1
|
Juteršek M, Gerasymenko IM, Petek M, Haumann E, Vacas S, Kallam K, Gianoglio S, Navarro-Llopis V, Heethoff M, Fuertes IN, Patron N, Orzáez D, Gruden K, Warzecha H, Baebler Š. Transcriptome-informed identification and characterization of Planococcus citri cis- and trans-isoprenyl diphosphate synthase genes. iScience 2024; 27:109441. [PMID: 38523795 PMCID: PMC10960109 DOI: 10.1016/j.isci.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug Planococcus citri. We queried the available genomic and newly generated short- and long-read P. citri transcriptomic data and identified 18 putative IDS genes, whose phylogenetic analysis indicates several gene family expansion events. In vitro testing confirmed regular short-chain coupling activity with five gene products. With the candidate with highest IDS activity, we also detected low amounts of irregular coupling products, and determined amino acid residues important for chain-length preference and irregular coupling activity. This work therefore provides an important foundation for deciphering terpenoid biosynthesis in mealybugs, including the sex pheromone biosynthesis in P. citri.
Collapse
Affiliation(s)
- Mojca Juteršek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Iryna M. Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Marko Petek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Elisabeth Haumann
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Sandra Vacas
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Vicente Navarro-Llopis
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Michael Heethoff
- Animal Evolutionary Ecology, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | | | - Nicola Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Špela Baebler
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Varga F, Liber Z, Jakše J, Turudić A, Šatović Z, Radosavljević I, Jeran N, Grdiša M. Development of Microsatellite Markers for Tanacetum cinerariifolium (Trevis.) Sch. Bip., a Plant with a Large and Highly Repetitive Genome. PLANTS 2022; 11:plants11131778. [PMID: 35807729 PMCID: PMC9269103 DOI: 10.3390/plants11131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevis.) Sch. Bip.) is an outcrossing plant species (2n = 18) endemic to the eastern Adriatic coast and source of the natural insecticide pyrethrin. Due to the high repeatability and large genome (1C-value = 9.58 pg) our previous attempts to develop microsatellite markers using the traditional method were unsuccessful. Now we have used Illumina paired-end whole genome sequencing and developed a specific procedure to obtain useful microsatellite markers. A total of 796,130,142 high-quality reads (approx. 12.5× coverage) were assembled into 6,909,675 contigs using two approaches (de novo assembly and joining of overlapped pair-end reads). A total of 31,380 contigs contained one or more microsatellite sequences, of which di-(59.7%) and trinucleotide (25.9%) repeats were the most abundant. Contigs containing microsatellites were filtered according to various criteria to achieve better yield of functional markers. After two rounds of testing, 17 microsatellite markers were developed and characterized in one natural population. Twelve loci were selected for preliminary genetic diversity analysis of three natural populations. Neighbor-joining tree, based on the proportion of shared alleles distances, grouped individuals into clusters according to population affiliation. The availability of codominant SSR markers will allow analysis of genetic diversity and structure of natural Dalmatian pyrethrum populations as well as identification of breeding lines and cultivars.
Collapse
Affiliation(s)
- Filip Varga
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4898-092
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Zlatko Šatović
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Ivan Radosavljević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Nina Jeran
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
| | - Martina Grdiša
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| |
Collapse
|
3
|
Gerasymenko I, Sheludko YV, Navarro Fuertes I, Schmidts V, Steinel L, Haumann E, Warzecha H. Engineering of a Plant Isoprenyl Diphosphate Synthase for Development of Irregular Coupling Activity. Chembiochem 2022; 23:e202100465. [PMID: 34672410 PMCID: PMC9297866 DOI: 10.1002/cbic.202100465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Indexed: 11/17/2022]
Abstract
We performed mutagenesis on a regular isoprenyl diphosphate synthase (IDS), neryl diphosphate synthase from Solanum lycopersicum (SlNPPS), that has a structurally related analogue performing non-head-to-tail coupling of two dimethylallyl diphosphate (DMAPP) units, lavandulyl diphosphate synthase from Lavandula x intermedia (LiLPPS). Wild-type SlNPPS catalyses regular coupling of isopentenyl diphosphate (IPP) and DMAPP in cis-orientation resulting in the formation of neryl diphosphate. However, if the enzyme is fed with DMAPP only, it is able to catalyse the coupling of two DMAPP units and synthesizes two irregular monoterpene diphosphates; their structures were elucidated by the NMR analysis of their dephosphorylation products. One of the alcohols is lavandulol. The second compound is the trans-isomer of planococcol, the first example of an irregular cyclobutane monoterpene with this stereochemical configuration. The irregular activity of SlNPPS constitutes 0.4 % of its regular activity and is revealed only if the enzyme is supplied with DMAPP in the absence of IPP. The exchange of asparagine 88 for histidine considerably enhanced the non-head-to-tail coupling. While still only observed in the absence of IPP, irregular activity of the mutant reaches 13.1 % of its regular activity. The obtained results prove that regular IDS are promising starting points for protein engineering aiming at the development of irregular activities and leading to novel monoterpene structures.
Collapse
Affiliation(s)
- Iryna Gerasymenko
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Yuriy V. Sheludko
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | | | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Lara Steinel
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Elisabeth Haumann
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| | - Heribert Warzecha
- Technische Universität DarmstadtPlant Biotechnology and Metabolic EngineeringSchnittspahnstraße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64287DarmstadtGermany
| |
Collapse
|
4
|
Han H, Mu X, Wang P, Wang Z, Fu H, Gao YG, Du J. Identification of LecRLK gene family in Cerasus humilis through genomic-transcriptomic data mining and expression analyses. PLoS One 2021; 16:e0254535. [PMID: 34252163 PMCID: PMC8274838 DOI: 10.1371/journal.pone.0254535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Lectin receptor-like protein kinases (LecRLKs) have been shown to be involved in plants’ responses to various biotic and abiotic stresse factors. Cerasus humilis is an important fruit species widely planted for soil and water conservation in northern China due to its strong tolerance to drought and salinity stresses. In this study, a total of 170 LecRLK family genes (125 G-types, 43 L-types and 2 C-types) were identified in the newly released whole-genome sequences of C. humilis. Furthermore, nine representative LecRLK genes in young plants of C. humilis under varying drought and salinity stresses were selected for qRT-PCR analysis. Our systematic comparative analyses revealed the active participation of these nine LecRLK genes in the salt and drought stress responses of C. humilis. The results from our study have provided a solid foundation for future functional verification of these LecRLK family genes and will likely help facilitate the more rapid and effective development of new stress resistant Cerasus humilis cultivars.
Collapse
Affiliation(s)
- Hongyan Han
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, Yuci, Shanxi, P. R. China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Zewen Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Hongbo Fu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Yu Gary Gao
- OSU South Centers, The Ohio State University, Piketon, Ohio, United States of America
- Department of Extension, The Ohio State University, Columbus, Ohio, United States of America
| | - Junjie Du
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taigu, Shanxi, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Shen CZ, Zhang CJ, Chen J, Guo YP. Clarifying Recent Adaptive Diversification of the Chrysanthemum-Group on the Basis of an Updated Multilocus Phylogeny of Subtribe Artemisiinae (Asteraceae: Anthemideae). FRONTIERS IN PLANT SCIENCE 2021; 12:648026. [PMID: 34122473 PMCID: PMC8187803 DOI: 10.3389/fpls.2021.648026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
Understanding the roles played by geography and ecology in driving species diversification and in the maintenance of species cohesion is the central objective of evolutionary and ecological studies. The multi-phased orogenesis of Qinghai-Tibetan Plateau (QTP) and global climate changes over late-Miocene has profoundly influenced the environments and evolution of organisms in this region and the vast areas of Asia. In this study, we investigate the lineage diversification of Chrysanthemum-group in subtribe Artemisiinae (tribe Anthemideae, Asteraceae) likely under the effects of climate changes during this period. Using DNA sequences of seven low-copy nuclear loci and nrITS and the coalescent analytical methods, a time-calibrated phylogeny of subtribe Artemisiinae was reconstructed with emphasis on Chrysanthemum-group. The monophyletic Chrysanthemum-group was well resolved into two major clades corresponding to Chrysanthemum and Ajania, two genera which can be well identified by capitulum morphology but have been intermingled in previous plastid and ITS trees. Within Chrysanthemum, a later divergence between Ch. indicum-complex and Ch. zawadskii-complex can be recognized. The time frames of these sequential divergences coincide with the late Cenozoic uplift of the Northern QTP and the concomitant climatic heterogeneity between eastern and inland Asia. Reconstruction of historical biogeography suggested the origin of Chrysanthemum-group in Central Asia, followed by eastward migration of Chrysanthemum and in situ diversification of Ajania. Within Chrysanthemum, Ch. indicum-complex and Ch. zawadskii-complex exhibited contemporary distributional division, the former in more southern and the latter in more northern regions. The geographic structure of the three lineages in Chrysanthemum-group have been associated with the niche differentiation, and environmental heterogenization in Asia interior.
Collapse
Affiliation(s)
- Chu-Ze Shen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chu-Jie Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Jie Chen
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yan-Ping Guo
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Aster spathulifolius Maxim. a leaf transcriptome provides an overall functional characterization, discovery of SSR marker and phylogeny analysis. PLoS One 2020; 15:e0244132. [PMID: 33362220 PMCID: PMC7757906 DOI: 10.1371/journal.pone.0244132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Aster spathulifolius Maxim. is belongs to the Asteraceae family, which is distributed only in Korea and Japan. The species is traditionally a medicinal plant and is economically valuable in the ornamental field. On the other hand, the Aster genus, among the Asteraceae family, lacks genomic resources and its molecular functions. Therefore, in our study the high-throughput RNA-sequencing transcriptome data of A. spathulifolius were obtained to identify the molecular functions and its characterization. The de novo assembly produced 98660 uniqueness with an N50 value of 1126bp. Total unigenes were procure to analyze the functional annotation against databases like non-redundant protein, Pfam, Uniprot, KEGG and Gene ontology. The overall percentage of functional annotation to the nr database (43.71%), uniprotein database (49.97%), Pfam (39.94%), KEGG (42.3%) and to GO (30.34%) were observed. Besides, 377 unigenes were found to be involved in the terpenoids pathway and 666 unigenes were actively engaged in other secondary metabolites synthesis, given that 261 unigenes were within phenylpropanoid pathway and 81 unigenes to flavonoid pathway. A further prediction of stress resistance (9,513) unigenes and transcriptional factor (3,027) unigenes in 53 types were vastly regulated in abiotic stress respectively in salt, heat, MAPK and hormone signal transduction pathway. This study discovered 29,692 SSR markers that assist the genotyping approaches and the genetic diversity perspectives. In addition, eight Asteraceae species as in-group together with one out-group were used to construct the phylogenetic relationship by employing their plastid genome and single-copy orthologs genes. Among 50 plastid protein-coding regions, A. spathulifolius is been closely related to A. annua and by 118 single copy orthologs genes, O. taihangensis is more neighboring species to A. spathulifolius. Apart from this, A. spathulifolius and O. taihangensis, genera have recently diverged from other species. Overall, this research gains new insights into transcriptome data by revealing and exposing the secondary metabolite compounds for drug development, the stress-related genes for producing resilient crops and an ortholog gene of A. spathulifolius for the robustness of phylogeny reconstruction among Asteraceae genera.
Collapse
|
7
|
Zhang W, Chen Z, Kang Y, Fan Y, Liu Y, Yang X, Shi M, Yao K, Qin S. Genome-wide analysis of lectin receptor-like kinases family from potato ( Solanum tuberosum L.). PeerJ 2020; 8:e9310. [PMID: 32566405 PMCID: PMC7293193 DOI: 10.7717/peerj.9310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are involved in responses to diverse environmental stresses and pathogenic microbes. A comprehensive acknowledgment of the family members in potato (Solanum tuberosum) genome is largely limited until now. In total, 113 potato LecRLKs (StLecRLKs) were first identified, including 85 G-type, 26 L-type and 2 C-type members. Based on phylogenetic analysis, StLecRLKs were sub-grouped into seven clades, including C-type, L-type, G-I, G-II, G-III G-IV and G-V. Chromosomal distribution and gene duplication analysis revealed the expansion of StLecRLKs occurred majorly through tandem duplication although the whole-genome duplication (WGD)/segmental duplication events were found. Cis-elements in the StLecRLKs promoter region responded mainly to signals of defense and stress, phytohormone, biotic or abiotic stress. Moreover, expressional investigations indicated that the family members of the clades L-type, G-I, G-IV and G-V were responsive to both bacterial and fungal infection. Based on qRT-PCR analysis, the expressions of PGSC0003DMP400055136 and PGSC0003DMP400067047 were strongly induced in all treatments by both Fusarium sulphureum (Fs) and Phytophthora infestans (Pi) inoculation. The present study provides valuable information for LecRLKs gene family in potato genome, and establishes a foundation for further research into the functional analysis.
Collapse
Affiliation(s)
- Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Yamashiro T, Shiraishi A, Satake H, Nakayama K. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Sci Rep 2019; 9:18249. [PMID: 31796833 PMCID: PMC6890757 DOI: 10.1038/s41598-019-54815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
Pyrethrum (Tanacetum cinerariifolium), which is a perennial Asteraceae plant with white daisy-like flowers, is the original source of mosquito coils and is known for the biosynthesis of the pyrethrin class of natural insecticides. However, the molecular basis of the production of pyrethrins by T. cinerariifolium has yet to be fully elucidated. Here, we present the 7.1-Gb draft genome of T. cinerariifolium, consisting of 2,016,451 scaffolds and 60,080 genes predicted with high confidence. Notably, analyses of transposable elements (TEs) indicated that TEs occupy 33.84% of the genome sequence. Furthermore, TEs of the sire and oryco clades were found to be enriched in the T. cinerariifolium-specific evolutionary lineage, occupying a total of 13% of the genome sequence, a proportion approximately 8-fold higher than that in other plants. InterProScan analysis demonstrated that biodefense-related toxic proteins (e.g., ribosome inactivating proteins), signal transduction-related proteins (e.g., histidine kinases), and metabolic enzymes (e.g., lipoxygenases, acyl-CoA dehydrogenases/oxygenases, and P450s) are also highly enriched in the T. cinerariifolium genome. Molecular phylogenetic analysis detected a variety of enzymes with genus-specific multiplication, including both common enzymes and others that appear to be specific to pyrethrin biosynthesis. Together, these data identify possible novel components of the pyrethrin biosynthesis pathway and provide new insights into the unique genomic features of T. cinerariifolium.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan.
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan.
| |
Collapse
|
9
|
Liu ML, Fan WB, Wang N, Dong PB, Zhang TT, Yue M, Li ZH. Evolutionary Analysis of Plastid Genomes of Seven Lonicera L. Species: Implications for Sequence Divergence and Phylogenetic Relationships. Int J Mol Sci 2018; 19:E4039. [PMID: 30558106 PMCID: PMC6321470 DOI: 10.3390/ijms19124039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Plant plastomes play crucial roles in species evolution and phylogenetic reconstruction studies due to being maternally inherited and due to the moderate evolutionary rate of genomes. However, patterns of sequence divergence and molecular evolution of the plastid genomes in the horticulturally- and economically-important Lonicera L. species are poorly understood. In this study, we collected the complete plastomes of seven Lonicera species and determined the various repeat sequence variations and protein sequence evolution by comparative genomic analysis. A total of 498 repeats were identified in plastid genomes, which included tandem (130), dispersed (277), and palindromic (91) types of repeat variations. Simple sequence repeat (SSR) elements analysis indicated the enriched SSRs in seven genomes to be mononucleotides, followed by tetra-nucleotides, dinucleotides, tri-nucleotides, hex-nucleotides, and penta-nucleotides. We identified 18 divergence hotspot regions (rps15, rps16, rps18, rpl23, psaJ, infA, ycf1, trnN-GUU-ndhF, rpoC2-rpoC1, rbcL-psaI, trnI-CAU-ycf2, psbZ-trnG-UCC, trnK-UUU-rps16, infA-rps8, rpl14-rpl16, trnV-GAC-rrn16, trnL-UAA intron, and rps12-clpP) that could be used as the potential molecular genetic markers for the further study of population genetics and phylogenetic evolution of Lonicera species. We found that a large number of repeat sequences were distributed in the divergence hotspots of plastid genomes. Interestingly, 16 genes were determined under positive selection, which included four genes for the subunits of ribosome proteins (rps7, rpl2, rpl16, and rpl22), three genes for the subunits of photosystem proteins (psaJ, psbC, and ycf4), three NADH oxidoreductase genes (ndhB, ndhH, and ndhK), two subunits of ATP genes (atpA and atpB), and four other genes (infA, rbcL, ycf1, and ycf2). Phylogenetic analysis based on the whole plastome demonstrated that the seven Lonicera species form a highly-supported monophyletic clade. The availability of these plastid genomes provides important genetic information for further species identification and biological research on Lonicera.
Collapse
Affiliation(s)
- Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Wei-Bing Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ning Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Peng-Bin Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Hu H, Li J, Delatte T, Vervoort J, Gao L, Verstappen F, Xiong W, Gan J, Jongsma MA, Wang C. Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1434-1445. [PMID: 29331089 PMCID: PMC6041446 DOI: 10.1111/pbi.12885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 05/21/2023]
Abstract
Aphids are pests of chrysanthemum that employ plant volatiles to select host plants and ingest cell contents to probe host quality before engaging in prolonged feeding and reproduction. Changes in volatile and nonvolatile metabolite profiles can disrupt aphid-plant interactions and provide new methods of pest control. Chrysanthemol synthase (CHS) from Tanacetum cinerariifolium represents the first committed step in the biosynthesis of pyrethrin ester insecticides, but no biological role for the chrysanthemol product alone has yet been documented. In this study, the TcCHS gene was over-expressed in Chrysanthemum morifolium and resulted in both the emission of volatile chrysanthemol (ca. 47 pmol/h/gFW) and accumulation of a chrysanthemol glycoside derivative, identified by NMR as chrysanthemyl-6-O-malonyl-β-D-glucopyranoside (ca. 1.1 mM), with no detrimental phenotypic effects. Dual-choice assays separately assaying these compounds in pure form and as part of the headspace and extract demonstrated independent bioactivity of both components against the cotton aphid (Aphis gossypii). Performance assays showed that the TcCHS plants significantly reduced aphid reproduction, consistent with disturbance of aphid probing activities on these plants as revealed by electropenetrogram (EPG) studies. In open-field trials, aphid population development was very strongly impaired demonstrating the robustness and high impact of the trait. The results suggest that expression of the TcCHS gene induces a dual defence system, with both repellence by chrysanthemol odour and deterrence by its nonvolatile glycoside, introducing a promising new option for engineering aphid control into plants.
Collapse
Affiliation(s)
- Hao Hu
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Jinjin Li
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| | - Thierry Delatte
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jacques Vervoort
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Liping Gao
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Francel Verstappen
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Wei Xiong
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| | - Jianping Gan
- Hubei Collaborative Innovation Center of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Maarten A. Jongsma
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Caiyun Wang
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
11
|
Liu PL, Huang Y, Shi PH, Yu M, Xie JB, Xie L. Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Sci Rep 2018; 8:5861. [PMID: 29651041 PMCID: PMC5897391 DOI: 10.1038/s41598-018-24266-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Lectin receptor-like kinases (LecRLKs) play important roles in plant development and stress responses. Although genome-wide studies of LecRLKs have been performed in several species, a comprehensive analysis including evolutionary, structural and functional analysis has not been carried out in soybean (Glycine max). In this study, we identified 185 putative LecRLK genes in the soybean genome, including 123 G-type, 60 L-type and 2 C-type LecRLK genes. Tandem duplication and segmental duplication appear to be the main mechanisms of gene expansion in the soybean LecRLK (GmLecRLK) gene family. According to our phylogenetic analysis, G-type and L-type GmLecRLK genes can be organized into fourteen and eight subfamilies, respectively. The subfamilies within the G-type GmLecRLKs differ from each other in gene structure and/or protein domains and motifs, which indicates that the subfamilies have diverged. The evolution of L-type GmLecRLKs has been more conservative: most genes retain the same gene structures and nearly the same protein domain and motif architectures. Furthermore, the expression profiles of G-type and L-type GmLecRLK genes show evidence of functional redundancy and divergence within each group. Our results contribute to a better understanding of the evolution and function of soybean LecRLKs and provide a framework for further functional investigation of them.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Huang
- Institute of Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Peng-Hao Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Bo Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - LuLu Xie
- Department of Chinese Cabbage, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Ezeoke MC, Krishnan P, Sim DSY, Lim SH, Low YY, Chong KW, Lim KH. Unusual phenethylamine-containing alkaloids from Elaeocarpus tectorius. PHYTOCHEMISTRY 2018; 146:75-81. [PMID: 29247894 DOI: 10.1016/j.phytochem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
From the leaves of Elaeocarpus tectorius (Lour.) Poir. four previously undescribed phenethylamine-containing alkaloids were isolated, namely, tectoricine, possessing an unprecedented isoquinuclidinone ring system incorporating a phenethylamine moiety, tectoraline, representing a rare alkamide incorporating two phenethylamine moieties, and tectoramidines A and B, representing the first naturally occurring trimeric and dimeric phenethylamine alkaloids incorporating an amidine function. The structures of these alkaloids were established by detailed spectroscopic analysis. The absolute configuration of tectoricine was determined by comparison of the experimental and calculated ECD spectra. Plausible biosynthetic pathways to the four alkaloids are proposed.
Collapse
Affiliation(s)
- Margret Chinonso Ezeoke
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Premanand Krishnan
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Dawn Su-Yin Sim
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kam-Weng Chong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
13
|
Liu PL, Du L, Huang Y, Gao SM, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 2017; 17:47. [PMID: 28173747 PMCID: PMC5296948 DOI: 10.1186/s12862-017-0891-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. Results We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Conclusions Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0891-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Liang Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Huang
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shu-Min Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
14
|
Huang Y, Wang X, Ge S, Rao GY. Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evol Biol 2015; 15:207. [PMID: 26416509 PMCID: PMC4587577 DOI: 10.1186/s12862-015-0490-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. RESULTS This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. CONCLUSIONS GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.
Collapse
Affiliation(s)
- Yuan Huang
- College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xi Wang
- College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Guang-Yuan Rao
- College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Medicinal plants are essential for improving human health, and around 75% of the population in developing countries relies mainly on herb-based medicines for health care. As the king of herb plants, ginseng has been used for nearly 5,000 years in the oriental and recently in western medicines. Among the compounds studied in ginseng plants, ginsenosides have been shown to have multiple medical effects such as anti-oxidative, anti-aging, anti-cancer, adaptogenic and other health-improving activities. Ginsenosides belong to a group of triterpene saponins (also called ginseng saponins) that are found almost exclusively in Panax species and accumulated especially in the plant roots. In this review, we update the conserved and diversified pathway/enzyme biosynthesizing ginsenosides which have been presented. Particularly, we highlight recent milestone works on functional characterization of key genes dedicated to the production of ginsenosides, and their application in engineering plants and yeast cells for large-scale production of ginsenosides.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| |
Collapse
|
16
|
Yang T, Gao L, Hu H, Stoopen G, Wang C, Jongsma MA. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity. J Biol Chem 2014; 289:36325-35. [PMID: 25378387 PMCID: PMC4276892 DOI: 10.1074/jbc.m114.623348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.
Collapse
Affiliation(s)
- Ting Yang
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands, the Laboratory of Entomology, Wageningen UR, P.O. Box 8031, 6700 EH Wageningen, The Netherlands, the Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands, and
| | - Liping Gao
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Hao Hu
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Geert Stoopen
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Caiyun Wang
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands,
| |
Collapse
|