FLX for swimming behavior in O. javanicus was 0.135, 0.108, and 0.011 mg/L after 12, 24, and 96 h, respectively. Transcriptomic analyses indicated that FLX affects various physiological and metabolic processes in both species. FLX exposure induced oxidative stress, reproductive deficiency, abnormal pattern formation, DNA damage, and neurotransmission disturbance in H. magnipapillata, whereas it adversely affected O. javanicus by inducing oxidative stress, DNA damage, endoplasmic reticulum stress, and mRNA instability. Neurotransmission-based behavioral changes and endocrine disruption were strongly suspected in the FLX-exposed fish. These results suggest that FLX affects the behavior and metabolic regulation of aquatic organisms.
Collapse
Affiliation(s)
- Ade Yamindago
- CORECT Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia; Study Program of Marine Science, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Nayoung Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Yejin Jo
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; KIOST School, University of Science and Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
7
|
Voronezhskaya EE. Maternal Serotonin: Shaping Developmental Patterns and Behavioral Strategy on Progeny in Molluscs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin is a well-known neurotransmitter and neurohormone regulating mood, sleep, feeding, and learning in high organisms. Serotonin also affects the embryonic events related to neurogenesis and maturation of hormonal systems, the underlying organism adaptation to a changing environment. Such serotonin-based mother-to-embryo signaling is realized via direct interactions in case of internal fertilization and embryonic development inside the mother body. However, the possibility of such signaling is less obvious in organisms with the ancestral type of embryogenesis and embryo development within the egg, outside the mother body. Our data, based on the investigation of freshwater gastropod molluscs (Lymnaea and Helisoma), demonstrated a correlation between seasonal variations of serotonin content within the female reproductive system, and developmental patterns and the behavioral characteristics of progeny. The direct action of serotonin via posttranslational protein modification—serotonylation—during early development, as well as classical receptor-mediated effects, underlies such serotonin-modulated developmental changes. In the present paper, I will shortly overview our results on freshwater molluscs and parallel the experimental data with the living strategy of these species occupying almost all Holarctic regions.
Collapse
|
8
|
Zhang B, Yang JW, Han T, Huang DX, Zhao ZH, Feng JQ, Zhou NM, Xie HQ, Wang TM. Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:367-380. [PMID: 33651924 DOI: 10.1002/jez.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.
Collapse
Affiliation(s)
- Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing-Wen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - De-Xiang Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zi-Hao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jia-Qian Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nai-Ming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Qing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Ming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
9
|
Yurchenko OV, Savelieva AV, Kolotuchina NK, Voronezhskaya EE, Dyachuk VA. Peripheral sensory neurons govern development of the nervous system in bivalve larvae. EvoDevo 2019; 10:22. [PMID: 31528326 PMCID: PMC6743156 DOI: 10.1186/s13227-019-0133-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Recent findings regarding early lophotrochozoan development have altered the conventional model of neurogenesis and revealed that peripheral sensory elements play a key role in the initial organization of the larval nervous system. Here, we describe the main neurogenetic events in bivalve mollusks in comparison with other Lophotrochozoa, emphasizing a novel role for early neurons in establishing larval nervous systems and speculating about the morphogenetic function of the apical organ. We demonstrate that during bivalve development, peripheral sensory neurons utilizing various transmitters differentiate before the apical organ emerges. The first neurons and their neurites serve as a scaffold for the development of the nervous system. During veliger stage, cerebral, pleural, and visceral ganglia form along the lateral (visceral) nerve cords in anterior-to-posterior axis. The pedal ganglia and corresponding ventral (pedal) nerve cords develop much later, after larval settlement and metamorphosis. Pharmacological abolishment of the serotonin gradient within the larval body disrupts the navigation of "pioneer" axons resulting in malformation of the whole nervous system architecture. Comparative morphological data on neurogenetic events in bivalve mollusks shed new light on the origin of the nervous system, mechanisms of early axon navigation, and sequence of the tetraneurous nervous system formation. Furthermore, this information improves our understanding of the basic nervous system architecture in larval Bivalvia and Mollusca.
Collapse
Affiliation(s)
- Olga V. Yurchenko
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Anna V. Savelieva
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Natalia K. Kolotuchina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Elena E. Voronezhskaya
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - Vyacheslav A. Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
10
|
Ivashkin E, Melnikova V, Kurtova A, Brun NR, Obukhova A, Khabarova MY, Yakusheff A, Adameyko I, Gribble KE, Voronezhskaya EE. Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates. ACS Chem Neurosci 2019; 10:3888-3899. [PMID: 31291540 DOI: 10.1021/acschemneuro.9b00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Evgeny Ivashkin
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Victoria Melnikova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasia Kurtova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadja R. Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Alexandra Obukhova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Yu. Khabarova
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander Yakusheff
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Elena E. Voronezhskaya
- Department of Developmental and Comparative Physiology, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
11
|
Battonyai I, Voronezhskaya EE, Obukhova A, Horváth R, Nezlin LP, Elekes K. Neuronal Development in the Larvae of the Invasive Biofouler Dreissena polymorpha (Mollusca: Bivalvia), with Special Attention to Sensory Elements and Swimming Behavior. THE BIOLOGICAL BULLETIN 2018; 234:192-206. [PMID: 29949436 DOI: 10.1086/698511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although understanding of the neuronal development of Trochozoa has progressed recently, little attention has been paid to freshwater bivalves, including species with a strong ecological impact, such as the zebra mussel (Dreissena polymorpha). Therefore, an important question might concern how the developing nervous system is involved in the formation of the rapid and successful invasive behavior of this species. Our aim was to reveal the neuronal development of trochophore and veliger larvae of Dreissena, with special attention to the organization of sensory structures and their possible involvement in detecting environmental cues. After applying serotonin and FMRFamide immunocytochemistry, the first serotonin immunoreactive sensory elements appeared 16-18 hours after fertilization, whereas the first FMRFamide immunoreactive sensory cell was seen only at 32 hours of development (trochophore stage). Later, sensory elements were found in three parts of the larval body, including the apical organ, the posterior region, and the stomach. Although differences in the timing of appearance and the morphology of cells were observed, the two signaling systems showed basic similarity in their organization pattern until the end of the veliger stage. Pharmacological, physiological, and quantitative immunocytochemical investigations were also performed, suggesting the involvement of both the serotoninergic system and the FMRFamidergic system in sensomotor processes. Manipulation of the serotonin synthesis by para-chloroplenylalanine and 5-hydroxytryptophane, as well as application of increased salinity, influenced larval swimming activity, both accompanied by changes in immunofluorescence intensity. We concluded that these two early sensory systems may play an important role in the development of settlement competency of this biofouling invasive bivalve, Dreissena.
Collapse
Key Words
- 5-HT, serotonin
- 5-HTP, 5-hydroxytryptophan
- AO, apical organ
- DAPI, 4ʹ,6-diamidino-2-phenylindole
- EDTA, ethylenediaminetetraacetic acid
- FMRFa, FMRFamide
- FW, filtered water
- IHC, immunohistochemical
- IR, immunoreactive
- PBS, phosphate-buffered saline
- PBS-TX-NGS, PBS containing 1% Triton X-100 and 10% normal goat serum
- PFA, paraformaldehyde;
- PN, posterior neuron.
- hpf, hours post-fertilization
- pCPA, para-chlorophenilalanine
Collapse
|
12
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
13
|
Nezlin LP, Voronezhskaya EE. Early peripheral sensory neurons in the development of trochozoan animals. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417020060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling. G3-GENES GENOMES GENETICS 2016; 6:2181-93. [PMID: 27194808 PMCID: PMC4938671 DOI: 10.1534/g3.116.029314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.
Collapse
|
15
|
Katow H, Katow T, Yoshida H, Kiyomoto M, Uemura I. Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus. Front Zool 2016; 13:27. [PMID: 27313654 PMCID: PMC4910247 DOI: 10.1186/s12983-016-0159-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The swimming activity of sea urchin larvae is dependent on the ciliary band (CB) on the larval surface and is regulated by several neurotransmitters, including serotonin (5HT), dopamine, and γ-aminobutyric acid (GABA). However, the CB signal transmission mechanism remains unknown. The present study investigated the structural relationship between the CB and external signal receptors by immunohistochemical and transmission electron microscopic analyses of sea urchin, Hemicentrotus pulcherrimus, larvae. RESULTS Glutamate decarboxylase (GAD; GABA synthetase) was detected in a strand of multiple cells along the circumoral CB in 6-arm plutei. The GAD-expressing strand was closely associated with the CB on the oral ectoderm side. The ciliary band-associated strand (CBAS) also expressed the 5HT receptor (5HThpr) and encephalopsin (ECPN) throughout the cytoplasm and comprised 1- to 2-μm diameter axon-like long stretched regions and sporadic 6- to 7-μm diameter bulbous nucleated regions (perikarya) that protruded into the oral ectoderm side. Besides the laterally polarized morphology of the CBAS cells, Epith-2, which is the epithelial lateral cell surface-specific protein of the sea urchin embryo and larva, was expressed exclusively by perikarya but not by the axon-like regions. The CBAS exposed its narrow apical surface on the larval epithelium between the CB and squamous cells and formed adherens junctions (AJs) on the apical side between them. Despite the presence of the CBAS axon-like regions, tubulins, such as α-, β-, and acetylated α-tubulins, were not detected. However, the neuroendocrine cell marker protein synaptophysin was detected in the axon-like regions and in bouton-like protrusions that contained numerous small ultrastructural vesicles. CONCLUSIONS The unique morphology of the CBAS in the sea urchin larva epithelium had not been reported. The CBAS expresses a remarkable number of receptors to environmental stimuli and proteins that are probably involved in signal transmission to the CB. The properties of the CBAS explain previous reports that larval swimming is triggered by environmental stimuli and suggest crosstalk among receptors and potential plural sensory functions of the CBAS.
Collapse
Affiliation(s)
- Hideki Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Tomoko Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
| | - Hiromi Yoshida
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Masato Kiyomoto
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
- />Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301 Japan
| | - Isao Uemura
- />Division of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
| |
Collapse
|
16
|
Song H, Yu ZL, Sun LN, Gao Y, Zhang T, Wang HY. De novo transcriptome sequencing and analysis of Rapana venosa from six different developmental stages using Hi-seq 2500. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 17:48-57. [PMID: 26845471 DOI: 10.1016/j.cbd.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 11/26/2022]
Abstract
The carnivorous whelk Rapana venosa is regarded as a biological invader with strong ecological fitness in the United States, Argentina, France and other countries. R. venosa may seriously damage bivalve resources. Nonetheless, in China, R. venosa is an important commercial species. Larval development, especially metamorphosis, influences the natural population and industrial breeding. However, there are few studies on the early development of R. venosa, and our understanding is further limited by a lack of genomic information. In this study, de novo sequencing was performed to obtain a comprehensive transcriptome profile during early development. A Hi-seq 2500 sequencing run produced 148,737,902 raw reads that were assembled into 1,137,556 unigenes (average length of 619 nucleotides, of which 49,673 could be annotated). The unigenes were assigned to biological processes and functions after annotation in Gene Ontology, eukaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes. We also identified 93,196 simple sequence repeats among the unigenes. Six unique sequences associated with neuroendocrine function were analyzed by quantitative real-time PCR. Our data represent the first comprehensive transcriptomic resource for R. venosa. Functional annotation of the unigenes involved in various biological processes could stimulate research on the mechanisms of early development in this species. Understanding the mechanism of early development and metamorphosis would benefit antifouling research and aquaculture of R. venosa.
Collapse
Affiliation(s)
- Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zheng-Lin Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Na Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Yan Gao
- Tianjin bohai sea fisheries research institute, Tianjin 300457, People's Republic of China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.
| | - Hai-Yan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
17
|
Kristof A, de Oliveira AL, Kolbin KG, Wanninger A. Neuromuscular development in Patellogastropoda (Mollusca: Gastropoda) and its importance for reconstructing ancestral gastropod bodyplan features. J ZOOL SYST EVOL RES 2015; 54:22-39. [PMID: 26869747 PMCID: PMC4747121 DOI: 10.1111/jzs.12112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within Gastropoda, limpets (Patellogastropoda) are considered the most basal branching taxon and its representatives are thus crucial for research into evolutionary questions. Here, we describe the development of the neuromuscular system in Lottia cf. kogamogai. In trochophore larvae, first serotonin‐like immunoreactivity (lir) appears in the apical organ and in the prototroch nerve ring. The arrangement and number of serotonin‐lir cells in the apical organ (three flask‐shaped, two round cells) are strikingly similar to those in putatively derived gastropods. First, FMRFamide‐lir appears in veliger larvae in the Anlagen of the future adult nervous system including the cerebral and pedal ganglia. As in other gastropods, the larvae of this limpet show one main and one accessory retractor as well as a pedal retractor and a prototroch muscle ring. Of these, only the pedal retractor persists until after metamorphosis and is part of the adult shell musculature. We found a hitherto undescribed, paired muscle that inserts at the base of the foot and runs towards the base of the tentacles. An apical organ with flask‐shaped cells, one main and one accessory retractor muscle is commonly found among gastropod larvae and thus might have been part of the last common ancestor.
Collapse
Affiliation(s)
- Alen Kristof
- Department of Integrative Zoology, University of Vienna, Vienna Austria
| | | | - Konstantin G Kolbin
- Laboratory of Cell Differentiation, A.V. Zhirmunsky Institute for Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok Russian Federation
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Vienna Austria
| |
Collapse
|
18
|
Ivashkin E, Khabarova MY, Melnikova V, Nezlin LP, Kharchenko O, Voronezhskaya EE, Adameyko I. Serotonin Mediates Maternal Effects and Directs Developmental and Behavioral Changes in the Progeny of Snails. Cell Rep 2015; 12:1144-58. [PMID: 26257175 DOI: 10.1016/j.celrep.2015.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/27/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022] Open
Abstract
Many organisms survive in constantly changing environments, including cycling seasons. Developing embryos show remarkable instant adaptations to the variable environmental challenges they encounter during their adult life, despite having no direct contact with the changing environment until after birth or hatching. The mechanisms by which such non-genetic information is transferred to the developing embryos are largely unknown. Here, we address this question by using a freshwater pond snail (Lymnaea stagnalis) as a model system. This snail normally lives in a seasonal climate, and the seasons define its locomotion, feeding, and reproductive behavior. We discovered that the serotonergic system plays a crucial role in transmitting a non-genetic instructive signal from mother to progeny. This maternal serotonin-based signal functions in embryos during a short time window at exclusively early pre-neural developmental stages and modulates the dynamics of embryonic and juvenile growth, feeding behavior, and locomotion.
Collapse
Affiliation(s)
- Evgeny Ivashkin
- Department of Experimental Neurocytology, Brain Research Branch, Scientific Center of Neurology, Russian Academy of Medical Sciences, 105064 Moscow, Russia; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Solna, Sweden
| | - Marina Yu Khabarova
- Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victoria Melnikova
- Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Leonid P Nezlin
- Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Olga Kharchenko
- Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena E Voronezhskaya
- Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Solna, Sweden; Department of Molecular Neurosciences, Center of Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|