1
|
Su Q, Chen Y, He H. Molecular evolution of Toll-like receptors in rodents. Integr Zool 2024; 19:371-386. [PMID: 37403417 DOI: 10.1111/1749-4877.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Toll-like receptors (TLRs), the key sensor molecules in vertebrates, trigger the innate immunity and prime the adaptive immune system. The TLR family of rodents, the largest order of mammals, typically contains 13 TLR genes. However, a clear picture of the evolution of the rodent TLR family has not yet emerged and the TLR evolutionary patterns are unclear in rodent clades. Here, we analyzed the natural variation and the evolutionary processes acting on the TLR family in rodents at both the interspecific and population levels. Our results showed that rodent TLRs were dominated by purifying selection, but a series of positively selected sites (PSSs) primarily located in the ligand-binding domain was also identified. The numbers of PSSs differed among TLRs, and nonviral-sensing TLRs had more PSSs than those in viral-sensing TLRs. Gene-conversion events were found between TLR1 and TLR6 in most rodent species. Population genetic analyses showed that TLR2, TLR8, and TLR12 were under positive selection in Rattus norvegicus and R. tanezumi, whereas positive selection also acted on TLR5 and TLR9 in the former species, as well as TLR1 and TLR7 in the latter species. Moreover, we found that the proportion of polymorphisms with potentially functional change was much lower in viral-sensing TLRs than in nonviral-sensing TLRs in both of these rat species. Our findings revealed the first thorough insight into the evolution of the rodent TLR genetic variability and provided important novel insights into the evolutionary history of TLRs over long and short timescales.
Collapse
Affiliation(s)
- Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Carlson KB, Nguyen C, Wcisel DJ, Yoder JA, Dornburg A. Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution. Immunogenetics 2023; 75:465-478. [PMID: 37555888 DOI: 10.1007/s00251-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.
Collapse
Affiliation(s)
- Kara B Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
| | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
3
|
Colleselli K, Stierschneider A, Wiesner C. An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:12464. [PMID: 37569837 PMCID: PMC10419760 DOI: 10.3390/ijms241512464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
4
|
Rao SS, Lunde HS, Dolan DWP, Fond AK, Petersen K, Haugland GT. Transcriptome-wide analyses of early immune responses in lumpfish leukocytes upon stimulation with poly(I:C). Front Immunol 2023; 14:1198211. [PMID: 37388730 PMCID: PMC10300353 DOI: 10.3389/fimmu.2023.1198211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Background Both bacterial and viral diseases are a major threat to farmed fish. As the antiviral immune mechanisms in lumpfish (Cyclopterus lumpus L.) are poorly understood, lumpfish leukocytes were stimulated with poly(I:C), a synthetic analog of double stranded RNA, which mimic viral infections, and RNA sequencing was performed. Methods To address this gap, we stimulated lumpfish leukocytes with poly(I:C) for 6 and 24 hours and did RNA sequencing with three parallels per timepoint. Genome guided mapping was performed to define differentially expressed genes (DEGs). Results Immune genes were identified, and transcriptome-wide analyses of early immune responses showed that 376 and 2372 transcripts were significantly differentially expressed 6 and 24 hours post exposure (hpe) to poly(I:C), respectively. The most enriched GO terms when time had been accounted for, were immune system processes (GO:0002376) and immune response (GO:0006955). Analysis of DEGs showed that among the most highly upregulated genes were TLRs and genes belonging to the RIG-I signaling pathway, including LGP2, STING and MX, as well as IRF3 and IL12A. RIG-I was not identified, but in silico analyses showed that genes encoding proteins involved in pathogen recognition, cell signaling, and cytokines of the TLR and RIG-I signaling pathway are mostly conserved in lumpfish when compared to mammals and other teleost species. Conclusions Our analyses unravel the innate immune pathways playing a major role in antiviral defense in lumpfish. The information gathered can be used in comparative studies and lay the groundwork for future functional analyses of immune and pathogenicity mechanisms. Such knowledge is also necessary for the development of immunoprophylactic measures for lumpfish, which is extensively cultivated for use as cleaner fish in the aquaculture for removal of sea lice from Atlantic salmon (Salmo salar L.).
Collapse
Affiliation(s)
- Shreesha S. Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S. Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - David W. P. Dolan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Amanda K. Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Gyri T. Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
6
|
Guo S, Gao W, Zeng M, Liu F, Yang Q, Chen L, Wang Z, Jin Y, Xiang P, Chen H, Wen Z, Shi Q, Song Z. Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). Front Immunol 2023; 14:1163781. [PMID: 37056759 PMCID: PMC10086376 DOI: 10.3389/fimmu.2023.1163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Toll‐like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fenglin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zesong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanjun Jin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanxi Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Qiong Shi
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| |
Collapse
|
7
|
Miao X, Liu L, Liu L, Hu G, Wu G, Wang Y, Zhao Y, Yang J, Li X. Regulation of mRNA and miRNA in the response to Salmonella enterica serovar Enteritidis infection in chicken cecum. BMC Vet Res 2022; 18:437. [PMID: 36514049 PMCID: PMC9749161 DOI: 10.1186/s12917-022-03522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica, serovar Enteritidis (SE) is a food-borne pathogen, which can cause great threat to human health through consumption of the contaminated poultry products. Chicken is the main host of SE. The mRNA and microRNA (miRNA) expression profiles were analyzed on cecum of Shouguang chicken via next-generation sequencing and bioinformatics approaches. The treated group was inoculated SE, and the control group was inoculated with phosphate buffer saline (PBS). RESULTS There were 1760 differentially expressed mRNAs in the SE-infected group, of which 1046 were up-regulated mRNA, and 714 were down-regulated mRNA. In addition, a total of 821 miRNAs were identified, and 174 miRNAs were differentially expressed, of which 100 were up-regulated and 74 were down-regulated. Functional enrichment of differentially expressed mRNAs was similar to miRNA target genes. The functional analysis results of differentially expressed mRNAs and miRNAs were performed. Immune-related processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched by up-regulated mRNA. The down-regulated mRNAs were enriched in tissue development and metabolic-related KEGG pathways. The functional analysis of up-regulated miRNA target genes was similar to the down-regulated mRNAs. The down-regulated miRNA target genes were enriched in metabolic-related GO (Gene Ontology) -BP (Biological process) terms and KEGG pathways. The overlap of the up-regulated mRNA and the up-regulated miRNA target genes (class I) was 325, and the overlap of the down-regulated miRNA target genes (class II) was 169. The class I enriched in the immune-related GO-BP terms and KEGG pathways. The class II mainly enriched in metabolic-related GO-BP terms and KEGG pathways. Then we detected the expression of mRNA and miRNA through qRT-PCR. The results shown that the expression of HHIP, PGM1, HTR2B, ITGB5, RELN, SFRP1, TCF7L2, SCNN1A, NEK7, miR-20b-5p, miR-1662, miR-15a, miR-16-1-3p was significantly different between two groups. Dual-luciferase reporter assay was used to detect the relationship between miR-20b-5p and SCNN1A. The result indicated that miR-20b-5p regulate immune or metabolic responses after SE infection in Shouguang chickens by directly targeting SCNN1A. CONCLUSIONS The findings here contribute to the further analysis of the mechanism of mRNA and miRNA defense against SE infection, and provide a theoretical foundation for the molecular disease-resistant breeding of chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Guixian Wu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, 250010, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Petrov PB, Awoniyi LO, Šuštar V, Balci MÖ, Mattila PK. AutoCoEv—A High-Throughput In Silico Pipeline for Predicting Inter-Protein Coevolution. Int J Mol Sci 2022; 23:ijms23063351. [PMID: 35328772 PMCID: PMC8952222 DOI: 10.3390/ijms23063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Protein–protein interactions govern cellular processes via complex regulatory networks, which are still far from being understood. Thus, identifying and understanding connections between proteins can significantly facilitate our comprehension of the mechanistic principles of protein functions. Coevolution between proteins is a sign of functional communication and, as such, provides a powerful approach to search for novel direct or indirect molecular partners. However, an evolutionary analysis of large arrays of proteins in silico is a highly time-consuming effort that has limited the usage of this method for protein pairs or small protein groups. Here, we developed AutoCoEv, a user-friendly, open source, computational pipeline for the search of coevolution between a large number of proteins. By driving 15 individual programs, culminating in CAPS2 as the software for detecting coevolution, AutoCoEv achieves a seamless automation and parallelization of the workflow. Importantly, we provide a patch to the CAPS2 source code to strengthen its statistical output, allowing for multiple comparison corrections and an enhanced analysis of the results. We apply the pipeline to inspect coevolution among 324 proteins identified to be located at the vicinity of the lipid rafts of B lymphocytes. We successfully detected multiple coevolutionary relations between the proteins, predicting many novel partners and previously unidentified clusters of functionally related molecules. We conclude that AutoCoEv, can be used to predict functional interactions from large datasets in a time- and cost-efficient manner.
Collapse
Affiliation(s)
- Petar B. Petrov
- MediCity Research Laboratories, Institute of Biomedicine, University of Turku, 20014 Turku, Finland; (L.O.A.); (V.Š.); (M.Ö.B.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (P.B.P.); (P.K.M.)
| | - Luqman O. Awoniyi
- MediCity Research Laboratories, Institute of Biomedicine, University of Turku, 20014 Turku, Finland; (L.O.A.); (V.Š.); (M.Ö.B.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Vid Šuštar
- MediCity Research Laboratories, Institute of Biomedicine, University of Turku, 20014 Turku, Finland; (L.O.A.); (V.Š.); (M.Ö.B.)
| | - M. Özge Balci
- MediCity Research Laboratories, Institute of Biomedicine, University of Turku, 20014 Turku, Finland; (L.O.A.); (V.Š.); (M.Ö.B.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Pieta K. Mattila
- MediCity Research Laboratories, Institute of Biomedicine, University of Turku, 20014 Turku, Finland; (L.O.A.); (V.Š.); (M.Ö.B.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (P.B.P.); (P.K.M.)
| |
Collapse
|
9
|
Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.
Collapse
|
10
|
Fiddaman SR, Vinkler M, Spiro SG, Levy H, Emerling CA, Boyd AC, Dimopoulos EA, Vianna JA, Cole TL, Pan H, Fang M, Zhang G, Hart T, Frantz LAF, Smith AL. Adaptation and cryptic pseudogenization in penguin Toll-like Receptors. Mol Biol Evol 2021; 39:6460345. [PMID: 34897511 PMCID: PMC8788240 DOI: 10.1093/molbev/msab354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
Collapse
Affiliation(s)
- Steven R Fiddaman
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University Prague, Czech Republic
| | - Simon G Spiro
- Wildlife Health Services, Zoological Society of London Regent's Park, London, UK
| | - Hila Levy
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | | | - Amy C Boyd
- Jenner Institute, University of Oxford Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford Oxford, UK
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Theresa L Cole
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark
| | - Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tom Hart
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Fogg Building, Queen Mary University of London Mile End Rd, Bethnal Green, London E1 4DQ, UK.,Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
11
|
Chen CY, Hung YF, Tsai CY, Shih YC, Chou TF, Lai MZ, Wang TF, Hsueh YP. Transcriptomic Analysis and C-Terminal Epitope Tagging Reveal Differential Processing and Signaling of Endogenous TLR3 and TLR7. Front Immunol 2021; 12:686060. [PMID: 34211474 PMCID: PMC8240634 DOI: 10.3389/fimmu.2021.686060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Toll-like receptor (TLR) signaling is critical for defense against pathogenic infection, as well as for modulating tissue development. Activation of different TLRs triggers common inflammatory responses such as cytokine induction. Here, we reveal differential impacts of TLR3 and TLR7 signaling on transcriptomic profiles in bone marrow-derived macrophages (BMDMs). Apart from self-regulation, TLR3, but not TLR7, induced expression of other TLRs, suggesting that TLR3 activation globally enhances innate immunity. Moreover, we observed diverse influences of TLR3 and TLR7 signaling on genes involved in methylation, caspase and autophagy pathways. We compared endogenous TLR3 and TLR7 by using CRISPR/Cas9 technology to knock in a dual Myc-HA tag at the 3’ ends of mouse Tlr3 and Tlr7. Using anti-HA antibodies to detect endogenous tagged TLR3 and TLR7, we found that both TLRs display differential tissue expression and posttranslational modifications. C-terminal tagging did not impair TLR3 activity. However, it disrupted the interaction between TLR7 and myeloid differentiation primary response 88 (MYD88), the Tir domain-containing adaptor of TLR7, which blocked its downstream signaling necessary to trigger cytokine and chemokine expression. Our study demonstrates different properties for TLR3 and TLR7, and also provides useful mouse models for further investigation of these two RNA-sensing TLRs.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ting-Fang Chou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Priyam M, Gupta SK, Sarkar B, Sharma TR, Pattanayak A. Variation in selection constraints on teleost TLRs with emphasis on their repertoire in the Walking catfish, Clarias batrachus. Sci Rep 2020; 10:21394. [PMID: 33288798 PMCID: PMC7721727 DOI: 10.1038/s41598-020-78347-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The high degree of conservation of toll-like receptors (TLRs), and yet their subtle variations for better adaptation of species in the host–pathogen arms race make them worthy candidates for understanding evolution. We have attempted to track the trend of TLR evolution in the most diverse vertebrate group—teleosts, where Clarias batrachus was given emphasis, considering its traits for terrestrial adaptation. Eleven C. batrachus TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 22, 25, 26) were identified in this study which clustered in proximity to its Siluriformes relative orthologues in the phylogenetic analysis of 228 TLRs from 25 teleosts. Ten TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 21, 22) with at least 15 member orthologues for each alignment were processed for selection pressure and coevolutionary analysis. TLR1, 7, 8 and 9 were found to be under positive selection in the alignment-wide test. TLR1 also showed maximum episodic diversification in its clades while the teleost group Eupercaria showed the maximum divergence in their TLR repertoire. Episodic diversification was evident in C. batrachus TLR1 and 7 alignments. These results present a strong evidence of a divergent TLR repertoire in teleosts which may be contributing towards species-specific variation in TLR functions.
Collapse
Affiliation(s)
- Manisha Priyam
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - Sanjay K Gupta
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India.
| | - Biplab Sarkar
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - T R Sharma
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - A Pattanayak
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| |
Collapse
|
13
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
14
|
Tao Z, Zhu C, Zhang S, Xu W, Shi Z, Song W, Liu H, Li H. Ammonia affects production performance and Toll-like receptor mRNA expression of laying ducks. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Hanson HE, Koussayer B, Kilvitis HJ, Schrey AW, Maddox JD, Martin LB. Epigenetic Potential in Native and Introduced Populations of House Sparrows (Passer domesticus). Integr Comp Biol 2020; 60:1458-1468. [PMID: 32497186 DOI: 10.1093/icb/icaa060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges. Here, we asked whether one form of epigenetic potential (i.e., the abundance of CpG sites) in three microbial surveillance genes: Toll-like receptors (TLRs) 1B (TLR1B), 2A (TLR2A), and 4 (TLR4) varied between native and introduced house sparrows (Passer domesticus). Using an opportunistic approach based on samples collected from sparrow populations around the world, we found that introduced birds had more CpG sites in TLR2A and TLR4, but not TLR1B, than native ones. Introduced birds also lost more CpG sites in TLR1B, gained more CpG sites in TLR2A, and lost fewer CpG sites in TLR4 compared to native birds. These results were not driven by differences in genetic diversity or population genetic structure, and many CpG sites fell within predicted transcription factor binding sites (TFBS), with losses and gains of CpG sites altering predicted TFBS. Although we lacked statistical power to conduct the most rigorous possible analyses, these results suggest that epigenetic potential may play a role in house sparrow range expansions, but additional work will be critical to elucidating how epigenetic potential affects gene expression and hence phenotypic plasticity at the individual, population, and species levels.
Collapse
Affiliation(s)
- Haley E Hanson
- Global and Planetary Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, FL 33620, USA
| | - Bilal Koussayer
- Global and Planetary Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, FL 33620, USA
| | - Holly J Kilvitis
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA110, Tampa, FL 33620, USA
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, 11935 Abercorn St, SC1010, Savannah, GA 31419, USA
| | - J Dylan Maddox
- Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA.,Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú.,American Public University System, Environmental Sciences, Charles Town, WV 25414, USA
| | - Lynn B Martin
- Global and Planetary Health, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, FL 33620, USA
| |
Collapse
|
16
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
17
|
Episodic positive diversifying selection on key immune system genes in major avian lineages. Genetica 2019; 147:337-350. [PMID: 31782071 DOI: 10.1007/s10709-019-00081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
The major histocompatibility complex (MHC) of the adaptive immune system and the toll-like receptor (TLR) family of the innate immune system are involved in the detection of foreign invaders, and thus are subject to parasite-driven molecular evolution. Herein, we tested for macroevolutionary signatures of selection in these gene families within and among all three major clades of birds (Paleognathae, Galloanserae, and Neoaves). We characterized evolutionary relationships of representative immune genes (Mhc1 and Tlr2b) and a control gene (ubiquitin, Ubb), using a relatively large and phylogenetically diverse set of species with complete coding sequences (34 orthologous loci for Mhc1, 29 for Tlr2b, and 37 for Ubb). Episodic positive diversifying selection was found in the gene-wide phylogenies of the two immune genes, as well as at specific sites within each gene (8.5% of codon sites in Mhc1 and 2.7% in Tlr2b), but not in the control gene (Ubb). We found 20% of lineages under episodic diversifying selection in Mhc1 versus 9.1% in Tlr2b. For Mhc1, selection was relaxed in the Galloanserae and intensified in the Neoaves relative to the other clades, but no differences were detected among clades in the Tlr2b gene. In summary, we provide evidence of episodic positive diversifying selection in key immune genes and demonstrate differential strengths of selection within Class Aves, with the adaptive gene showing an increased divergence and evolutionary rate over the innate gene, contributing to the growing understanding of vertebrate immune gene evolution.
Collapse
|
18
|
Identification of Copy Number Variation in Domestic Chicken Using Whole-Genome Sequencing Reveals Evidence of Selection in the Genome. Animals (Basel) 2019; 9:ani9100809. [PMID: 31618984 PMCID: PMC6826909 DOI: 10.3390/ani9100809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chickens have been bred for meat and egg production as a source of animal protein. With the increase of productivity as the main purpose of domestication, factors such as metabolism and immunity were boosted, which are detectable signs of selection on the genome. This study focused on copy number variation (CNV) to find evidence of domestication on the genome. CNV was detected from whole-genome sequencing of 65 chickens including Red Jungle Fowl, broilers, and layers. After that, CNV region, the overlapping region of CNV between individuals, was made to identify which genomic regions showed copy number differentiation. The 663 domesticated-specific CNV regions were associated with various functions such as metabolism and organ development. Also, by performing population differentiation analyses such as clustering analysis and ANOVA test, we found that there are a lot of genomic regions with different copy number patterns between broilers and layers. This result indicates that different genetic variations can be found, depending on the purpose of artificial selection and provides considerations for future animal breeding. Abstract Copy number variation (CNV) has great significance both functionally and evolutionally. Various CNV studies are in progress to find the cause of human disease and to understand the population structure of livestock. Recent advances in next-generation sequencing (NGS) technology have made CNV detection more reliable and accurate at whole-genome level. However, there is a lack of CNV studies on chickens using NGS. Therefore, we obtained whole-genome sequencing data of 65 chickens including Red Jungle Fowl, Cornish (broiler), Rhode Island Red (hybrid), and White Leghorn (layer) from the public databases for CNV region (CNVR) detection. Using CNVnator, a read-depth based software, a total of 663 domesticated-specific CNVRs were identified across autosomes. Gene ontology analysis of genes annotated in CNVRs showed that mainly enriched terms involved in organ development, metabolism, and immune regulation. Population analysis revealed that CN and RIR are closer to each other than WL, and many genes (LOC772271, OR52R1, RD3, ADH6, TLR2B, PRSS2, TPK1, POPDC3, etc.) with different copy numbers between breeds found. In conclusion, this study has helped to understand the genetic characteristics of domestic chickens at CNV level, which may provide useful information for the development of breeding systems in chickens.
Collapse
|
19
|
The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5–10% of the sites were under positive selection (PS) (omega 1.5–2.5) with radical amino-acid changes likely affecting TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP > 0.99) likely increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral TLR7, 23 PS sites (PP > 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid evolution of the TLR supergene family reflects the host–pathogen arms race and the coevolution of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic pathogens and reservoirs for viruses.
Collapse
|
20
|
Whitney J, Haase B, Beatty J, Barrs VR. Genetic polymorphisms in toll-like receptors 1, 2, and 4 in feline upper respiratory tract aspergillosis. Vet Immunol Immunopathol 2019; 217:109921. [PMID: 31446071 DOI: 10.1016/j.vetimm.2019.109921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Fungal species in the genus Aspergillus are environmental saprophytes that can act as opportunistic pathogens of the nasal cavity and paranasal sinuses in humans, cats and other species. Upper respiratory tract aspergillosis (URTA) presents as non-invasive and invasive forms with the latter occurring almost exclusively in immunocompromised hosts. However, in domestic cats, invasive URTA affects apparently immunocompetent patients. A defect in innate immunity has been proposed as a predisposing factor in invasive feline URTA. Single nucleotide polymorphisms (SNPs) in pattern recognition receptor genes have been implicated in the pathogenesis of aspergillosis in humans. The aims of this study were to identify non-synonymous SNPs in the coding regions of toll-like receptors involved in the immune response to Aspergillus spp. and to compare the frequency of these SNPs between affected and control cats. The coding and flanking regions of TLR1, TLR2 and TLR4 were sequenced in 14 cats with URTA and the sequences were compared with those in 20 control cats without aspergillosis. In total, 23 non-synonymous SNPs were identified in TLR1 (n = 11), TLR2 (n = 3) and TLR4 (n = 10). Differences in allelic frequency of non-synonymous SNPs between affected and controls were not identified either within breeds or overall or between non-invasive and invasive disease phenotypes. Although allelic frequency differed between cat breeds that are overrepresented for URTA and underrepresented breeds there was no association differences identified between affected cats and underrepresented breeds. The difference in allelic frequency of an INDEL point mutation identified in intron 1 of TLR4, between cats with non-invasive versus invasive aspergillosis approached significance (p = 0.054). While results from this study do not support a role for non-synonymous SNPs in the pathogenesis of feline URTA they do provide evidence that investigation for polymorphisms in non-coding regions of these genes and in other pattern recognition receptors are warranted.
Collapse
Affiliation(s)
- J Whitney
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia.
| | - B Haase
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - J Beatty
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia
| | - V R Barrs
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Novák K, Bjelka M, Samake K, Valčíková T. Potential of TLR-gene diversity in Czech indigenous cattle for resistance breeding as revealed by hybrid sequencing. Arch Anim Breed 2019; 62:477-490. [PMID: 31807659 PMCID: PMC6853138 DOI: 10.5194/aab-62-477-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
A production herd of Czech Simmental cattle (Czech Red Pied, CRP), the conserved subpopulation of this breed, and the ancient local breed Czech Red cattle (CR) were screened for diversity in the antibacterial toll-like receptors (TLRs), which are members of the innate immune system. Polymerase chain reaction (PCR) amplicons of TLR1, TLR2, TLR4, TLR5, and TLR6 from pooled DNA samples were sequenced with PacBio technology, with 3- 5 × coverage per gene per animal. To increase the reliability of variant detection, the gDNA pools were sequenced in parallel with the Illumina X-ten platform at low coverage ( 60 × per gene). The diversity in conserved CRP and CR was similar to the diversity in conserved and modern CRP, representing 76.4 % and 70.9 % of its variants, respectively. Sixty-eight (54.4 %) polymorphisms in the five TLR genes were shared by the two breeds, whereas 38 (30.4 %) were specific to the production herd of CRP; 4 (3.2 %) were specific to the broad CRP population; 7 (5.6 %) were present in both conserved populations; 5 (4.0 %) were present solely for the conserved CRP; and 3 (2.4 %) were restricted to CR. Consequently, gene pool erosion related to intensive breeding did not occur in Czech Simmental cattle. Similarly, no considerable consequences were found from known bottlenecks in the history of Czech Red cattle. On the other hand, the distinctness of the conserved populations and their potential for resistance breeding were only moderate. This relationship might be transferable to other non-abundant historical cattle breeds that are conserved as genetic resources. The estimates of polymorphism impact using Variant Effect Predictor and SIFT software tools allowed for the identification of candidate single-nucleotide polymorphisms (SNPs) for association studies related to infection resistance and targeted breeding. Knowledge of TLR-gene diversity present in Czech Simmental populations may aid in the potential transfer of variant characteristics from other breeds.
Collapse
Affiliation(s)
- Karel Novák
- Department of Genetics and Breeding, Institute of Animal Science, Prague - Uhříněves, 104 00, Czech Republic
| | - Marek Bjelka
- Breeding company CHD Impuls, Bohdalec, 592 55, Czech Republic
| | - Kalifa Samake
- Department of Genetics and Microbiology, Charles University, Prague, 128 43, Czech Republic
| | - Terezie Valčíková
- Department of Genetics and Breeding, Czech University of Life Sciences, Prague - Suchdol, Prague, 165 06, Czech Republic
| |
Collapse
|
22
|
Nagashima H, Yamaoka Y. Importance of Toll-like Receptors in Pro-inflammatory and Anti-inflammatory Responses by Helicobacter pylori Infection. Curr Top Microbiol Immunol 2019; 421:139-158. [PMID: 31123888 DOI: 10.1007/978-3-030-15138-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infectious diseases have been paramount among the threats to human health and survival throughout evolutionary history. Bacterial cell-surface molecules are key factors in the microorganism-host crosstalk, as they can interact with host pattern-recognition receptors (PRRs) of the gastrointestinal mucosa. The best-studied PRRs are toll-like receptors (TLRs). Because TLRs play an important key role in host defense, they have received increasing interest in the evolutionary and population genetics literature, and their variation represents a potential target of adaptive evolution. Helicobacter pylori is one of the commensal bacteria in our body and can have pathogenic properties in a subset of infected people. The history of H. pylori research indicated that humans and bacteria co-evolved during evolution. A genome-wide association study (GWAS) has opened the way for investigating the genomic evolution of bacterial pathogens during the colonization and infection of humans. Recent GWAS research emphasized the importance of TLRs, especially TLR10 during pathogenesis in H. pylori infection. We demonstrated that TLR10, whose ligand was unknown for a long time, can recognize H. pylori LPS. Our results of H. pylori research suggest that TLR10 might play an important role to also recognize other commensal bacteria. In this review, we discuss the importance of TLRs in pro-inflammatory and anti-inflammatory responses by H. pylori infection. Especially, we highlight the TLR10 interaction with H. pylori infection, providing new insights about TLR10 signaling.
Collapse
Affiliation(s)
- Hiroyuki Nagashima
- Department of Gastroenterology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan. .,Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
24
|
Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol Biol Evol 2018; 35:2170-2184. [PMID: 29893911 PMCID: PMC6107061 DOI: 10.1093/molbev/msy119] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
Collapse
Affiliation(s)
- Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria W Gutowska-Ding
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Midlothian, United Kingdom
| | - David W Burt
- Office of DVC (Research), University of Queensland, St. Lucia, QLD, Australia
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
25
|
Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F. Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. C R Biol 2018; 341:315-324. [PMID: 30032779 DOI: 10.1016/j.crvi.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Toll-like receptors (TLRs) are a major group of proteins that recognize molecular components of infectious agents, known as pathogen associated molecular patterns (PAMPs). The structure of these genes is similar and characterized by the presence of an ectodomain, a signal transmembrane segment and a highly conserved cytoplasmic domain. The latter domain is homologous to the human interleukin-1 receptor (IL1R) and human IL-18 receptor (IL-18R) and designated TIR domain. The latter domain of the TLR genes was suggested to be very conservative and its evolution is driven by purifying selection. Variability and evolution of the TIR sequences of TLR2 gene were studied in three hare populations from Tunisia with different ecological characteristics (NT-North Tunisia with Mediterranean, CT-Central Tunisia with semi-arid, and ST-South Tunisia with arid climate). Sequencing of a 372bp fragment of TIR2 revealed 25 alleles among 110 hares. Twenty variable nucleotide positions were detected, of which 7 were non-synonymous. The highest variability was observed in CT, with 16 polymorphic positions. In ST, only 4 polymorphic nucleotide positions were detected with all diversity values lower than those recorded for the other two populations. By using several approaches, no positive selection was detected. However, evidence of purifying selection was found at two positions. The logistic models of the most common TIR2 protein variant that we run to examine whether its occurrence was affected by climatic variation independent of the geographic sample location suggested only a longitudinal effect. Finally, the mapping of the non-synonymous mutations to the inferred tertiary protein structure showed that they were all localized in the different loop regions. Among all non-synonymous substitutions, three were suggested to be deleterious as evidenced by PROVEAN analysis. The observed patterns of variability characterized by low genetic diversity in ST might suggest that the TIR region was more affected, than other markers, by genetic drift or/and that these patterns were shaped by different selective pressures under different ecological conditions. Notably, this low diversity was not detected by other (putatively neutral) microsatellite markers analysed in the course of other studies. But low diversity was also found for two MHC class II adaptive immune genes. As expected from functionally important regions, the evolution of the TIR2 domain is mainly driven by purifying selection. However, the occurrence of deleterious non-synonymous substitutions might highlight the flexible evolution of the TIR genes and/or their interactions with other proteins.
Collapse
Affiliation(s)
- Asma Awadi
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia.
| | - Hichem Ben Slimen
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja, Beja 9000, University of Jendouba, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Jonas Kahlen
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Mohamed Makni
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
26
|
Berghof TVL, Visker MHPW, Arts JAJ, Parmentier HK, van der Poel JJ, Vereijken ALJ, Bovenhuis H. Genomic Region Containing Toll-Like Receptor Genes Has a Major Impact on Total IgM Antibodies Including KLH-Binding IgM Natural Antibodies in Chickens. Front Immunol 2018; 8:1879. [PMID: 29375555 PMCID: PMC5767321 DOI: 10.3389/fimmu.2017.01879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023] Open
Abstract
Natural antibodies (NAb) are antigen binding antibodies present in individuals without a previous exposure to this antigen. Keyhole limpet hemocyanin (KLH)-binding NAb levels were previously associated with survival in chickens. This suggests that selective breeding for KLH-binding NAb may increase survival by means of improved general disease resistance. Genome-wide association studies (GWAS) were performed to identify genes underlying genetic variation in NAb levels. The studied population consisted of 1,628 adolescent layer chickens with observations for titers of KLH-binding NAb of the isotypes IgM, IgA, IgG, the total KLH-binding (IgT) NAb titers, total antibody concentrations of the isotypes IgM, IgA, IgG, and the total antibodies concentration in plasma. GWAS were performed using 57,636 single-nucleotide polymorphisms (SNP). One chromosomal region on chromosome 4 was associated with KLH-binding IgT NAb, and total IgM concentration, and especially with KLH-binding IgM NAb. The region of interest was fine mapped by imputing the region of the study population to whole genome sequence, and subsequently performing an association study using the imputed sequence variants. 16 candidate genes were identified, of which FAM114A1, Toll-like receptor 1 family member B (TLR1B), TLR1A, Krüppel-like factor 3 (KLF3) showed the strongest associations. SNP located in coding regions of the candidate genes were checked for predicted changes in protein functioning. One SNP (at 69,965,939 base pairs) received the maximum impact score from two independent prediction tools, which makes this SNP the most likely causal variant. This SNP is located in TLR1A, which suggests a fundamental role of TLR1A on regulation of IgM levels (i.e., KLH-binding IgM NAb, and total IgM concentration), or B cells biology, or both. This study contributes to increased understanding of (genetic) regulation of KLH-binding NAb levels, and total antibody concentrations.
Collapse
Affiliation(s)
- Tom V L Berghof
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Marleen H P W Visker
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Joop A J Arts
- Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henk K Parmentier
- Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Jan J van der Poel
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Addie L J Vereijken
- Hendrix Genetics Research, Technology and Services B.V., Research & Technology Centre, Boxmeer, Netherlands
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
27
|
Levin TC, Malik HS. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila. Mol Biol Evol 2017; 34:2307-2323. [PMID: 28541576 PMCID: PMC5850136 DOI: 10.1093/molbev/msx168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline.
Collapse
Affiliation(s)
- Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
28
|
Xing Q, Liao H, Xun X, Wang J, Zhang Z, Yang Z, Huang X, Bao Z. Genome-wide identification, characterization and expression analyses of TLRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to acidifying exposure in bivalves. FISH & SHELLFISH IMMUNOLOGY 2017; 68:280-288. [PMID: 28698128 DOI: 10.1016/j.fsi.2017.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing specific pathogen-associated molecular patterns, including lipoproteins, lipopeptides, lipopolysaccharide, flagellin, dsRNA, ssRNA and CpG DNA motifs. Although significant effects of TLRs on immunity have been reported in most vertebrates and some invertebrates, the complete TLR superfamily has not been systematically characterized in scallops. In this study, 18 TLR genes were identified from Yesso scallop (Patinopecten yessoensis) using whole-genome scanning. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the 18 genes. Extensive expansion of TLR genes from the Yesso scallop genome indicated gene duplication events. In addition, expression profiling of PyTLRs was performed at different acidifying exposure levels (pH = 6.50, 7.50) with different challenge durations (3, 6, 12 and 24 h) via in silico analysis using transcriptome and genome databases. Our results confirmed the inducible expression patterns of PyTLRs under acidifying exposure, and the responses to immune stress may have arisen through adaptive recruitment of tandem duplications of TLR genes. Collectively, this study provides novel insight into PyTLRs as well as the specific role and response of TLR signaling pathways in host immune responses against acidifying exposure in bivalves.
Collapse
Affiliation(s)
- Qiang Xing
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huan Liao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaogang Xun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Wei X, Qian W, Sizhu S, Shi L, Jin M, Zhou H. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:369-376. [PMID: 27539203 DOI: 10.1016/j.dci.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Wei Qian
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Suolang Sizhu
- College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Lijuan Shi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Bhardwaj R, Mukhopadhyay CS, Deka D, Verma R, Dubey PP, Arora JS. Biocomputational analysis of evolutionary relationship between toll-like receptor and nucleotide-binding oligomerization domain-like receptors genes. Vet World 2016; 9:1218-1228. [PMID: 27956772 PMCID: PMC5146301 DOI: 10.14202/vetworld.2016.1218-1228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/01/2016] [Indexed: 11/23/2022] Open
Abstract
Aim: The active domains (TIR and NACHT) of the pattern recognition receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding oligomerization domain [NOD]-like receptors [NLR], respectively) are the major hotspots of evolution as natural selection has crafted their final structure by substitution of residues over time. This paper addresses the evolutionary perspectives of the TLR and NLR genes with respect to the active domains in terms of their chronological fruition, functional diversification, and species-specific stipulation. Materials and Methods: A total of 48 full-length cds (and corresponding peptide) of the domains were selected as representatives of each type of PRRs, belonging to divergent animal species, for the biocomputational analyses. The secondary and tertiary structure of the taurine TIR and NACHT domains was predicted to compare the relatedness among the domains under study. Results: Multiple sequence alignment and phylogenetic tree results indicated that these host-specific PRRs formed entirely different clusters, with active domains of NLRs (NACHT) evolved earlier as compared to the active domains of TLRs (TIR). Each type of TLR or NLR shows comparatively less variation among the animal species due to the specificity of action against the type of microbes. Conclusion: It can be concluded from the study that there has been no positive selection acting on the domains associated with disease resistance which is a fitness trait indicating the extent of purifying pressure on the domains. Gene duplication could be a possible reason of genesis of similar kinds of TLRs (virus or bacteria specific).
Collapse
Affiliation(s)
- Rabia Bhardwaj
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Chandra Shekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Dipak Deka
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - P P Dubey
- Department of Animal Genetics and Breeding, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J S Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
31
|
Molecular characterization and analysis of TLR-1 in rabbit tissues. Cent Eur J Immunol 2016; 41:236-242. [PMID: 27833439 PMCID: PMC5099378 DOI: 10.5114/ceji.2016.63121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022] Open
Abstract
The rabbit has great commercial importance as a source of meat and fur, as well as its uses as a laboratory animal for the production of antibodies, used to detect the presence or absence of disease and for research in infectious diseases and immunology. One of the most critical problems in immunology is to understand how the immune system detects the presence of infectious agents and disposes the invader without destroying the self-tissues. Genetic characterization of Toll-like receptors has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Our work aimed to identify, clone and express the Oryctolagus cuniculus (rabbit) TLR-1 mRNA and its encoding protein. We cloned the complete mRNA sequence of Oryctolagus cuniculus TLR-1 and deposit it in the GenBank under accession number (KC349941), which has 2388 base pair and it encodes encode an open reading frame (ORF) translated into 796 amino acids mRNA and consist of 20 types of amino acids. The analysis of amino acid sequence revealed that the rabbit TLR-1 has a typical protein components belonging to the TLR family. Rabbit TLR-1 was expressed in a wide variety of rabbit tissues, which indicate an important role in immune system in different organs.
Collapse
|
32
|
Qian W, Wei X, Zhou H, Jin M. Molecular cloning and functional analysis of duck ubiquitin-specific protease 18 (USP18) gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:39-47. [PMID: 27133094 DOI: 10.1016/j.dci.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
In mammals, ubiquitin-specific protease 18 (USP18) is an interferon (IFN)-inducible gene and is a negative regulator of Toll-like receptor-mediated nuclear factor kappa B (NF-κB) activation. The role of USP18 in ducks (duUSP18) remains poorly understood. In the present study, we cloned and characterized the full-length coding sequence of duUSP18 from duck embryo fibroblasts (DEFs). In healthy ducks, duUSP18 transcripts were broadly expressed in different tissues, with higher expression levels in the spleen, lung and kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that duUSP18 could be induced by treatment with Poly(I:C) or LPS. Overexpression of duUSP18 inhibited NF-κB and IFN-β expression. Furthermore, deletion mutant analysis revealed that the duUSP18 region between aa 75 and 304 was essential for inhibiting NF-κB. In addition, overexpression of duUSP18 also suppressed the secretion of NF-κB-dependent proinflammatory cytokines. Taken together, these results suggest that duUSP18 regulates duck innate immune responses.
Collapse
Affiliation(s)
- Wei Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoqin Wei
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
33
|
Wang Y, Li J, Han J, Shu C, Xu T. Identification and characteristic analysis of TLR28: A novel member of the TLR1 family in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:102-107. [PMID: 27155354 DOI: 10.1016/j.dci.2016.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) play a critical role in the innate immune response of fish to recognize microorganisms. Fish TLRs have significant variety and distinct features. This study focuses on a novel TLR member that belongs to the TLR1 family and was first discovered in miiuy croaker (designated as TLR28, mmiTLR28). In phylogenetic analysis, the mmiTLR28 clustered in the TLR1 family. Further characteristic analysis showed a high homology with TLR2 despite some differences between them. The predicted tertiary structure of mmiTLR28 possesses a hydrophobic pocket in the ectodomain region. Expression analysis showed the high expression level in the liver of miiuy croaker. Further functional experiments on the liver after Vibrio anguillarum, Staphylococcus aureus, lipopolysaccharides (LPS), and poly (I:C) stimulation showed significant upregulation; these results indicate the potential role of mmiTLR28 in immune response. For LPS stimulation in miiuy croaker leukocytes, mmiTLR28 also displayed significant upregulation. The discovery of mmiTLR28 will enrich the information on TLR family; the functional experiments have shown the role of mmiTLR28 in immunity. The results of this study lay the foundation for future research on fish immune systems.
Collapse
Affiliation(s)
- Yanjin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chang Shu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
34
|
Xu T, Wang Y, Li J, Shu C, Han J, Chu Q. Comparative genomic evidence for duplication of TLR1 subfamily and miiuy croaker TLR1 perceives LPS stimulation via MyD88 and TIRAP. FISH & SHELLFISH IMMUNOLOGY 2016; 56:336-348. [PMID: 27431585 DOI: 10.1016/j.fsi.2016.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Being indispensable pattern recognition receptors in innate immune responses in host protection, Toll-like receptors (TLRs) play an important role in pathogen recognition. Fish TLRs exhibit high variety and distinct features, although little is known about their function on ligand recognition and signaling pathway in fish. This paper reports the evolutionary spectrum of the TLR1 subfamily (referred to as TLR1, TLR6, and TLR10) as determined using the comparative genomic approach. We hypothesized that the TLR1 subfamily underwent two rounds of gene duplication events; the first duplication occurred prior to the divergence of amphibians, and the second one occurred prior to the divergence of eutherians. To further study the function of fish TLR1, we identified miiuy croaker (Miichthys miiuy) TLR1 (mmiTLR1) and determined its potential ability to perceive Vibrio anguillarum and lipopolysaccharide stimulation. Data further suggested that mmiTLR1 is dependent on TIRAP and MyD88 for signal transmission. In addition, immunocytochemistry showed the speculative interaction between MyD88 and mmiTLR1 TIR domain. Overall, we systematically and comprehensively analyzed evolution of TLR1 subfamily and the function of mmiTLR1, which will provide the basis for future scientific research on fish TLRs.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yanjin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chang Shu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
35
|
Nagashima H, Yamaoka Y. Reply to Pachathundikandi and Backert. J Infect Dis 2016; 214:167-8. [PMID: 27091909 DOI: 10.1093/infdis/jiw155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroyuki Nagashima
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan Section of Gastroenterology and Hepatology, Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan Section of Gastroenterology and Hepatology, Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
36
|
Li R, Li N, Zhang J, Wang Y, Liu J, Cai Y, Chai T, Wei L. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC). Front Microbiol 2016; 7:637. [PMID: 27199963 PMCID: PMC4853417 DOI: 10.3389/fmicb.2016.00637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 12/04/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.
Collapse
Affiliation(s)
- Rong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yao Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Jiyuan Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yumei Cai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| |
Collapse
|
37
|
Ma Y, Han F, Liang J, Yang J, Shi J, Xue J, Yang L, Li Y, Luo M, Wang Y, Wei J, Liu X. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections. Mol Immunol 2016; 71:23-33. [DOI: 10.1016/j.molimm.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
|
38
|
Cheng Y, Wang H, Yan Y, Ding C, Sun J. Two myeloid differentiation factor 88 (MyD88) isoforms identified in ducks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:144-154. [PMID: 26004012 DOI: 10.1016/j.dci.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
MyD88 is an adaptor protein involved in the interleukin-1 receptor-induced and Toll-like receptor (TLR)-induced activation of nuclear factor-κB (NF-κB). In this study, we identified two isoforms of MyD88 gene, designated DuMyD88-X1 and DuMyD88-X2, from duck cells. Both variants were determined to have a death domain at the N-terminal and a Toll/IL-1R (TIR) domain at the C-terminal; however, the TIR domain of DuMyD88-X2 was incomplete and was 81 amino acids shorter than DuMyD88-X1. Quantitative real-time reverse transcription PCR revealed broad expression of both MyD88s. During Newcastle disease virus (NDV) challenge experiments, expression of the two genes increased significantly, with DuMyD88-X1 having a larger amplitude and longer duration. Overexpression of DuMyD88-X1 and DuMyD88-X2 induced the activation of NF-κB and IL-6 in vitro, suggesting that DuMyD88-X1 and DuMyD88-X2 may be important in the innate immune response. The results verify the existence of a MyD88-dependent signaling pathway in ducks and contribute to understanding the potential role of MyD88s in the innate immune response.
Collapse
Affiliation(s)
- Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
39
|
Petrov P, Syrjänen R, Smith J, Gutowska MW, Uchida T, Vainio O, Burt DW. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints. PLoS One 2015; 10:e0121672. [PMID: 25803627 PMCID: PMC4372362 DOI: 10.1371/journal.pone.0121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
"Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.
Collapse
Affiliation(s)
- Petar Petrov
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riikka Syrjänen
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jacqueline Smith
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Maria Weronika Gutowska
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Tatsuya Uchida
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Olli Vainio
- Institute of Diagnostics, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
- Nordlab Oulu, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - David W Burt
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| |
Collapse
|
40
|
Abstract
Toll-like receptors (TLRs) play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous) were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases.
Collapse
|
41
|
Vinkler M, Bainová H, Bryjová A, Tomášek O, Albrecht T, Bryja J. Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica 2015; 143:101-12. [PMID: 25626717 DOI: 10.1007/s10709-015-9819-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862-863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic, EU,
| | | | | | | | | | | |
Collapse
|
42
|
Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R, Zieliński P. Constraint and adaptation in newt toll-like receptor genes. Genome Biol Evol 2014; 7:81-95. [PMID: 25480684 PMCID: PMC4316619 DOI: 10.1093/gbe/evu266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2-5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity.
Collapse
Affiliation(s)
- Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Anna Fijarczyk
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Maciej Pabijan
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Michał Stuglik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Rafał Szkotak
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
43
|
Vinkler M, Bainová H, Bryja J. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 2014; 46:72. [PMID: 25387947 PMCID: PMC4228102 DOI: 10.1186/s12711-014-0072-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) are essential activators of the innate part of the vertebrate immune system. In this study, we analysed the interspecific variability of three TLR (bacterial-sensing TLR4 and TLR5 and viral-sensing TLR7) within the Galloanserae bird clade, investigated their phylogeny, assessed their structural conservation and estimated site-specific selection pressures. RESULTS Physiochemical properties varied according to the TLR analysed, mainly with regards to the surface electrostatic potential distribution. The predicted ligand-binding features (mainly in TLR4 and TLR5) differed between the avian proteins and their fish and mammalian counterparts, but also varied within the Galloanserae birds. We identified 20 positively selected sites in the three TLR, among which several are topologically close to ligand-binding sites reported for mammalian and fish TLR. We described 26, 28 and 25 evolutionarily non-conservative sites in TLR4, TLR5 and TLR7, respectively. Thirteen of these sites in TLR4, and ten in TLR5 were located in functionally relevant regions. The variability appears to be functionally more conserved for viral-sensing TLR7 than for the bacterial-sensing TLR. Amino-acid positions 268, 270, 343, 383, 444 and 471 in TLR4 and 180, 183, 209, 216, 264, 342 and 379 in TLR5 are key candidates for further functional research. CONCLUSIONS Host-pathogen co-evolution has a major effect on the features of host immune receptors. Our results suggest that avian and mammalian TLR may be differentially adapted to pathogen-derived ligand recognition. We have detected signatures of positive selection even within the Galloanserae lineage. To our knowledge, this is the first study to depict evolutionary pressures on Galloanserae TLR and to estimate the validity of current knowledge on TLR function (based on mammalian and chicken models) for non-model species of this clade.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic.
| | | | | |
Collapse
|
44
|
Yamashiro LH, Oliveira SC, Báfica A. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 2014; 16:991-7. [PMID: 25284681 DOI: 10.1016/j.micinf.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil
| | - Sérgio Costa Oliveira
- Laboratory of Immunology and Infectious Diseases, Federal University of Minas Gerais, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
45
|
Wang K, Mu Y, Qian T, Ao J, Chen X. Molecular characterization and expression analysis of toll-like receptor 1 from large yellow croaker (Pseudosciaena crocea). FISH & SHELLFISH IMMUNOLOGY 2013; 35:2046-2050. [PMID: 24184976 DOI: 10.1016/j.fsi.2013.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns associated with microbial pathogens (PAMP) and induce antimicrobial immune responses. Here we report the molecular cloning and characterization of a TLR1 homologue from the large yellow croaker (LycTLR1). The complete cDNA of LycTLR1 is 3487 nucleotides long, encoding a protein of 802 amino acids. The deduced LycTLR1 has a typical TLR domain architecture including 4 leucine-rich repeats (LRRs) (residues 42-491), one C-terminal LRR domain (residues 527-583) at the extracellular region and a TIR domain (residues 646-791) in the cytoplasmic region. Homology comparison shows that LycTLR1 has 76.8%-47.6% amino acid identity to known fish TLR1. Genomic analysis revealed that LycTLR1 consisted of only one exon in the coding region, which is conserved among other TLR1 from different mammalian species and fish analyzed to date, except the zebrafish. The mRNA of LycTLR1 was constitutively expressed in spleen, head kidney, blood, liver, heart, gills, intestine, brains and muscle, with the highest levels in spleen and blood. Upon stimulation with LPS, the LycTLR1 expression obviously increased in the anterior kidney cells of large yellow croaker, suggesting a role for LycTLR1 in the immune response to LPS.
Collapse
Affiliation(s)
- Kunru Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
46
|
Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol 2013; 13:194. [PMID: 24028551 PMCID: PMC3848458 DOI: 10.1186/1471-2148-13-194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). RESULTS We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. CONCLUSIONS In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands.
Collapse
|
47
|
Chen S, Cheng A, Wang M. Innate sensing of viruses by pattern recognition receptors in birds. Vet Res 2013; 44:82. [PMID: 24016341 PMCID: PMC3848724 DOI: 10.1186/1297-9716-44-82] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022] Open
Abstract
Similar to mammals, several viral-sensing pattern recognition receptors (PRR) have been identified in birds including Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR). Avian TLR are slightly different from their mammalian counterparts, including the pseudogene TLR8, the absence of TLR9, and the presence of TLR1La, TLR1Lb, TLR15, and TLR21. Avian TLR3 and TLR7 are involved in RNA virus recognition, especially highly pathogenic avian influenza virus (HPAIV), while TLR15 and TLR21 are potential sensors that recognize both RNA viruses and bacteria. However, the agonist of TLR15 is still unknown. Interestingly, chickens, unlike ducks, geese and finches, lack RIG-I, however they do express melanoma differentiation-associated gene 5 (MDA5) which functionally compensates for the absence of RIG-I. Duck RIG-I is the cytosolic recognition element for HPAIV recognition, while chicken cells sense HPAIV through MDA5. However, the contributions of MDA5 and RIG-I to IFN-β induction upon HPAIV infection is different, and this may contribute to the chicken’s susceptibility to highly pathogenic influenza. It is noteworthy that the interactions between avian DNA viruses and PRR have not yet been reported. Furthermore, the role for avian Nod-like receptors (NLR) in viral immunity is largely unknown. In this review, recent advances in the field of viral recognition by different types of PRR in birds are summarized. In particular, the tissue and cellular distribution of avian PRR, the recognition and activation of PRR by viruses, and the subsequent expression of innate antiviral genes such as type I IFN and proinflammatory cytokines are discussed.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | | | | |
Collapse
|
48
|
Heffelfinger C, Pakstis AJ, Speed WC, Clark AP, Haigh E, Fang R, Furtado MR, Kidd KK, Snyder MP. Haplotype structure and positive selection at TLR1. Eur J Hum Genet 2013; 22:551-7. [PMID: 24002163 DOI: 10.1038/ejhg.2013.194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptor 1, when dimerized with Toll-like receptor 2, is a cell surface receptor that, upon recognition of bacterial lipoproteins, activates the innate immune system. Variants in TLR1 associate with the risk of a variety of medical conditions and diseases, including sepsis, leprosy, tuberculosis, and others. The foremost of these is rs5743618 c.2079T>G(p.(Ile602Ser)), the derived allele of which is associated with reduced risk of sepsis, leprosy, and other diseases. Interestingly, 602Ser, which shows signatures of selection, inhibits TLR1 surface trafficking and subsequent activation of NFκB upon recognition of a ligand. This suggests that reduced TLR1 activity may be beneficial for human health. To better understand TLR1 variation and its link to human health, we have typed all 7 high-frequency missense variants (>5% in at least one population) along with 17 other variants in and around TLR1 in 2548 individuals from 56 populations from around the globe. We have also found additional signatures of selection on missense variants not associated with rs5743618, suggesting that there may be multiple functional alleles under positive selection in this gene.
Collapse
Affiliation(s)
- Christopher Heffelfinger
- 1] Department of Genetics, Yale University, New Haven, CT, USA [2] Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | | | - Eva Haigh
- Department of Genetics, Yale University, New Haven, CT, USA
| | | | - Mahohar R Furtado
- 1] Life Technologies, Foster City, CA, USA [2] President & Founder, Biology for Global Good, Sam Ramon, CA, USA
| | - Kenneth K Kidd
- Department of Genetics, Yale University, New Haven, CT, USA
| | | |
Collapse
|
49
|
Thakur S, Normand P, Daubin V, Tisa LS, Sen A. Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria. BMC Genomics 2013; 14:474. [PMID: 23848577 PMCID: PMC3729583 DOI: 10.1186/1471-2164-14-474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/04/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Actinobacteria have adapted to contrasted ecological niches such as the soil, and among others to plants or animals as pathogens or symbionts. Mycobacterium genus contains mostly pathogens that cause a variety of mammalian diseases, among which the well-known leprosy and tuberculosis, it also has saprophytic relatives. Streptomyces genus is mostly a soil microbe known for its secondary metabolites, it contains also plant pathogens, animal pathogens and symbionts. Frankia, a nitrogen-fixing actinobacterium establishes a root symbiosis with dicotyledonous pionneer plants. Pathogens and symbionts live inside eukaryotic cells and tissues and interact with their cellular environment through secreted proteins and effectors transported through transmembrane systems; nevertheless they also need to avoid triggering host defense reactions. A comparative genome analysis of the secretomes of symbionts and pathogens allows a thorough investigation of selective pressures shaping their evolution. In the present study, the rates of silent mutations to non-silent mutations in secretory proteins were assessed in different strains of Frankia, Streptomyces and Mycobacterium, of which several genomes have recently become publicly available. RESULTS It was found that secreted proteins as a whole have a stronger purifying evolutionary rate (non-synonymous to synonymous substitutions or Ka/Ks ratio) than the non-secretory proteins in most of the studied genomes. This difference becomes statistically significant in cases involving obligate symbionts and pathogens. Amongst the Frankia, secretomes of symbiotic strains were found to have undergone evolutionary trends different from those of the mainly saprophytic strains. Even within the secretory proteins, the signal peptide part has a higher Ka/Ks ratio than the mature part. Two contrasting trends were noticed amongst the Frankia genomes regarding the relation between selection strength (i.e. Ka/Ks ratio) and the codon adaptation index (CAI), a predictor of the expression rate, in all the genes belonging to the core genome as well as the core secretory protein genes. The genomes of pathogenic Mycobacterium and Streptomyces also had reduced secretomes relative to saprophytes, as well as in general significant pairwise Ka/Ks ratios in their secretomes. CONCLUSION In marginally free-living facultative symbionts or pathogenic organisms under consideration, secretory protein genes as a whole evolve at a faster rate than the rest and this process may be an adaptive life-strategy to counter the host selection pressure. The higher evolutionary rate of signal peptide part compared to mature protein provides an indication that signal peptide parts may be under relaxed purifying selection, indicative of the signal peptides not being secreted into host cells. Codon usage analysis suggests that in actinobacterial strains under host selection pressure such as symbiotic Frankia, ACN, FD and the pathogenic Mycobacterium, codon usage bias was negatively correlated to the selective pressure exerted on the secretory protein genes.
Collapse
Affiliation(s)
- Subarna Thakur
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734013, India
| | | | | | | | | |
Collapse
|
50
|
Willcocks S, Offord V, Seyfert HM, Coffey TJ, Werling D. Species-specific PAMP recognition by TLR2 and evidence for species-restricted interaction with Dectin-1. J Leukoc Biol 2013; 94:449-58. [DOI: 10.1189/jlb.0812390] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|