1
|
Lou K, Wang J, He H, Wang Y, Mi Y, Li W, Chen L, Zhang Y, Mao Y, Lin J, Fu H, Yu C. Value of [ 68Ga]Ga-NYM046 PET/CT, in Comparison with 18F-FDG PET/CT, for Diagnosis of Clear Cell Renal Cell Carcinoma. J Nucl Med 2024; 65:1884-1890. [PMID: 39542699 PMCID: PMC11619588 DOI: 10.2967/jnumed.124.267527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to investigate the diagnostic efficacy of [68Ga]Ga-NYM046 PET/CT in animal models and patients with clear cell renal cell carcinoma (ccRCC) and to compare its performance with that of 18F-FDG PET/CT. Methods: The in vivo biodistribution of [68Ga]Ga-NYM046 was evaluated in mice bearing OS-RC-2 xenografts. Twelve patients with ccRCC were included in the study; all completed paired [68Ga]Ga-NYM046 PET/CT and 18F-FDG PET/CT. The diagnostic efficacies of these 2 PET tracers were compared. Moreover, the positive rate of carbonic anhydrase IX in the pathologic tissue sections was compared with the SUVmax obtained by PET/CT. Results: The tumor accumulation of [68Ga]Ga-NYM046 at 1 h after injection in OS-RC-2 xenograft tumor models was 7.21 ± 2.39 injected dose per gram of tissue. Apart from tumors, the kidney and stomach showed high-uptake distributions. In total, 9 primary tumors, 96 involved lymph nodes, and 147 distant metastases in 12 patients were evaluated using [68Ga]Ga-NYM046 and 18F-FDG PET/CT. Compared with 18F-FDG PET/CT, [68Ga]Ga-NYM046 PET/CT detected more primary tumors (9 vs. 1), involved lymph nodes (95 vs. 92), and distant metastases (137 vs. 127). In quantitative analysis, the primary tumors' SUVmax (median, 13.5 vs. 2.4; z = -2.668, P = 0.008) was significantly higher in [68Ga]Ga-NYM046 PET/CT. Conversely, the involved lymph nodes' SUVmax (median, 5.9 vs. 7.6; z = -3.236, P = 0.001) was higher in 18F-FDG PET/CT. No significant differences were found for distant metastases (median SUVmax, 5.0 vs. 5.0; z = -0.381, P = 0.703). Higher [68Ga]Ga-NYM046 uptake in primary tumors corresponded to higher expression of carbonic anhydrase IX, with an R 2 value of 0.8274. Conclusion: [68Ga]Ga-NYM046 PET/CT offers a viable strategy for detecting primary tumors, involved lymph nodes, and distant metastases in patients with ccRCC.
Collapse
Affiliation(s)
- Kequan Lou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jialiang Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanjuan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanyuan Mi
- Department of Urological Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenjin Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liping Chen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yu Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China; and
| | - Jianguo Lin
- Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Haitian Fu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China;
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China;
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Singh P, Nerella SG, Swain B, Angeli A, Ullah Q, Supuran CT, Arifuddin M. Design, synthesis and in vitro evaluation of novel thiazole-coumarin hybrids as selective and potent human carbonic anhydrase IX and XII inhibitors. Int J Biol Macromol 2024; 268:131548. [PMID: 38642682 DOI: 10.1016/j.ijbiomac.2024.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sridhar Goud Nerella
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Qasim Ullah
- Physical Science Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| |
Collapse
|
3
|
Massière F, Wiedemann N, Borrego I, Hoehne A, Osterkamp F, Paschke M, Zboralski D, Schumann A, Bredenbeck A, Brichory F, Attinger A. Preclinical Characterization of DPI-4452: A 68Ga/ 177Lu Theranostic Ligand for Carbonic Anhydrase IX. J Nucl Med 2024; 65:761-767. [PMID: 38514083 PMCID: PMC11064828 DOI: 10.2967/jnumed.123.266309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
The membrane protein carbonic anhydrase IX (CAIX) is highly expressed in many hypoxic or von Hippel-Lindau tumor suppressor-mutated tumor types. Its restricted expression in healthy tissues makes CAIX an attractive diagnostic and therapeutic target. DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, allowing radionuclide chelation for theranostic purposes. Here, we report CAIX expression in multiple tumor types and provide in vitro and in vivo evaluations of 68Ga-labeled DPI-4452 ([68Ga]Ga-DPI-4452) and 177Lu-labeled DPI-4452 ([177Lu]Lu-DPI-4452). Methods: CAIX expression was assessed by immunohistochemistry with a panel of tumor and healthy tissues. The molecular interactions of complexed and uncomplexed DPI-4452 with CAIX were assessed by surface plasmon resonance and cell-binding assays. In vivo characterization of radiolabeled and nonradiolabeled DPI-4452 was performed in HT-29 colorectal cancer (CRC) and SK-RC-52 clear cell renal cell carcinoma (ccRCC) human xenograft mouse models and in healthy beagle dogs. Results: Overexpression of CAIX was shown in several tumor types, including ccRCC, CRC, and pancreatic ductal adenocarcinoma. DPI-4452 specifically and selectively bound CAIX with subnanomolar affinity. In cell-binding assays, DPI-4452 displayed comparably high affinities for human and canine CAIX but a much lower affinity for murine CAIX, demonstrating that the dog is a relevant species for biodistribution studies. DPI-4452 was rapidly eliminated from the systemic circulation of beagle dogs. The highest uptake of [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 was observed in the small intestine and stomach, 2 organs known to express CAIX. Uptake in other organs (e.g., kidneys) was remarkably low. In HT-29 and SK-RC-52 xenograft mouse models, both [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 showed tumor-selective uptake; in addition, [177Lu]Lu-DPI-4452 significantly reduced tumor growth. These results demonstrated the theranostic potential of DPI-4452. Conclusion: DPI-4452 selectively targets CAIX. [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 localized to tumors and were well tolerated in mice. [177Lu]Lu-DPI-4452 demonstrated strong tumor growth inhibition in 2 xenograft mouse models. Thus, the 2 agents potentially provide a theranostic approach for selecting and treating patients with CAIX-expressing tumors such as ccRCC, CRC, and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
| | | | - Inês Borrego
- Debiopharm International SA, Lausanne, Switzerland; and
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ahmed RF, Mahmoud WR, Abdelgawad NM, Fouad MA, Said MF. Exploring novel anticancer pyrazole benzenesulfonamides featuring tail approach strategy as carbonic anhydrase inhibitors. Eur J Med Chem 2023; 261:115805. [PMID: 37748386 DOI: 10.1016/j.ejmech.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to design potent carbonic anhydrase inhibitors (CAIs) based on pyrazole benzenesulfonamide core. Nine series of substituted pyrazole benzenesulfonamide compounds were synthesized with variable groups like sulphamoyl group as in compounds 4a-e, its bioisosteric carboxylic acid as in compounds 5a-e and 8e, ethyl carboxylate ester as in compounds 6a-e and 9a-e, which were designed as potential prodrugs, isothiazole ring as in compound 7, hydrazide derivative 10e, hydroxamic acid derivatives 11a-e and semicarbazide derivatives 12a-c,e. All the synthesized compounds were investigated for their carbonic anhydrase (CA) inhibitory activity against two human CA isoforms hCA IX and hCA XII and compared to acetazolamide (AAZ). Also, the compounds were assessed for their anticancer activity against 60 cancer cell lines according to the US NCI protocol. Compounds 4b, 5b, 5d, 5e, 6b, 9b, 9e and 11b revealed significant inhibitory activity against both isoforms hCA IX and hCA XII, while 6e, 9d, 11d and 11e showed significant inhibitory activity against hCA XII only compared to acetazolamide as a reference. This would highlight these compounds as promising anticancer drugs. Moreover, compound 6e revealed a remarkable cytostatic activity against CNS cancer cell line (SF-539; TGI = 5.58 μM), renal cancer cell line (786-0; TGI = 4.32 μM) and breast cancer cell line (HS 578 T; TGI = 5.43 μM). Accordingly, compound 6e was subjected to cell cycle analysis and apoptotic assay on the abovementioned cell lines at the specified GI50 (0.45, 0.89 and 1.18 μM, respectively). Also, it revealed the increment of total apoptotic cells percentage in 786-0 (53.19%), SF-539 (46.11%) and HS 578 T (43.55%) relative to the control cells (2.07, 2.64 and 2.52%, respectively). In silico prediction of BBB permeability showed that most of the calculations for compound 6e resulted as BBB (+), which is required for a compound targeting CNS. Further, the interaction of the most active compounds with the key amino acids in the active sites of hCA IX and hCA XII was highlighted by molecular docking analysis.
Collapse
Affiliation(s)
- Rehab F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Nagwa M Abdelgawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Ornelas A, Welch N, Countess JA, Zhou L, Wang RX, Dowdell AS, Colgan SP. Mimicry of microbially-derived butyrate reveals templates for potent intestinal epithelial HIF stabilizers. Gut Microbes 2023; 15:2267706. [PMID: 37822087 PMCID: PMC10572066 DOI: 10.1080/19490976.2023.2267706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF). It remains unclear whether BA is the optimal metabolite for such a response. In this study, we explored metabolite mimicry as an attractive strategy for the biological response to HIF. We discovered that 4-mercapto butyrate (MBA) stabilizes HIF more potently and has a longer biological half-life than BA in intestinal epithelial cells (IECs). We validated the MBA-mediated HIF transcriptional activity through the induction of classic HIF gene targets in IECs and enhanced epithelial barrier formation in vitro. In-vivo studies with MBA revealed systemic HIF stabilization in mice, which was more potent than its parent BA metabolite. Mechanistically, we found that MBA enhances oxygen consumption and that the sulfhydryl group is essential for HIF stabilization, but exclusively as a four-carbon SCFA. These findings reveal a combined biochemical mechanism for HIF stabilization and provide a foundation for the discovery of potent metabolite-like scaffolds.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Jacob A. Countess
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Liheng Zhou
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Ruth X. Wang
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| |
Collapse
|
6
|
Al Darwish FM, Meijerink L, Coolen BF, Strijkers GJ, Bekker M, Lely T, Terstappen F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023; 12:2080. [PMID: 37626890 PMCID: PMC10452979 DOI: 10.3390/cells12162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Placental hypoxia poses significant risks to both the developing fetus and the mother during pregnancy, underscoring the importance of early detection and monitoring. Effectively identifying placental hypoxia and evaluating the deterioration in placental function requires reliable biomarkers. Molecular biomarkers in placental tissue can only be determined post-delivery and while maternal blood biomarkers can be measured over time, they can merely serve as proxies for placental function. Therefore, there is an increasing demand for non-invasive imaging techniques capable of directly assessing the placental condition over time. Recent advancements in imaging technologies, including photoacoustic and magnetic resonance imaging, offer promising tools for detecting and monitoring placental hypoxia. Integrating molecular and imaging biomarkers may revolutionize the detection and monitoring of placental hypoxia, improving pregnancy outcomes and reducing long-term health complications. This review describes current research on molecular and imaging biomarkers of placental hypoxia both in human and animal studies and aims to explore the benefits of an integrated approach throughout gestation.
Collapse
Affiliation(s)
- Fatimah M. Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Lotte Meijerink
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Mireille Bekker
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Titia Lely
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| |
Collapse
|
7
|
Rotermund A, Brandt S, Staege MS, Luetzkendorf J, Mueller LP, Mueller T. Differential CMS-Related Expression of Cell Surface Carbonic Anhydrases IX and XII in Colorectal Cancer Models-Implications for Therapy. Int J Mol Sci 2023; 24:ijms24065797. [PMID: 36982873 PMCID: PMC10056265 DOI: 10.3390/ijms24065797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor-associated carbonic anhydrases IX (CAIX) and XII (CAXII) have long been in the spotlight as potential new targets for anti-cancer therapy. Recently, CAIX/CAXII specific inhibitor SLC-0111 has passed clinical phase I study and showed differential response among patients with colorectal cancer (CRC). CRC can be classified into four different consensus molecular subgroups (CMS) showing unique expression patterns and molecular traits. We questioned whether there is a CMS-related CAIX/CAXII expression pattern in CRC predicting response. As such, we analyzed transcriptomic data of tumor samples for CA9/CA12 expression using Cancertool. Protein expression pattern was examined in preclinical models comprising cell lines, spheroids and xenograft tumors representing the CMS groups. Impact of CAIX/CAXII knockdown and SLC-0111 treatment was investigated in 2D and 3D cell culture. The transcriptomic data revealed a characteristic CMS-related CA9/CA12 expression pattern with pronounced co-expression of both CAs as a typical feature of CMS3 tumors. Protein expression in spheroid- and xenograft tumor tissue clearly differed, ranging from close to none (CMS1) to strong CAIX/CAXII co-expression in CMS3 models (HT29, LS174T). Accordingly, response to SLC-0111 analyzed in the spheroid model ranged from no (CMS1) to clear (CMS3), with moderate in CMS2 and mixed in CMS4. Furthermore, SLC-0111 positively affected impact of single and combined chemotherapeutic treatment of CMS3 spheroids. In addition, combined CAIX/CAXII knockdown and more effective treatment with SLC-0111 reduced clonogenic survival of CMS3 modelling single cells. In conclusion, the preclinical data support the clinical approach of targeted CAIX/CAXII inhibition by showing linkage of expression with response and suggest that patients with CMS3-classified tumors would most benefit from such treatment.
Collapse
Affiliation(s)
- Arne Rotermund
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Sarah Brandt
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lutz P Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
8
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
9
|
Galbiati S, Gabellini D, Ambrosi A, Soriani N, Pasi F, Locatelli M, Lucianò R, Candiani M, Valsecchi L, Zerbini G, Smid M. Early increase in circulating carbonic anhydrase IX: A potential new predictive biomarker of preeclampsia. Front Mol Biosci 2023; 10:1075604. [PMID: 36743209 PMCID: PMC9892551 DOI: 10.3389/fmolb.2023.1075604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Preeclampsia (PE) is a severe complication of pregnancy. The identification of a reliable predictive biomarker could help in setting up a specific preventive strategy. To this aim, we studied carbonic anhydrase IX (CAIX) as a marker of hypoxia (a pathway involved in PE pathogenesis) and compared the diagnostic accuracy of CAIX to that of the validated biomarker sFlt1/PlGF ratio. Fifteen women with overt PE and 38 women at a risk of developing PE, sampled at different time intervals during gestation (a total of 82 plasma samples collected), were enrolled and underwent the CAIX measurement. CAIX levels significantly increased (p < .001) before the onset of the disease in women (25% of the total number) who later on developed PE when compared to women who did not, starting from 28th gestational week. The best CAIX cut-off of 68.268 pg/mL yielded a sensitivity of 100%, a specificity of 81.82%, and an AUC value of .9221. In our pilot study, when compared to the sFlt1/PlGF ratio, CAIX performed better in predicting PE before the clinical onset. Furthermore when implemented as CAIX/PlGF ratio, showed up to be comparable in the identification of women with overt early PE. In conclusion, CAIX could represent an effective predictive biomarker of PE, and larger studies are mandatory to validate this finding.
Collapse
Affiliation(s)
- Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy,*Correspondence: Silvia Galbiati,
| | - Daniela Gabellini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ambrosi
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Nadia Soriani
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pasi
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Valsecchi
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Smid
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Hiepp L, Mayr D, Gärtner K, Schmoeckel E, Klauschen F, Burges A, Mahner S, Zeidler R, Czogalla B. Carbonic anhydrase XII as biomarker and therapeutic target in ovarian carcinomas. PLoS One 2022; 17:e0271630. [PMID: 35901081 PMCID: PMC9333239 DOI: 10.1371/journal.pone.0271630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Targeting the tumor-associated carbonic anhydrase XII (CA XII) is considered a promising strategy to improve cancer treatment. As such progress is highly demanded for ovarian carcinomas, the present study aimed to provide deeper information about their CA XII expression profile. A large collection of tissue specimens was stained immunohistochemically with a specific anti-CA XII antibody to evaluate the expression in neoplastic and non-neoplastic epithelial ovarian cells. In addition, flow cytometry was used to measure CA XII expression on tumor cells from malignant ascites fluid. Binding of the antibody revealed a significant CA XII expression in most ovarian carcinoma tissue samples and ascites-derived ovarian carcinoma cells. Moreover, CA XII was expressed at higher levels in ovarian carcinomas as compared to borderline ovarian tumors and non-neoplastic ovarian epithelia. Within the carcinoma tissues, high expression of CA XII was associated with higher tumor grading and a trend towards shorter overall survival. Our results indicate that CA XII plays a crucial role for the malignancy of ovarian carcinoma cells and emphasize the potential of CA XII as a diagnostic marker and therapeutic target in the management of ovarian carcinomas.
Collapse
Affiliation(s)
- Lisa Hiepp
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathrin Gärtner
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Reinhard Zeidler
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
11
|
Tatari N, Zhang X, Chafe SC, McKenna D, Lawson KA, Subapanditha M, Shaikh MV, Seyfrid M, Savage N, Venugopal C, Moffat J, Singh SK. Dual Antigen T Cell Engagers Targeting CA9 as an Effective Immunotherapeutic Modality for Targeting CA9 in Solid Tumors. Front Immunol 2022; 13:905768. [PMID: 35874663 PMCID: PMC9296860 DOI: 10.3389/fimmu.2022.905768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastomas (GBM), the most common malignant primary adult brain tumors, are uniformly lethal and are in need of improved therapeutic modalities. GBM contain extensive regions of hypoxia and are enriched in therapy resistant brain tumor-initiating cells (BTICs). Carbonic anhydrase 9 (CA9) is a hypoxia-induced cell surface enzyme that plays an important role in maintenance of stem cell survival and therapeutic resistance. Here we demonstrate that CA9 is highly expressed in patient-derived BTICs. CA9+ GBM BTICs showed increased self-renewal and proliferative capacity. To target CA9, we developed dual antigen T cell engagers (DATEs) that were exquisitely specific for CA9-positive patient-derived clear cell Renal Cell Carcinoma (ccRCC) and GBM cells. Combined treatment of either ccRCC or GBM cells with the CA9 DATE and T cells resulted in T cell activation, increased release of pro-inflammatory cytokines and enhanced cytotoxicity in a CA9-dependent manner. Treatment of ccRCC and GBM patient-derived xenografts markedly reduced tumor burden and extended survival. These data suggest that the CA9 DATE could provide a novel therapeutic strategy for patients with solid tumors expressing CA9 to overcome treatment resistance.
Collapse
Affiliation(s)
- Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Xiaoyu Zhang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shawn C. Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Minomi Subapanditha
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathieu Seyfrid
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- *Correspondence: Sheila K. Singh,
| |
Collapse
|
12
|
Janoniene A, Mazutis L, Matulis D, Petrikaite V. Inhibition of Carbonic Anhydrase IX Suppresses Breast Cancer Cell Motility at the Single-Cell Level. Int J Mol Sci 2021; 22:11571. [PMID: 34769000 PMCID: PMC8584155 DOI: 10.3390/ijms222111571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein Carbonic Anhydrase IX (CA IX), which is expressed in various hypoxic solid tumors in order to maintain proper pH, is also related to cancer cell adhesion, invasion, and metastasis processes. Here, we investigated whether CA IX inhibition by a highly CA IX selective agent benzenesulfonamide VD11-4-2 triggers changes in individual cell motility. We seeded breast cancer cells on an extracellular matrix-coated glass-bottomed dish and in a microfluidic device with a gradient flow of epidermal growth factor (EGF), tracked individual cell movement, calculated their migration speeds, and/or followed movement direction. Our results showed that the inhibitor VD11-4-2 decreased the speed of CA IX positive breast cancer cells by 20-26% while not affecting non-cancerous cell migration. The inhibitor suppressed the cell migration velocity increment and hindered cells from reaching their maximum speed. VD11-4-2 also reduced CA IX, expressing cell movement towards the growth factor as a chemoattractant. Such a single cell-based migration assay enabled the comprehensive investigation of the cell motility and revealed that VD11-4-2 shows the ability to suppress breast cancer cell migration at a lower concentration than previously tested CA IX inhibitors.
Collapse
Affiliation(s)
| | | | | | - Vilma Petrikaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (A.J.); (L.M.); (D.M.)
| |
Collapse
|
13
|
Miller JL, Groves ML, Ahn ES, Berman DJ, Murphy JD, Rosner MK, Wolfson D, Jelin EB, Korth SA, Keiser AM, Laurie M, Millard SE, Tekes A, Baschat AA. Implementation Process and Evolution of a Laparotomy-Assisted 2-Port Fetoscopic Spina Bifida Closure Program. Fetal Diagn Ther 2021; 48:603-610. [PMID: 34518445 DOI: 10.1159/000518507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prenatal closure of open spina bifida via open fetal surgery improves neurologic outcomes for infants in selected pregnancies. Fetoscopic techniques that are minimally invasive to the uterus aim to provide equivalent fetal benefits while minimizing maternal morbidities, but the optimal technique is undetermined. We describe the development, evolution, and feasibility of the laparotomy-assisted 2-port fetoscopic technique for prenatal closure of fetal spina bifida in a newly established program. METHODS We conducted a retrospective cohort study of women consented for laparotomy-assisted fetoscopic closure of isolated fetal spina bifida. Inclusion and exclusion criteria followed the Management of Myelomeningocele Study (MOMS). Team preparation involved observation at the originating center, protocol development, ancillary staff training, and surgical rehearsal using patient-matched models through simulation prior to program implementation. The primary outcome was the ability to complete the repair fetoscopically. Secondary maternal and fetal outcomes to assess performance of the technique were collected prospectively. RESULTS Of 57 women screened, 19 (33%) consented for laparotomy-assisted 2-port fetoscopy between February 2017 and December 2019. Fetoscopic closure was completed in 84% (16/19) cases. Over time, the technique was modified from a single- to a multilayer closure. In utero hindbrain herniation improved in 86% (12/14) of undelivered patients at 6 weeks postoperatively. Spontaneous rupture of membranes occurred in 31% (5/16) of fetoscopic cases. For completed cases, median gestational age at birth was 37 (range 27-39.6) weeks and 50% (8/16) of women delivered at term. Vaginal birth was achieved in 56% (9/16) of patients. One newborn had a cerebrospinal fluid leak that required postnatal surgical repair. CONCLUSION Implementation of a laparotomy-assisted 2-port fetoscopic spina bifida closure program through rigorous preparation and multispecialty team training may accelerate the learning curve and demonstrates favorable obstetric and perinatal outcomes.
Collapse
Affiliation(s)
- Jena L Miller
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mari L Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward S Ahn
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Berman
- Division of Obstetric, Gynecologic and Fetal Anesthesiology, Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie D Murphy
- Division of Obstetric, Gynecologic and Fetal Anesthesiology, Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mara K Rosner
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denise Wolfson
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric B Jelin
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah A Korth
- Keelty Center for Spina Bifida and Related Conditions, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Amaris M Keiser
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Melissa Laurie
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah E Millard
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ahmet A Baschat
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
15
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
16
|
The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. J Mol Med (Berl) 2020; 98:1431-1446. [PMID: 32803272 PMCID: PMC7525286 DOI: 10.1007/s00109-020-01959-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
Abstract
Abstract Acidosis characterizes the microenvironment of most solid tumors and is considered a new hallmark of cancer. It is mainly caused by both “aerobic” and “anaerobic” glycolysis of differently adapted cancer cells, with the final product lactic acid being responsible of the extracellular acidification. Many evidences underline the role of extracellular acidosis in tumor progression. Among the different findings, we demonstrated that acidosis-exposed cancer cells are characterized by an epithelial-to-mesenchymal transition phenotype with high invasive ability, high resistance to apoptosis, anchorage-independent growth, and drug therapy. Acidic melanoma cells over-express SOX2, which is crucial for the maintenance of their oxidative metabolism, and carbonic anhydrase IX, that correlates with poor prognosis of cancer patients. Considering these evidences, we realized that the profile outlined for acid cancer cells inevitably remind us the stemness profile. Therefore, we wondered whether extracellular acidosis might induce in cancer cells the acquisition of stem-like properties and contribute to the expansion of the cancer stem cell sub-population. We found that a chronic adaptation to acidosis stimulates in cancer cells the expression of stem-related markers, also providing a high in vitro/in vivo clonogenic and trans-differentiating ability. Moreover, we observed that the acidosis-induced stem-like phenotype of melanoma cells was reversible and related to the EMT induction. These findings help to characterize a further aspect of stem cell niche, contributing to the sustainment and expansion of cancer stem cell subpopulation. Thus, the usage of agents controlling tumor extracellular acidosis might acquire great importance in the clinic for the treatment of aggressive solid tumor. Key messages • Extracellular acidosis up-regulates EMT and stem-related markers in melanoma cells • Acidic medium up-regulates in vitro self-renewal capacity of melanoma cells • Chronic acidosis adaptation induces trans-differentiation ability in melanoma cells • Melanoma cells adapted to acidosis show higher tumor-initiating potential than control cells • Extracellular acidosis promotes a stem-like phenotype in prostate and colorectal carcinoma cells
Collapse
|
17
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
18
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
19
|
Suri BK, Schmidtchen A, Verma NK. Carbonic anhydrases in human keratinocytes and their regulation by all‐
trans
retinoic acid and 1α,25‐dihydroxyvitamin D
3. Exp Dermatol 2019; 28:976-980. [DOI: 10.1111/exd.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Bani Kaur Suri
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore Singapore
| | - Artur Schmidtchen
- Copenhagen Wound Healing Center Bispebjerg Hospital Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Division of Dermatology and Venereology Department of Clinical Sciences Lund University Lund Sweden
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore Singapore
- Skin Research Institute of Singapore Singapore Singapore
| |
Collapse
|
20
|
Tupá V, Drahošová S, Grendár M, Adamkov M. Expression and association of carbonic anhydrase IX and cyclooxygenase-2 in colorectal cancer. Pathol Res Pract 2019; 215:705-711. [DOI: 10.1016/j.prp.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
|
21
|
Méhes G, Matolay O, Beke L, Czenke M, Jóna Á, Miltényi Z, Illés Á, Bedekovics J. Hypoxia-related carbonic anhydrase IX expression is associated with unfavourable response to first-line therapy in classical Hodgkin's lymphoma. Histopathology 2019; 74:699-708. [PMID: 30636023 DOI: 10.1111/his.13808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
Abstract
AIMS The present study evaluates the impact of hypoxia-related carbonic anhydrase IX and XII isoenzyme expression as a basic adaptive mechanism to neutralise intracellular acidosis in classical Hodgkin's lymphoma (cHL). METHODS AND RESULTS Eighty-one primary biopsies and 15 relapsed tissue samples diagnosed with cHL were analysed for necrosis, CAIX and CAXII expression and cell proliferation to compare hypoxia-related histological and functional data with survival characteristics. Variable, but highly selective cell membrane CAIX expression could be demonstrated in Hodgkin-Reed-Sternberg (HRS) cells in 39 of 81 samples (48.1%), while virtually no staining presented in their microenvironment. In contrast, CAXII expression in HRS cells could be demonstrated in only 18 of 77 samples (23.4%), with significant stromal positivity (50 of 77, 64.9%). The CAIX+ positive phenotype was strongly associated with lymphocyte depletion (four of four, 100%) and nodular sclerosis (29 of 51, 56.9%) subtypes. CAIX/Ki-67 dual immunohistochemistry demonstrated suppressed cell proliferation in CAIX+ positive compared to CAIX- negative HRS cells (P < 0.001). Seventy-two months' progression-free survival (PFS) was significantly lower for the CAIX positive group (0.192) compared with the CAIX negative group (0.771) (P < 0.001), while the overall survival (OS) did not differ (P = 0.097). CONCLUSION Hypoxic stress-related adaptation - highlighted by CAIX expression - results in cellular quiescence in HRS cells, potentially contributing to the short-term failure of the standard chemotherapy in cHL.
Collapse
Affiliation(s)
- Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Matolay
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Livia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marianna Czenke
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Jóna
- Hematology Division, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsofia Miltényi
- Hematology Division, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Hematology Division, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Sanz Cortes M. Heated humidified carbon dioxide for partial uterine insufflation in fetoscopic myelomeningocele repair: insights from animal model. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:290-292. [PMID: 30835369 DOI: 10.1002/uog.20227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Linked Comment: Ultrasound Obstet Gynecol 2018; 53: 340-347.
Collapse
Affiliation(s)
- M Sanz Cortes
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA; and Texas Children's Hospital, Pavilion for Women, 6651 Main St., Suite 1040.20, Houston, TX, 77030, USA
| |
Collapse
|
23
|
Abstract
INTRODUCTION Spina bifida is the most common non-lethal congenital birth defect of the central nervous system that causes chronic disability due to the combined effects of local nerve damage and the sequelae of non-communicating hydrocephalus. This abnormality can be identified early in gestation and the damage can be progressive over the course of pregnancy. Advances in fetal treatment have made minimally invasive prenatal surgery a realistic consideration for spina bifida in order to improve the outcome for children affected this condition. EVIDENCE ACQUISITION Prenatal surgery for spina bifida via open fetal surgery with hysterotomy decreases the rate of ventriculoperitoneal shunt placement and improves motor function compared to standard postnatal surgery. Maternal risks of open fetal surgery are primarily related to complications of the hysterotomy including thinning or rupture that begins in the index pregnancy but persists for every future pregnancy. Minimizing maternal risks is the largest impetus to explore and optimize a minimally invasive fetoscopic alternative. Techniques vary from using a complete percutaneous approach to open fetoscopy, which requires laparotomy but is minimally invasive to the uterus. This allows vaginal delivery at term and no scar complications are reported thus far. Fetal short-term neurosurgical outcomes compare favorably with improvement in hindbrain herniation >70% and decreased need for treatment for hydrocephalus between 40-45% after prenatal surgery performed either fetoscopically or through open fetal surgery. EVIDENCE SYNTHESIS Maternal obstetric outcomes are superior for fetoscopic spina bifida repair compared to open fetal surgery and avoids the ongoing risk in future pregnancy. Neonatal and infant benefits appear equivalent. The open fetoscopic approach minimizes the risk of ruptured membranes and subsequent preterm delivery as opposed to a completely percutaneous procedure. International collaboration is ongoing to share experience and assess long term treatment effects. CONCLUSIONS Continued refinement of a minimally invasive strategy for prenatal treatment of spina bifida is necessary to maximize benefits to the child and further minimize maternal risks and preterm birth.
Collapse
Affiliation(s)
- Jena L Miller
- Department of Gynecology and Obstetrics, The Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA -
| | - Mari L Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmet A Baschat
- Department of Gynecology and Obstetrics, The Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Mboge MY, Chen Z, Wolff A, Mathias JV, Tu C, Brown KD, Bozdag M, Carta F, Supuran CT, McKenna R, Frost SC. Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition. PLoS One 2018; 13:e0207417. [PMID: 30452451 PMCID: PMC6242694 DOI: 10.1371/journal.pone.0207417] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrases (CAs) have been linked to tumor progression, particularly membrane-bound CA isoform IX (CA IX). The role of CA IX in the context of breast cancer is to regulate the pH of the tumor microenvironment. In contrast to CA IX, expression of CA XII, specifically in breast cancer, is associated with better outcome despite performing the same catalytic function. In this study, we have structurally modeled the orientation of bound ureido-substituted benzene sulfonamides (USBs) within the active site of CA XII, in comparison to CA IX and cytosolic off-target CA II, to understand isoform specific inhibition. This has identified specific residues within the CA active site, which differ between isoforms that are important for inhibitor binding and isoform specificity. The ability of these sulfonamides to block CA IX activity in breast cancer cells is less effective than their ability to block activity of the recombinant protein (by one to two orders of magnitude depending on the inhibitor). The same is true for CA XII activity but now they are two to three orders of magnitude less effective. Thus, there is significantly greater specificity for CA IX activity over CA XII. While the inhibitors block cell growth, without inducing cell death, this again occurs at two orders of magnitude above the Ki values for inhibition of CA IX and CA XII activity in their respective cell types. Surprisingly, the USBs inhibited cell growth even in cells where CA IX and CA XII expression was ablated. Despite the potential for these sulfonamides as chemotherapeutic agents, these data suggest that we reconsider the role of CA activity on growth potentiation.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Zhijuan Chen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Alyssa Wolff
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - John V. Mathias
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Kevin D. Brown
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Murat Bozdag
- University of Florence, NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Sesto Fiorentino (Florence), Italy
| | - Claudiu T. Supuran
- University of Florence, NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Sesto Fiorentino (Florence), Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
25
|
Skinner S, DeKoninck P, Crossley K, Amberg B, Deprest J, Hooper S, Hodges R. Partial amniotic carbon dioxide insufflation for fetal surgery. Prenat Diagn 2018; 38:983-993. [PMID: 30238473 DOI: 10.1002/pd.5362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
Partial amniotic carbon dioxide insufflation (PACI) involves insufflating the amniotic sac with carbon dioxide (CO2 ) and, in some cases, draining some of the amniotic fluid. The creation of a gaseous intra-amniotic compartment improves visualization, even in the presence of limited bleeding, and creates the work space required for complex fetoscopic procedures. Clinically, PACI is mostly used to perform fetoscopic myelomeningocele (MMC) repair, enabling a minimally invasive alternative to open fetal surgery. However, evidence of the fetal safety of PACI is limited. Previous animal experiments in sheep demonstrate that PACI induces fetal hypercapnia and acidosis with largely unknown short and longer term implications. In this review, we examine the literature for the physiological effects of intrauterine insufflation pressure, duration, humidity, and the role of maternal hyperventilation on fetal physiology and well-being.
Collapse
Affiliation(s)
- Sasha Skinner
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Philip DeKoninck
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Perinatal Services Monash Health, Monash Medical Centre, Clayton, Australia
| | - Kelly Crossley
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Benjamin Amberg
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Jan Deprest
- Division of Woman and Child, Department of Obstetrics & Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - Stuart Hooper
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Ryan Hodges
- The Ritchie Centre, Hudson Institute for Medical Research, Clayton, Australia.,Perinatal Services Monash Health, Monash Medical Centre, Clayton, Australia
| |
Collapse
|
26
|
Mahalingam SM, Chu H, Liu X, Leamon CP, Low PS. Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence Imaging of Hypoxic Tumors. Bioconjug Chem 2018; 29:3320-3331. [PMID: 30185025 DOI: 10.1021/acs.bioconjchem.8b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Use of tumor-targeted fluorescence dyes to help surgeons identify otherwise undetected tumor nodules, decrease the incidence of cancer-positive margins, and facilitate localization of malignant lymph nodes has demonstrated considerable promise for improving cancer debulking surgery. Unfortunately, the repertoire of available tumor-targeted fluorescent dyes does not permit identification of all cancer types, raising the need to develop additional tumor-specific fluorescent dyes to ensure localization of all malignant lesions during cancer surgeries. By comparing the mRNA levels of the hypoxia-induced plasma membrane protein carbonic anhydrase IX (CA IX) in 13 major human cancers with the same mRNA levels in corresponding normal tissues, we document that CA IX constitutes a nearly universal marker for the design of tumor-targeted fluorescent dyes. Motivated by this expression profile, we synthesize two new CA IX-targeted near-infrared (NIR) fluorescent imaging agents and characterize their physical and biological properties both in vitro and in vivo. We report that conjugation of either acetazolamide or 6-aminosaccharin (i.e., two CA-IX-specific ligands) to the NIR fluorescent dye, S0456, via an extended phenolic spacer creates a brightly fluorescent dye that binds CA IX with high affinity and allows rapid visualization of hypoxic regions of solid tumors at depths >1 cm beneath a tissue surface. Taken together, these data suggest that a CA IX-targeted NIR dye can constitute a useful addition to a cocktail of tumor-targeted NIR dyes designed to image all human cancers.
Collapse
Affiliation(s)
| | - Haiyan Chu
- Endocyte Inc. , 3000 Kent Avenue , West Lafayette , Indiana 47906 , United States
| | | | - Christopher P Leamon
- Endocyte Inc. , 3000 Kent Avenue , West Lafayette , Indiana 47906 , United States
| | | |
Collapse
|
27
|
Baschat AA, Ahn ES, Murphy J, Miller JL. Fetal blood-gas values during fetoscopic myelomeningocele repair performed under carbon dioxide insufflation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:400-402. [PMID: 29750436 DOI: 10.1002/uog.19083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Fetoscopic myelomeningocele (MMC) repair is performed using intrauterine carbon dioxide (CO2 ) insufflation. Sheep experiments have shown that CO2 insufflation is associated with significant fetal acidemia; however, corresponding data for human pregnancy are not available. We performed umbilical venous cord blood sampling in three patients during fetoscopic MMC repair at 25 + 1, 25 + 3 and 24 + 0 weeks' gestation, respectively. Fetal venous pH at the beginning of CO2 insufflation was 7.36, 7.46 and 7.37, respectively in the three fetuses, and repeat values were 7.28, 7.35 and 7.36 after 181, 159 and 149 min, respectively. The partial pressure of oxygen and CO2 was maintained in the normal range during these times, and pH decrease was less in Patient 3 who received humidified CO2 insufflation. Our observations suggest that, in contrast to sheep experiments, CO2 insufflation during fetoscopic myelomeningocele repair does not cause acidemia in human fetuses. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- A A Baschat
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - E S Ahn
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J Murphy
- Division of Obstetric Anesthesiology, Department of Anesthesia & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J L Miller
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Li T, Liu X, Riederer B, Nikolovska K, Singh AK, Mäkelä KA, Seidler A, Liu Y, Gros G, Bartels H, Herzig KH, Seidler U. Genetic ablation of carbonic anhydrase IX disrupts gastric barrier function via claudin-18 downregulation and acid backflux. Acta Physiol (Oxf) 2018; 222:e12923. [PMID: 28748627 PMCID: PMC5901031 DOI: 10.1111/apha.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/21/2016] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
Aim This study aimed to explore the molecular mechanisms for the parietal cell loss and fundic hyperplasia observed in gastric mucosa of mice lacking the carbonic anhydrase 9 (CAIX). Methods We assessed the ability of CAIX‐knockout and WT gastric surface epithelial cells to withstand a luminal acid load by measuring the pHi of exteriorized gastric mucosa in vivo using two‐photon confocal laser scanning microscopy. Cytokines and claudin‐18A2 expression was analysed by RT‐PCR. Results CAIX‐knockout gastric surface epithelial cells showed significantly faster pHi decline after luminal acid load compared to WT. Increased gastric mucosal IL‐1β and iNOS, but decreased claudin‐18A2 expression (which confer acid resistance) was observed shortly after weaning, prior to the loss of parietal and chief cells. At birth, neither inflammatory cytokines nor claudin‐18 expression were altered between CAIX and WT gastric mucosa. The gradual loss of acid secretory capacity was paralleled by an increase in serum gastrin, IL‐11 and foveolar hyperplasia. Mild chronic proton pump inhibition from the time of weaning did not prevent the claudin‐18 decrease nor the increase in inflammatory markers at 1 month of age, except for IL‐1β. However, the treatment reduced the parietal cell loss in CAIX‐KO mice in the subsequent months. Conclusions We propose that CAIX converts protons that either backflux or are extruded from the cells rapidly to CO2 and H2O, contributing to tight junction protection and gastric epithelial pHi regulation. Lack of CAIX results in persistent acid backflux via claudin‐18 downregulation, causing loss of parietal cells, hypergastrinaemia and foveolar hyperplasia.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - X. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
- Department of Department of Gastroenterology; Affiliated Hospital of Zunyi Medical College; Zunyi China
| | - B. Riederer
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. Nikolovska
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - A. K. Singh
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. A. Mäkelä
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - A. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - Y. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - G. Gros
- Department of Physiology; Hannover Medical School; Hannover Germany
| | - H. Bartels
- Department of Anatomy; Hannover Medical School; Hannover Germany
| | - K. H. Herzig
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - U. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| |
Collapse
|
29
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
30
|
Waheed A, Sly WS. Carbonic anhydrase XII functions in health and disease. Gene 2017; 623:33-40. [PMID: 28433659 PMCID: PMC5851007 DOI: 10.1016/j.gene.2017.04.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Human CAXII was initially identified as a cancer marker in different cancers and tumors. Expression of CAXII is regulated by hypoxia and estrogen receptors. CAXII expression has been also detected in several tissues, whereas in cancer and tumor tissues its expression is several fold higher. In brain tumors, an alternatively spliced form of CAXII is expressed. Higher expression of CAXII in breast cancer is indicative of lower grade disease. CAXII plays a key role in several physiological functions. Mutation in the CAXII gene causes cystic fibrosis-like syndrome and salt wasting disease. CAXII is also seen in nuclear pulposus cells of the vertebrae. Aging dependent stiffness or degeneration of backbone correlates with CAXII expression level. This finding suggests a possible implication of CAXII as a biomarker for chronic back pain and a pharmacological target for possible treatment of chronic back pain.
Collapse
Affiliation(s)
- Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
31
|
Abstract
One of the differences between normal and cancer cells is lower pH of the extracellular space in tumors. Low pH in the extracellular space activates proteases and stimulates tumor invasion and metastasis. Tumor cells display higher level of the HIF1α transcription factor that promotes cell switch from mitochondrial respiration to glycolysis. The terminal product of glycolysis is lactate. Lactate formation from pyruvate is catalyzed by the specific HIF1α-dependent isoform of lactate dehydrogenase A. Because lactate accumulation is deleterious for the cell, it is actively exported by monocarboxylate transporters. Lactate is cotransported with proton, which acidifies the extracellular space. Another protein that contributes to proton concentration increase in the extracellular space is tumor-specific HIF1α-dependent carbonic anhydrase IX, which generates a proton in the reaction between carbon dioxide and water. The activity of Na+/H+ exchanger (another protein pump) is stimulated by stress factors (e.g. osmotic shock) and proliferation stimuli. This review describes the mechanisms of proton pump activation and reviews results of studies on effects of various proton pump inhibitors on tumor functioning and growth in cell culture and in vivo. The prospects of combined application of proton pump inhibitors and cytostatics in cancer therapy are discussed.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Ministry of Health, Moscow, 115478, Russia.
| |
Collapse
|
32
|
Kalavska K, Cierna Z, Chovanec M, Takacova M, Svetlovska D, Miskovska V, Obertova J, Palacka P, Rajec J, Sycova-Mila Z, Machalekova K, Kajo K, Spanik S, Mardiak J, Babal P, Pastorekova S, Mego M. Prognostic value of intratumoral carbonic anhydrase IX expression in testicular germ cell tumors. Oncol Lett 2017; 13:2177-2185. [PMID: 28454378 PMCID: PMC5403396 DOI: 10.3892/ol.2017.5745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent a highly curable malignancy, however a small proportion of patients fails to be cured with cisplatin-based chemotherapy. Carbonic anhydrase IX (CA IX) is upregulated by hypoxia in several cancer types and correlates with a poor prognosis. The present translational study evaluated expression and prognostic value of CA IX in TGCTs. Surgical specimens from 228 patients with TGCTs were processed by the tissue microarray method and subjected to immunohistochemistry with the M75 monoclonal antibody. CA IX expression was evaluated in tumors vs. adjacent normal testicular tissues and correlated with clinicopathological characteristics and clinical outcome. CA IX expression was detected in 62 (30.2%) of TGCTs compared to 0 (0%) of normal tissue adjacent to testicular tumor (P<0.001). The highest frequency of the CA IX expression was detected in teratoma (39.0%), followed by seminoma (22.7%), yolk sac tumor (22.2%), embryonal carcinoma (11.9%) and choriocarcinoma (7.7%). None of germ cell neoplasias in situ (GCNIS) exhibited CA IX expression. Patients without the CA IX tumor expression showed significantly better progression-free survival, but not overall survival, compared to patients with the CA IX expression [hazard ratio (HR), 0.57; 95% CI, 0.32-1.02; P=0.037 and HR, 0.58; 95% CI, 0.29-1.16; P=0.088, respectively]. There was no significant correlation between the CA IX expression and clinicopathological variables. The intratumoral CA IX expression can serve as a prognostic marker in the TGCT patients. These results suggest that activation of the hypoxia-induced pathways may be important in the treatment failure in TGCTs patients.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovak Republic
| | - Michal Chovanec
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Viera Miskovska
- First Department of Oncology, Faculty of Medicine, Comenius University and St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
- Department of Oncology, St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
| | - Jana Obertova
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Patrik Palacka
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Jan Rajec
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Zuzana Sycova-Mila
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Katarina Machalekova
- Department of Pathology, Slovak Medical University, 833 03 Bratislava, Slovak Republic
| | - Karol Kajo
- Department of Pathology, Slovak Medical University, 833 03 Bratislava, Slovak Republic
| | - Stanislav Spanik
- First Department of Oncology, Faculty of Medicine, Comenius University and St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
- Department of Oncology, St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
| | - Jozef Mardiak
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
33
|
Tolba E, Müller WEG, Abd El-Hady BM, Neufurth M, Wurm F, Wang S, Schröder HC, Wang X. High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/vaterite. J Mater Chem B 2015; 4:376-386. [PMID: 32263204 DOI: 10.1039/c5tb02228b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In human bone, amorphous calcium carbonate (ACC) is formed as a precursor of the crystalline carbonated apatite/hydroxyapatite (HA). Here we describe that the metastable ACC phase can be stabilized by inorganic polyphosphate (polyP) that is also used as a phosphate source for the non-enzymatic carbonate/phosphate exchange during HA formation. This polymer was found to suppress the transformation of ACC into crystalline CaCO3 at a percentage of 5% [w/w] ("CCP5") with respect to CaCO3 and almost completely at 10% [w/w] ("CCP10"). Both preparations (CaCO3/polyP) are amorphous, but also contain small amounts of vaterite, as revealed by XRD, FTIR and SEM analyses. They did not affect the growth/viability of SaOS-2 cells. Cell culture and Ca2+ release experiments revealed that the CaCO3 particles formed in the presence of polyP (CaCO3/polyP) are degradable and, unlike calcite, become disintegrated with time during the cell culture incubation. Again in contrast to calcite, "CCP5" and "CCP10" were found to exhibit osteogenic activity and induce the expression of alkaline phosphatase gene in SaOS-2 cells as well as in human mesenchymal stem cells (MSC). In vivo studies in rats, using PLGA microspheres inserted in the muscles of the back of the animals, revealed that the encapsulated "CCP10" is not only biocompatible but also supports the regeneration at the implant region. We conclude that ACC containing small amounts of vaterite has osteogenic potential and offers superior properties compared to the biologically inert calcite with respect to a potential application as a scaffold material for bone implants.
Collapse
Affiliation(s)
- Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Takahashi H, Suzuki Y, Nishimura J, Haraguchi N, Ohtsuka M, Miyazaki S, Uemura M, Hata T, Takemasa I, Mizushima T, Yamamoto H, Doki Y, Mori M. Characteristics of carbonic anhydrase 9 expressing cells in human intestinal crypt base. Int J Oncol 2015; 48:115-22. [PMID: 26648507 DOI: 10.3892/ijo.2015.3260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Though recent studies have revealed that stem cells of many tissues are harbored in hypoxic microenvironment, little is known about the relationship between hypoxia and intestinal crypt base, where intestinal stem cells are supposed to exist. In this study, we focused on carbonic anhydrase IX (CA9), a hypoxia-inducible membrane-tethered protein, in normal intestinal crypt base, adenoma and early colorectal cancer. Using surgically resected human colorectal cancer specimen, we searched for the expression pattern and functional association of CA9 in human adult normal intestinal epithelia, adenoma and early colorectal cancer by immunofluorescent and immunohistochemical staining, flow cytometry, and quantitative real-time-polymerase chain reaction. We demonstrated that almost all crypt base slender cells in ileum and crypt base cells with eosinophilic structure in their basal cytoplasm in right and left colon were CA9+ with the ratio of 25 to 40%, and that adenoma and T1 colorectal cancer showed broad expression of CA9. Flow cytometrically sorted CA9+ population showed increased mRNA level of a Wnt signaling factor AXIN2. In conclusion, these observations indicate that CA9 expression in normal crypt base cells has association with intestinal epithelial stemness and CA9 may be involved in the carcinogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yozo Suzuki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahisa Ohtsuka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Susumu Miyazaki
- Department of Surgery, Osaka General Medical Center, Higashi Sumiyoshi-Ku, Osaka 558-0056, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Pinard MA, Aggarwal M, Mahon BP, Tu C, McKenna R. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX. Acta Crystallogr F Struct Biol Commun 2015; 71:1352-8. [PMID: 26457530 PMCID: PMC4601603 DOI: 10.1107/s2053230x1501239x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.
Collapse
Affiliation(s)
- Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mayank Aggarwal
- Division of Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Ravishankar S, Bourjeily G, Lambert-Messerlian G, He M, De Paepe ME, Gündoğan F. Evidence of Placental Hypoxia in Maternal Sleep Disordered Breathing. Pediatr Dev Pathol 2015; 18:380-6. [PMID: 26186234 DOI: 10.2350/15-06-1647-oa.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sleep disordered breathing (SDB) represents a spectrum of disorders, including habitual snoring and obstructive sleep apnea (OSA). Sleep disordered breathing is characterized by chronic intermittent hypoxia, airflow limitation, and recurrent arousals, which may lead to tissue hypoperfusion, hypoxia, and inflammation. In this study, we aimed to examine whether SDB during pregnancy was associated with histopathologic evidence of chronic placental hypoxia and/or uteroplacental underperfusion. The placentas of women with OSA (n = 23) and habitual snoring (n = 78) as well as nonsnorer controls (n = 47) were assessed for histopathologic and immunohistochemical markers of chronic hypoxia and uteroplacental underperfusion. Fetal normoblastemia was significantly more prevalent in SDB placentas than in those of nonsnorer controls (34.6% and 56.5% in snorers and OSA, respectively, versus 6.4% in controls). Expression of the tissue hypoxia marker carbonic anhydrase IX (CAIX) was more common in OSA placentas than controls (81.5% and 91.3% in snorers and OSA, respectively, versus 57.5% in controls). Adjusting for confounders such as body mass index, diabetes mellitus, or chronic hypertension did not alter the results. The uteroplacental underperfusion scores were similar among the 3 groups. Our findings suggest that SDB during pregnancy is associated with fetoplacental hypoxia, as manifested by fetal normoblastemia and increased placental carbonic anhydrase IX immunoreactivity. The clinical implications and underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Sanjita Ravishankar
- 1 Department of Pathology, Women and Infants Hospital, Providence, RI 02905, USA.,2 Department of Pathology and Laboratory Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - Ghada Bourjeily
- 3 Department of Medicine, Miriam Hospital, Providence, RI, USA.,4 Department of Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - Geralyn Lambert-Messerlian
- 1 Department of Pathology, Women and Infants Hospital, Providence, RI 02905, USA.,2 Department of Pathology and Laboratory Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - Mai He
- 1 Department of Pathology, Women and Infants Hospital, Providence, RI 02905, USA.,2 Department of Pathology and Laboratory Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - Monique E De Paepe
- 1 Department of Pathology, Women and Infants Hospital, Providence, RI 02905, USA.,2 Department of Pathology and Laboratory Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - Füsun Gündoğan
- 1 Department of Pathology, Women and Infants Hospital, Providence, RI 02905, USA.,2 Department of Pathology and Laboratory Medicine, Alpert Medical School at Brown University, Providence, RI, 02905, USA
| |
Collapse
|
37
|
Ledaki I, McIntyre A, Wigfield S, Buffa F, McGowan S, Baban D, Li JL, Harris AL. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition. Oncotarget 2015; 6:19413-27. [PMID: 26305601 PMCID: PMC4637295 DOI: 10.18632/oncotarget.4989] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/16/2015] [Indexed: 01/16/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not. The CAIX+ve population is enriched with cells expressing cancer stem cell markers and which have high self-renewal capacity. We show that differential CAIX expression is due to differences in chromatin structure. To further investigate the relationship between chromatin organization and hypoxic induction of CAIX expression we investigated the effect of JQ1 an inhibitor of BET bromodomain proteins and A366 a selective inhibitor of the H3K9 methyltransferase G9a/GLP. We identified that these drugs were able to modulate hypoxic CAIX expression induction. This further highlights the role of epigenetic modification in adaption to hypoxia and also in regulation of heterogeneity of cells within tumours. Interestingly, we identified that the two subpopulations show a differential sensitivity to HDAC inhibitors, NaBu or SAHA, with the CAIX positive showing greater sensitivity to treatment. We propose that drugs modulating chromatin regulation of expression may be used to reduce heterogeneity induced by hypoxia and could in combination have significant clinical consequences.
Collapse
Affiliation(s)
- Ioanna Ledaki
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Alan McIntyre
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Simon Wigfield
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Francesca Buffa
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Simon McGowan
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Dilair Baban
- High Throughput Genomics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ji-liang Li
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
38
|
Mahon BP, Lomelino CL, Ladwig J, Rankin GM, Driscoll JM, Salguero AL, Pinard MA, Vullo D, Supuran CT, Poulsen SA, McKenna R. Mapping Selective Inhibition of the Cancer-Related Carbonic Anhydrase IX Using Structure–Activity Relationships of Glucosyl-Based Sulfamates. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brian P. Mahon
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Carrie L. Lomelino
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Janina Ladwig
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jenna M. Driscoll
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Antonieta L. Salguero
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Melissa A. Pinard
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Daniela Vullo
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Robert McKenna
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| |
Collapse
|
39
|
Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM, Bénard F. Trimeric Radiofluorinated Sulfonamide Derivatives to Achieve In Vivo Selectivity for Carbonic Anhydrase IX–Targeted PET Imaging. J Nucl Med 2015. [DOI: 10.2967/jnumed.114.153288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Wang T, Eskandari D, Zou D, Grote L, Hedner J. Increased Carbonic Anhydrase Activity is Associated with Sleep Apnea Severity and Related Hypoxemia. Sleep 2015; 38:1067-73. [PMID: 25845687 DOI: 10.5665/sleep.4814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/25/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The catalytic function of the enzyme carbonic anhydrase (CA) plays a fundamental role in carbon dioxide (CO2), proton (H(+)), and bicarbonate (HCO3(-)) homeostasis. Hypoxia and tissue acidosis have been proposed to increase physiological CA activity in various compartments of the body. We hypothesized that CA activity in blood is upregulated in patients with obstructive sleep apnea (OSA). DESIGN Cross-sectional analysis of a sleep clinic cohort. SETTINGS Sleep laboratory at a university hospital. PARTICIPANTS Seventy referred patients with suspected OSA (48 males, age 54 ± 13 y, apnea-hypopnea index (AHI) median [interquartile range] 21 [8-41] n/h). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS In-laboratory cardiorespiratory polygraphy was used to assess OSA. CA activity was determined by an in vitro assay that quantifies the pH change reflecting the conversion of CO2 and H2O to HCO3(-) and H(+). CA activity was positively associated with AHI and 4% oxygen desaturation index (ODI4) (Spearman correlation r = 0.44 and 0.47, both P < 0.001). The associations (CA activity versus logAHI and CA versus logODI4) were independent of sex, age, body mass index, presleep oxygen saturation, nocturnal oxygen saturation, hypertension status, and use of diuretic medication in two generalized linear models (P = 0.007 and 0.011, respectively). Sitting diastolic blood pressure was associated with CA activity after adjustment of sex, age, body mass index, mean oxygen saturation, and AHI (P = 0.046). CONCLUSIONS Carbonic anhydrase (CA) activity increased with apnea-hypopnea index and related nocturnal hypoxemia measures in patients with obstructive sleep apnea (OSA). Altered CA activity may constitute a component that modulates respiratory control and hemodynamic regulation in patients with OSA.
Collapse
Affiliation(s)
- Tengyu Wang
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Davoud Eskandari
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ding Zou
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ludger Grote
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Hedner
- Center for Sleep and Vigilance Disorders, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Wang G, Cheng Z, Liu F, Zhang H, Li J, Li F. CREB is a key negative regulator of carbonic anhydrase IX (CA9) in gastric cancer. Cell Signal 2015; 27:1369-79. [DOI: 10.1016/j.cellsig.2015.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/14/2015] [Accepted: 03/29/2015] [Indexed: 12/11/2022]
|
42
|
Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Molecules 2015; 20:2323-48. [PMID: 25647573 PMCID: PMC6272707 DOI: 10.3390/molecules20022323] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022] Open
Abstract
Metastatic tumors are often hypoxic exhibiting a decrease in extracellular pH (~6.5) due to a metabolic transition described by the Warburg Effect. This shift in tumor cell metabolism alters the tumor milieu inducing tumor cell proliferation, angiogenesis, cell motility, invasiveness, and often resistance to common anti-cancer treatments; hence hindering treatment of aggressive cancers. As a result, tumors exhibiting this phenotype are directly associated with poor prognosis and decreased survival rates in cancer patients. A key component to this tumor microenvironment is carbonic anhydrase IX (CA IX). Knockdown of CA IX expression or inhibition of its activity has been shown to reduce primary tumor growth, tumor proliferation, and also decrease tumor resistance to conventional anti-cancer therapies. As such several approaches have been taken to target CA IX in tumors via small-molecule, anti-body, and RNAi delivery systems. Here we will review recent developments that have exploited these approaches and provide our thoughts for future directions of CA IX targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
43
|
Mboge MY, McKenna R, Frost SC. Advances in Anti-Cancer Drug Development Targeting Carbonic Anhydrase IX and XII. TOPICS IN ANTI-CANCER RESEARCH 2015; 5:3-42. [PMID: 30272043 PMCID: PMC6162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microenvironment within a solid tumor is heterogeneous with regions being both acidic and hypoxic. As a result of this, cancer cells upregulate genes that allow survival in such environments. Some of these genes are pH regulatory factors, including carbonic anhydrase IX (CA IX) and in some cases XII (CA XII). CA IX helps to maintain normal cytoplasmic pH (pHi) while simultaneously contributing to the extracellular pH (pHe). CA XII is also thought to be responsible for stabilizing pHe at physiological conditions. Extracellular acidification of the tumor microenvironment promotes local invasion and metastasis while decreasing the effectiveness of adjuvant therapies, thus contributing to poor cancer clinical outcomes. In this review, we describe the properties of CA IX and CA XII that substantiate their potential use as anticancer targets. We also discuss the current status of CA isoform-selective inhibitor development and patents of CA IX/XII targeted inhibitors that show potential for treating aggressive tumors. Some of the recently published patents discussed include sulfonamide-based small molecule inhibitors including derivatives of boron cluster compounds; metal complexes of poly(carboxyl)amine-containing ligands; nitroi-midazole-, ureidosulfonamide-, and coumarin-based compounds; as well as G250 and A610 monoclonal antibodies for cancer treatment.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| | | | - Susan C. Frost
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| |
Collapse
|
44
|
Ilardi G, Zambrano N, Merolla F, Siano M, Varricchio S, Vecchione M, De Rosa G, Mascolo M, Staibano S. Histopathological determinants of tumor resistance: a special look to the immunohistochemical expression of carbonic anhydrase IX in human cancers. Curr Med Chem 2014; 21:1569-82. [PMID: 23992304 PMCID: PMC3979091 DOI: 10.2174/09298673113209990227] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/20/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
Intrinsic and acquired drug resistance of tumor cells still causes the failure of treatment regimens in advanced
human cancers. It may be driven by intrinsic tumor cells features, or may also arise from micro environmental influences.
Hypoxia is a microenvironment feature associated with the aggressiveness and metastasizing ability of human solid cancers.
Hypoxic cancer cells overexpress Carbonic Anhydrase IX (CA IX). CA IX ensures a favorable tumor intracellular
pH, while contributing to stromal acidosis, which facilitates tumor invasion and metastasis. The overexpression of CA IX
is considered an epiphenomenon of the presence of hypoxic, aggressive tumor cells. Recently, a relationship between CA
IX overexpression and the cancer stem cells (CSCs) population has been hypothesized. CSCs are strictly regulated by tumor
hypoxia and drive a major non-mutational mechanism of cancer drug-resistance. We reviewed the current data concerning
the role of CA IX overexpression in human malignancies, extending such information to the expression of the
stem cells markers CD44 and nestin in solid cancers, to explore their relationship with the biological behavior of tumors.
CA IX is heavily expressed in advanced tumors. A positive trend of correlation between CA IX overexpression, tumor
stage/grade and poor outcome emerged. Moreover, stromal CA IX expression was associated with adverse events occurrence,
maybe signaling the direct action of CA IX in directing the mesenchymal changes that favor tumor invasion; in addition,
membranous/cytoplasmic co-overexpression of CA IX and stem cells markers were found in several aggressive
tumors. This suggests that CA IX targeting could indirectly deplete CSCs and counteract resistance of solid cancers in the
clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - S Staibano
- Department of Advanced Biomedical Sciences, Pathology Section, School of Medicine and Surgery, University of Naples "Federico II", address: via S. Pansini, n.5, 80131, Naples, Italy.
| |
Collapse
|
45
|
The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 2014; 16:230-55. [PMID: 25547490 PMCID: PMC4307245 DOI: 10.3390/ijms16010230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Drug delivery nanocarriers, especially targeted drug delivery by liposomes are emerging as a class of therapeutics for cancer. Early research results suggest that liposomal therapeutics enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumors and active cellular uptake. Here, we highlight the features of immunoliposomes that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While a large number of studies has been published, the emphasis here is placed on the carbonic anhydrase IX (CA-IX) and the conjugated liposomes that are likely to open a new chapter on drug delivery system by using immunoliposomes to deliver anticancer ingredients to cancer cells in vivo.
Collapse
|
46
|
Syrjänen L, Luukkaala T, Leppilampi M, Kallioinen M, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S, Karttunen T. Expression of cancer-related carbonic anhydrases IX and XII in normal skin and skin neoplasms. APMIS 2014; 122:880-9. [PMID: 24698175 DOI: 10.1111/apm.12251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
Abstract
Purpose of the study was to evaluate the presence of hypoxia-inducible, tumour-associated carbonic anhydrases IX and XII in normal skin and a series of cutaneous tumours. Human tumour samples were taken during surgical operations performed on 245 patients and were immunohistochemically stained. A histological score value was calculated for statistical analyses which were performed using SPSS for Windows, versions 17.0 and 20.0. In normal skin, the highest expression of CA IX was detected in hair follicles, sebaceous glands, and basal parts of epidermis. CA XII was detected in all epithelial components of skin. Both CA IX and CA XII expression levels were significantly different in epidermal, appendigeal, and melanocytic tumour categories. Both CA IX and XII showed the most intense immunostaining in epidermal tumours, whereas virtually all melanocytic tumours were devoid of CA IX and XII immunostaining. In premalignant lesions, CA IX expression significantly increased when the tumours progressed to more severe dysplasia forms. Both CA IX and XII are highly expressed in different epithelial components of skin. They are also highly expressed in epidermal tumours, in which CA IX expression levels also correlate with the dysplasia grade. Interestingly, both isozymes are absent in melanocytic tumours.
Collapse
Affiliation(s)
- Leo Syrjänen
- Institute of Biomedical Technology and School of Medicine, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Holloway AC, Salomon A, Soares MJ, Garnier V, Raha S, Sergent F, Nicholson CJ, Feige JJ, Benharouga M, Alfaidy N. Characterization of the adverse effects of nicotine on placental development: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2014; 306:E443-56. [PMID: 24368670 PMCID: PMC4865199 DOI: 10.1152/ajpendo.00478.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In utero exposure to nicotine is associated with increased risk of numerous adverse fetal and neonatal outcomes, which suggests that it acts directly to affect placental development and the establishment of the fetomaternal circulation (FC). This study used both in vivo [Wistar rats treated with 1 mg/kg nicotine from 2 wk prior to mating until gestational day (GD) 15] and in vitro (RCHO-1 cell line; treated with 10(-9) to 10(-3)M nicotine) models to examine the effects of nicotine on these pathways. At GD 15, control and treated placentas were examined for the impact of nicotine on 1) trophoblast invasion, proliferation, and degree of hypoxia, 2) labyrinth vascularization, 3) expression of key genes of placental development, and 4) expression of placental angiogenic factors. The RCHO-1 cell line was used to determine the direct effects of nicotine on trophoblast differentiation. Our in vivo experiments show that nicotine inhibits trophoblast interstitial invasion, increases placental hypoxia, downregulates labyrinth vascularization as well as key transcription factors Hand1 and GCM1, and decreases local and circulating EG-VEGF, a key placental angiogenic factor. The in vitro experiments confirmed the inhibitory effects of nicotine on the trophoblast migration, invasion, and differentiation processes and demonstrated that those effects are most likely due to a dysregulation in the expression of nicotine receptors and a decrease in MMP9 activity. Taken together, these data suggest that adverse effects of maternal smoking on pregnancy outcome are due in part to direct and endocrine effects of nicotine on the main processes of placental development and establishment of FC.
Collapse
Affiliation(s)
- A. C. Holloway
- 5Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada;
| | - A. Salomon
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - M. J. Soares
- 7Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - V. Garnier
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - S. Raha
- 6Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; and
| | - F. Sergent
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - C. J. Nicholson
- 5Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada;
| | - J. J. Feige
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - M. Benharouga
- 1Centre National de la Recherche Scientifique, Grenoble, France;
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
| | - N. Alfaidy
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| |
Collapse
|
48
|
Oosterwijk E. Carbonic anhydrase expression in kidney and renal cancer: implications for diagnosis and treatment. Subcell Biochem 2014; 75:181-98. [PMID: 24146380 DOI: 10.1007/978-94-007-7359-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four different carbonic anhydrases are expressed in the human nephron, the functional unit of the kidney. These are specifically expressed in different nephron segments, emphasizing the critical role carbonic anhydrases play in maintaining the homeostasis of this crucial organ.Whereas the localization of carbonic anhydrases in the kidney has been long established, interest in carbonic anhydrases has increased dramatically for renal cancer, in particular for the clear cell variant of renal cell carcinoma (ccRCC) because carbonic anhydrase IX is specifically expressed in ccRCC. Therefore carbonic anhydrase IX is being studied as potential diagnostic and therapeutic target, despite carbonic anhydrase IX expression in non-renal tissues.
Collapse
Affiliation(s)
- Egbert Oosterwijk
- Department of Urology, University Medical Center St Radboud, Nijmegen, The Netherlands,
| |
Collapse
|
49
|
Kim JH, Parkkila S, Shibata S, Fujimiya M, Murakami G, Cho BH. Expression of carbonic anhydrase IX in human fetal joints, ligaments and tendons: a potential marker of mechanical stress in fetal development? Anat Cell Biol 2013; 46:272-84. [PMID: 24386600 PMCID: PMC3875845 DOI: 10.5115/acb.2013.46.4.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022] Open
Abstract
Carbonic anhydrase type IX (CA9) is known to express in the fetal joint cartilage to maintain pH against hypoxia. Using paraffin-embedded histology of 10 human fetuses at 10-16 weeks of gestation with an aid of immunohistochemistry of the intermediate filaments, matrix components (collagen types I and II, aggrecan, versican, fibronectin, tenascin, and hyaluronan) and CA9, we observed all joints and most of the entheses in the body. At any stages examined, CA9-poisitive cells were seen in the intervertebral disk and all joint cartilages including those of the facet joint of the vertebral column, but the accumulation area was reduced in the larger specimens. Glial fibrillary acidic protein (GFAP), one of the intermediate filaments, expressed in a part of the CA9-positive cartilages. Developing elastic cartilages were positive both of CA9 and GFAP. Notably, parts of the tendon or ligament facing to the joint, such as the joint surface of the annular ligament of the radius, were also positive for CA9. A distribution of each matrix components examined was not same as CA9. The bone-tendon and bone-ligament interface expressed CA9, but the duration at a site was limited to 3-4 weeks because the positive site was changed between stages. Thus, in the fetal entheses, CA9 expression displayed highly stage-dependent and site-dependent manners. CA9 in the fetal entheses seemed to play an additional role, but it was most likely to be useful as an excellent marker of mechanical stress at the start of enthesis development.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Seppo Parkkila
- Department of Anatomy, Institute of Bioscience and Medical Technology, University of Tampere, Tampere, Finland
| | - Shunichi Shibata
- Maxillofacial Anatomy, Department of Maxillofacial Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Baik Hwan Cho
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
50
|
Rodrigues-Pinto R, Richardson SM, Hoyland JA. Identification of novel nucleus pulposus markers: Interspecies variations and implications for cell-based therapiesfor intervertebral disc degeneration. Bone Joint Res 2013; 2:169-78. [PMID: 23958792 PMCID: PMC3747513 DOI: 10.1302/2046-3758.28.2000184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc. Cite this article: Bone Joint Res 2013;2:169-78.
Collapse
Affiliation(s)
- R Rodrigues-Pinto
- University of Manchester, CentreFor Regenerative Medicine, Institute of Inflammationand Repair, Faculty of Medical and Human Sciences, StopfordBuilding, Oxford Road, ManchesterM13 9PT, UK, and Departmentof Orthopaedics, Centro Hospitalar do Porto- Hospital de Santo António, Largo Prof. AbelSalazar, 4099-001 Porto, Portugal
| | | | | |
Collapse
|