1
|
Fortes-Lima CA, Diallo MY, Janoušek V, Černý V, Schlebusch CM. Population history and admixture of the Fulani people from the Sahel. Am J Hum Genet 2025; 112:261-275. [PMID: 39919708 DOI: 10.1016/j.ajhg.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 02/09/2025] Open
Abstract
The Fulani people, one of the most important pastoralist groups in sub-Saharan Africa, are still largely underrepresented in population genomic research. They speak a Niger-Congo language called Fulfulde or Pulaar and live in scattered locations across the Sahel/Savannah belt, from the Atlantic Ocean to Lake Chad. According to historical records, their ancestors spread from Futa Toro in the Middle Senegal Valley to Futa-Jallon in Guinea and then eastward into the Sahel belt over the past 1,500 years. However, the earlier history of this traditionally pastoral population has not been well studied. To uncover the genetic structure and ancestry of this widespread population, we gathered genome-wide genotype data from 460 individuals across 18 local Fulani populations, along with comparative data from both modern and ancient worldwide populations. This represents a comprehensive geographically wide-scaled genome-wide study of the Fulani. We revealed a genetic component closely associated with all local Fulani populations, suggesting a shared ancestral component possibly linked to the beginning of African pastoralism in the Green Sahara. Comparison to ancient DNA results also identified the presence of an ancient Iberomaurusian-associated component across all Fulani groups, providing additional insights into their deep genetic history. Additionally, our genetic data indicate a later Fulani expansion from the western to the eastern Sahel, characterized by a clinal pattern and admixture with several other African populations north of the equator.
Collapse
Affiliation(s)
- Cesar A Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mame Y Diallo
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, 128 01 Prague, Czech Republic
| | - Václav Janoušek
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic; Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa; SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
2
|
Serradell JM, Lorenzo-Salazar JM, Flores C, Lao O, Comas D. Modelling the demographic history of human North African genomes points to a recent soft split divergence between populations. Genome Biol 2024; 25:201. [PMID: 39080715 PMCID: PMC11290046 DOI: 10.1186/s13059-024-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND North African human populations present a complex demographic scenario due to the presence of an autochthonous genetic component and population substructure, plus extensive gene flow from the Middle East, Europe, and sub-Saharan Africa. RESULTS We conducted a comprehensive analysis of 364 genomes to construct detailed demographic models for the North African region, encompassing its two primary ethnic groups, the Arab and Amazigh populations. This was achieved through an Approximate Bayesian Computation with Deep Learning (ABC-DL) framework and a novel algorithm called Genetic Programming for Population Genetics (GP4PG). This innovative approach enabled us to effectively model intricate demographic scenarios, utilizing a subset of 16 whole genomes at > 30X coverage. The demographic model suggested by GP4PG exhibited a closer alignment with the observed data compared to the ABC-DL model. Both point to a back-to-Africa origin of North African individuals and a close relationship with Eurasian populations. Results support different origins for Amazigh and Arab populations, with Amazigh populations originating back in Epipaleolithic times, while GP4PG supports Arabization as the main source of Middle Eastern ancestry. The GP4PG model includes population substructure in surrounding populations (sub-Saharan Africa and Middle East) with continuous decaying gene flow after population split. Contrary to ABC-DL, the best GP4PG model does not require pulses of admixture from surrounding populations into North Africa pointing to soft splits as drivers of divergence in North Africa. CONCLUSIONS We have built a demographic model on North Africa that points to a back-to-Africa expansion and a differential origin between Arab and Amazigh populations.
Collapse
Affiliation(s)
- Jose M Serradell
- Departament de Medicina i Ciències de la Vida, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer del Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona s/n, Santa Cruz de Tenerife, 38600, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona s/n, Santa Cruz de Tenerife, 38600, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Santa Cruz de Tenerife, 38206, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, Santa Cruz de Tenerife, 38010, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Calle de La Juventud S/N, Santa María de Guía, Las Palmas de Gran Canaria, 35450, Spain
| | - Oscar Lao
- Departament de Medicina i Ciències de la Vida, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer del Doctor Aiguader 88, Barcelona, 08003, Spain.
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer del Doctor Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
3
|
Cabrera VM. New Canary Islands Roman mediated settlement hypothesis deduced from coalescence ages of curated maternal indigenous lineages. Sci Rep 2024; 14:11150. [PMID: 38750053 PMCID: PMC11096394 DOI: 10.1038/s41598-024-61731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Numerous genetic studies have contributed to reconstructing the human history of the Canary Islands population. The recent use of new ancient DNA targeted enrichment and next-generation sequencing techniques on new Canary Islands samples have greatly improved these molecular results. However, the bulk of the available data is still provided by the classic mitochondrial DNA phylogenetic and phylogeographic studies carried out on the indigenous, historical, and extant human populations of the Canary Islands. In the present study, making use of all the accumulated mitochondrial information, the existence of DNA contamination and archaeological sample misidentification in those samples is evidenced. Following a thorough review of these cases, the new phylogeographic analysis revealed the existence of a heterogeneous indigenous Canarian population, asymmetrically distributed across the various islands, which most likely descended from a unique mainland settlement. These new results and new proposed coalescent ages are compatible with a Roman-mediated arrival driven by the exploitation of the purple dye manufacture in the Canary Islands.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200, San Cristobal de La Laguna, Spain.
| |
Collapse
|
4
|
Fähnrich A, Stephan I, Hirose M, Haarich F, Awadelkareem MA, Ibrahim S, Busch H, Wohlers I. North and East African mitochondrial genetic variation needs further characterization towards precision medicine. J Adv Res 2023; 54:59-76. [PMID: 36736695 PMCID: PMC10703728 DOI: 10.1016/j.jare.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Mitochondria are maternally inherited cell organelles with their own genome, and perform various functions in eukaryotic cells such as energy production and cellular homeostasis. Due to their inheritance and manifold biological roles in health and disease, mitochondrial genetics serves a dual purpose of tracing the history as well as disease susceptibility of human populations across the globe. This work requires a comprehensive catalogue of commonly observed genetic variations in the mitochondrial DNAs for all regions throughout the world. So far, however, certain regions, such as North and East Africa have been understudied. OBJECTIVES To address this shortcoming, we have created the most comprehensive quality-controlled North and East African mitochondrial data set to date and use it for characterizing mitochondrial genetic variation in this region. METHODS We compiled 11 published cohorts with novel data for mitochondrial genomes from 159 Sudanese individuals. We combined these 641 mitochondrial sequences with sequences from the 1000 Genomes (n = 2504) and the Human Genome Diversity Project (n = 828) and used the tool haplocheck for extensive quality control and detection of in-sample contamination, as well as Nanopore long read sequencing for haplogroup validation of 18 samples. RESULTS Using a subset of high-coverage mitochondrial sequences, we predict 15 potentially novel haplogroups in North and East African subjects and observe likely phylogenetic deviations from the established PhyloTree reference for haplogroups L0a1 and L2a1. CONCLUSION Our findings demonstrate common hitherto unexplored variants in mitochondrial genomes of North and East Africa that lead to novel phylogenetic relationships between haplogroups present in these regions. These observations call for further in-depth population genetic studies in that region to enable the prospective use of mitochondrial genetic variation for precision medicine.
Collapse
Affiliation(s)
- Anke Fähnrich
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Isabel Stephan
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Misa Hirose
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Franziska Haarich
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Center, Lübeck, Lübeck, Germany
| | - Mosab Ali Awadelkareem
- Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Saleh Ibrahim
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Inken Wohlers
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Biomedical Data Science, Research Center Borstel, 23845 Borstel, Germany.
| |
Collapse
|
5
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
6
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
Font-Porterias N, García-Fernández C, Aizpurua-Iraola J, Comas D, Torrents D, de Cid R, Calafell F. Sequence diversity of the uniparentally transmitted portions of the genome in the resident population of Catalonia. Forensic Sci Int Genet 2022; 61:102783. [DOI: 10.1016/j.fsigen.2022.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
10
|
Mestiri S, Boussetta S, Pakstis AJ, El Kamel S, Ben Ammar El Gaaied A, Kidd KK, Cherni L. New Insight into the human genetic diversity in North African populations by genotyping of SNPs in DRD3, CSMD1 and NRG1 genes. Mol Genet Genomic Med 2022; 10:e1871. [PMID: 35128830 PMCID: PMC8922960 DOI: 10.1002/mgg3.1871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The single nucleotide polymorphisms (SNPs) of the dopamine D3 receptor (DRD3), the CUB and sushi multiple domains 1 (CSMD1) and the neuregulin 1 (NRG1) genes were used to study the genetic diversity and affinity among North African populations and to examine their genetic relationships in worldwide populations. METHODS The rs3773678, rs3732783 and rs6280 SNPs of the DRD3 gene located on chromosome 3, the rs10108270 SNP of the CSMD1 gene and the rs383632, rs385396 and rs1462906 SNPs of the NRG1 gene located on chromosome 8 were analysed in 366 individuals from seven North African populations (Libya, Kairouan, Mehdia, Sousse, Kesra, Smar and Kerkennah). RESULTS The low values of FST indicated that only 0.27%-1.65% of the genetic variability was due to the differences between the populations. The Kairouan population has the lowest average heterozygosity among the North African populations. Haplotypes composed of the ancestral alleles ACC and ACAT were more frequent in the Kairouan population than in other North African populations. The PCA and the haplotypic analysis showed that the genetic structure of populations in North Africa was closer to that of Europeans, Admixed Americans, South Asians and East Asians. However, analysis of the rs3732783 and rs6280 SNPs revealed that the CT microhaplotype was specific to the North African population. CONCLUSIONS The Kairouan population exhibited a relatively low rate of genetic variability. The North African population has undergone significant gene flow but also evolutionary forces that have made it genetically distinct from other populations.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41)University of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Andrew J. Pakstis
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Sarra El Kamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Kenneth K. Kidd
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Lotfi Cherni
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| |
Collapse
|
11
|
Mestiri S, Boussetta S, Pakstis AJ, Elkamel S, Elgaaied ABA, Kidd KK, Cherni L. Genetic diversity of the North African population revealed by the typing of SNPs in the DRD2/ANKK1 genomic region. Gene 2021; 777:145466. [PMID: 33524518 DOI: 10.1016/j.gene.2021.145466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The dopamine - related genes, like dopamine D2 receptor (DRD2) gene and ankyrin repeat and kinase domain containing 1 (ANKK1) gene are implicated in neurological functions. Some polymorphisms of the DRD2/ANKK1 locus (TaqIA, TaqIB, TaqID) have been used to study genetic diversity and the evolution of human populations. The present investigation aims to assess the genetic diversity in seven North African populations in order to explore their genetic structure and to compare them to others worldwide populations studied for the same locus. Nine single nucleotide polymorphisms (SNPs) from the DRD2/ANKK1 locus (rs1800497 TaqIA, rs2242592, rs1124492, rs6277, rs6275, rs1079727, rs2002453, rs2234690 and rs1079597 TaqIB) were typed in 366 individuals from seven North African populations: six from Tunisia (Sousse, Smar, Kesra, Kairouan, Mehdia and Kerkennah) and one from Libya. The allelic frequencies of rs2002453 and rs2234690 were higher in the Smar population than in the other North African populations. More, the Smar population showed the lowest average heterozygosity (0.313). The principal component analysis (PCA) showed that the Smar population was clearly separated from others. Furthermore, linkage disequilibrium analysis shown a high linkage disequilibrium in the North African population and essentially in Smar population. Comparison with other world populations has shown that the heterozygosity of North African population was very close to that of the African and European populations. The PCA and the haplotypic analysis suggested the presence of an important Eurasian genetic component for the North African population. These results suggested that the Smar population was isolated from the others North Africans ones by its peculiar genetic structure because of isolation, endogamy and genetic drift. On the other hand, the North African population is characterized by a multi ancestral gene pool from Eurasia and sub-Saharan Africa due to human migration since prehistoric times.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41), University of Monastir, Monastir 5000, Tunisia; Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia.
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lotfi Cherni
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia; Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
12
|
Lucas-Sánchez M, Serradell JM, Comas D. Population history of North Africa based on modern and ancient genomes. Hum Mol Genet 2020; 30:R17-R23. [PMID: 33284971 DOI: 10.1093/hmg/ddaa261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
Abstract
Compared with the rest of the African continent, North Africa has provided limited genomic data. Nonetheless, the genetic data available show a complex demographic scenario characterized by extensive admixture and drift. Despite the continuous gene flow from the Middle East, Europe and sub-Saharan Africa, an autochthonous genetic component that dates back to pre-Holocene times is still present in North African groups. The comparison of ancient and modern genomes has evidenced a genetic continuity in the region since Epipaleolithic times. Later population movements, especially the gene flow from the Middle East associated with the Neolithic, have diluted the genetic autochthonous component, creating an east to west gradient. Recent historical movements, such as the Arabization, have also contributed to the genetic landscape observed currently in North Africa and have culturally transformed the region. Genome analyses have not shown evidence of a clear correlation between cultural and genetic diversity in North Africa, as there is no genetic pattern of differentiation between Tamazight (i.e. Berber) and Arab speakers as a whole. Besides the gene flow received from neighboring areas, the analysis of North African genomes has shown that the region has also acted as a source of gene flow since ancient times. As a result of the genetic uniqueness of North African groups and the lack of available data, there is an urgent need for the study of genetic variation in the region and its implications in health and disease.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jose M Serradell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
13
|
ElHefnawi M, Hegazy E, Elfiky A, Jeon Y, Jeon S, Bhak J, Mohamed Metwally F, Sugano S, Horiuchi T, Kazumi A, Blazyte A. Complete genome sequence and bioinformatics analysis of nine Egyptian females with clinical information from different geographic regions in Egypt. Gene 2020; 769:145237. [PMID: 33127537 DOI: 10.1016/j.gene.2020.145237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Egyptians are at a crossroad between Africa and Eurasia, providing useful genomic resources for analyzing both genetic and environmental factors for future personalized medicine. Two personal Egyptian whole genomes have been published previously by us and here nine female whole genome sequences with clinical information have been added to expand the genomic resource of Egyptian personal genomes. Here we report the analysis of whole genomes of nine Egyptian females from different regions using Illumina short-read sequencers. At 30x sequencing coverage, we identified 12 SNPs that were shared in most of the subjects associated with obesity which are concordant with their clinical diagnosis. Also, we found mtDNA mutation A4282G is common in all the samples and this is associated with chronic progressive external ophthalmoplegia (CPEO). Haplogroup and Admixture analyses revealed that most Egyptian samples are close to the other north Mediterranean, Middle Eastern, and European, respectively, possibly reflecting the into-Africa influx of human migration. In conclusion, we present whole-genome sequences of nine Egyptian females with personal clinical information that cover the diverse regions of Egypt. Although limited in sample size, the whole genomes data provides possible geno-phenotype candidate markers that are relevant to the region's diseases.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt; Informatics & Systems Department, the National Research Centre, Cairo, Egypt; Biomedical Informatics and Chemoinformatics Group, Center of Excellence for Medical Research, National Research Centre, Cairo, Egypt.
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt
| | - Asmaa Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Yeonsu Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Bhak
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea
| | - Fateheya Mohamed Metwally
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Sumio Sugano
- The Institute of Medical Science, University of Tokyo, Japan
| | - Terumi Horiuchi
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Abe Kazumi
- The Institute of Medical Science, University of Tokyo, Japan
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
14
|
García-Fernández C, Font-Porterias N, Kučinskas V, Sukarova-Stefanovska E, Pamjav H, Makukh H, Dobon B, Bertranpetit J, Netea MG, Calafell F, Comas D. Sex-biased patterns shaped the genetic history of Roma. Sci Rep 2020; 10:14464. [PMID: 32879340 PMCID: PMC7468237 DOI: 10.1038/s41598-020-71066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The Roma population is a European ethnic minority characterized by recent and multiple dispersals and founder effects. After their origin in South Asia around 1,500 years ago, they migrated West. In Europe, they diverged into ethnolinguistically distinct migrant groups that spread across the continent. Previous genetic studies based on genome-wide data and uniparental markers detected Roma founder events and West-Eurasian gene flow. However, to the best of our knowledge, it has not been assessed whether these demographic processes have equally affected both sexes in the population. The present study uses the largest and most comprehensive dataset of complete mitochondrial and Y chromosome Roma sequences to unravel the sex-biased patterns that have shaped their genetic history. The results show that the Roma maternal genetic pool carries a higher lineage diversity from South Asia, as opposed to a single paternal South Asian lineage. Nonetheless, the European gene flow events mainly occurred through the maternal lineages; however, a signal of this gene flow is also traceable in the paternal lineages. We also detect a higher female migration rate among European Roma groups. Altogether, these results suggest that sociocultural factors influenced the emergence of sex-biased genetic patterns at global and local scales in the Roma population through time.
Collapse
Affiliation(s)
- C García-Fernández
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Biomedical Science Institute, Vilnius University, Vilnius, Lithuania
| | - E Sukarova-Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Academy of Sciences and Arts of the Republic of North Macedonia - MASA, Skopje, Republic of North Macedonia
| | - H Pamjav
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - H Makukh
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - B Dobon
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.,Department of Human Genetics, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - F Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - D Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Mitochondrial DNA variation in Sub-Saharan Africa: Forensic data from a mixed West African sample, Côte d'Ivoire (Ivory Coast), and Rwanda. Forensic Sci Int Genet 2019; 44:102202. [PMID: 31775077 DOI: 10.1016/j.fsigen.2019.102202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/23/2022]
Abstract
This study provides 398 novel complete mitochondrial control region sequences that augment the still underrepresented data from Africa by three datasets: a mixed West African sample set deriving from 12 countries (n = 145) and datasets from Côte d'Ivoire (Ivory Coast) (n = 100) as well as Rwanda (n = 153). The analysis of mtDNA variation and genetic comparisons with published data revealed low random match probabilities in all three datasets and typical West African and East African diversity, respectively. Genetic parameters indicate that the presented mixed West African dataset may serve as first forensic mtDNA control region database for West Africa in general. In addition, a strategy for responsible forensic application of precious mtDNA population samples potentially containing close maternal relatives is outlined. The datasets will be uploaded to the forensic mtDNA database EMPOP (https://empop.online) upon publication.
Collapse
|
16
|
Kleisner K, Pokorný Š, Čížková M, Froment A, Černý V. Nomadic pastoralists and sedentary farmers of the Sahel/Savannah Belt of Africa in the light of geometric morphometrics based on facial portraits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:632-645. [DOI: 10.1002/ajpa.23845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Karel Kleisner
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Šimon Pokorný
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Alain Froment
- UMR 208‐PalocIRD‐MNHN, Musée de l'Homme Paris France
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
17
|
Varano S, Gaspari L, De Angelis F, Scano G, Contini I, Martínez-Labarga C, Rickards O. Mitochondrial characterisation of two Spanish populations from the Vera and Bejar valleys (Central Spain). Ann Hum Biol 2019; 45:531-539. [DOI: 10.1080/03014460.2018.1559355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sara Varano
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Luca Gaspari
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Flavio De Angelis
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppina Scano
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Irene Contini
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Martínez-Labarga
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Olga Rickards
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
18
|
Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc Natl Acad Sci U S A 2018; 115:6774-6779. [PMID: 29895688 DOI: 10.1073/pnas.1800851115] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals' genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (∼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (∼9,000 BCE) and Pre-Pottery Neolithic farmers (∼6,500 BCE). Late Neolithic (∼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia ∼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.
Collapse
|
19
|
van de Loosdrecht M, Bouzouggar A, Humphrey L, Posth C, Barton N, Aximu-Petri A, Nickel B, Nagel S, Talbi EH, El Hajraoui MA, Amzazi S, Hublin JJ, Pääbo S, Schiffels S, Meyer M, Haak W, Jeong C, Krause J. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 2018; 360:548-552. [PMID: 29545507 DOI: 10.1126/science.aar8380] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
North Africa is a key region for understanding human history, but the genetic history of its people is largely unknown. We present genomic data from seven 15,000-year-old modern humans, attributed to the Iberomaurusian culture, from Morocco. We find a genetic affinity with early Holocene Near Easterners, best represented by Levantine Natufians, suggesting a pre-agricultural connection between Africa and the Near East. We do not find evidence for gene flow from Paleolithic Europeans to Late Pleistocene North Africans. The Taforalt individuals derive one-third of their ancestry from sub-Saharan Africans, best approximated by a mixture of genetic components preserved in present-day West and East Africans. Thus, we provide direct evidence for genetic interactions between modern humans across Africa and Eurasia in the Pleistocene.
Collapse
Affiliation(s)
- Marieke van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany
| | - Abdeljalil Bouzouggar
- Origin and Evolution of Homo sapiens in Morocco Research Group, Institut National des Sciences de l'Archéologie et du Patrimoine, Hay Riad, Madinat Al Irfane, Angle rues 5 et 7, Rabat-Instituts, 10 000 Rabat, Morocco. .,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Louise Humphrey
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany
| | - Nick Barton
- Institute of Archaeology, University of Oxford, 36 Beaumont Street, Oxford OX1 2PG, UK
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Birgit Nickel
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - El Hassan Talbi
- Faculté des Sciences, Campus d'Al Qods, Université Mohammed Premier, B.P. 717 Oujda, Morocco
| | - Mohammed Abdeljalil El Hajraoui
- Origin and Evolution of Homo sapiens in Morocco Research Group, Institut National des Sciences de l'Archéologie et du Patrimoine, Hay Riad, Madinat Al Irfane, Angle rues 5 et 7, Rabat-Instituts, 10 000 Rabat, Morocco
| | - Saaïd Amzazi
- Mohammed V University, Avenue Ibn Batouta, Rabat, Morocco
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Deutscher Platz 6, D-04103, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany
| | - Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Kahlaische Strasse 10, D-07745, Germany.
| |
Collapse
|
20
|
Font-Porterias N, Solé-Morata N, Serra-Vidal G, Bekada A, Fadhlaoui-Zid K, Zalloua P, Calafell F, Comas D. The genetic landscape of Mediterranean North African populations through complete mtDNA sequences. Ann Hum Biol 2018; 45:98-104. [DOI: 10.1080/03014460.2017.1413133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Serra-Vidal
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Univesritaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- School of Medicine, The Lebanese American University, Chouran, Beirut, Lebanon
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
21
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
22
|
Kulichová I, Fernandes V, Deme A, Nováčková J, Stenzl V, Novelletto A, Pereira L, Černý V. Internal diversification of non-Sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:424-434. [DOI: 10.1002/ajpa.23285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Iva Kulichová
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University in Prague; Czech Republic
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
| | - Alioune Deme
- Département d'Histoire, Faculté des Lettres et Sciences humaines; Université Cheikh Anta Diop de Dakar; Senegal
| | - Jana Nováčková
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic Genetics; Institute of Criminalistics; Prague Czech Republic
| | | | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
- Faculdade de Medicina da Universidade do Porto; Porto Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|
23
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
24
|
Frigi S, Mota-Vieira L, Cherni L, van Oven M, Pires R, Boussetta S, El-Gaaied ABA. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:298-315. [PMID: 28838744 DOI: 10.1016/j.jchb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/06/2017] [Indexed: 11/25/2022]
Abstract
Tunisia is a country of great interest for human population genetics due to its strategic geographic position and rich human settlement history. These factors significantly contributed to the genetic makeup of present-day Tunisians harbouring components of diverse geographic origins. Here, we investigated the genetic structure of Tunisians by performing a mitochondrial DNA (mtDNA) comparison of 15 Tunisian population groups, in order to explore their complex genetic landscape. All Tunisian data were also analysed against 40 worldwide populations. Statistical results (Tajima's D and Fu's FS tests) suggested recent population expansion for the majority of studied populations, as well as showed (AMOVA test) that all populations were significantly different from each other, which is evidence of population structure even if it is not guided by geographic and ethnic effects. Gene flow analysis revealed the assignment of Tunisians to multiple ancestries, which agrees with their genetic heterogeneity. The resulting picture for the mtDNA pool confirms the evidence of a recent expansion of the Tunisian population and is in accordance with a mosaic structure, composed by North African, Middle Easterner, European and Sub-Saharan lineages, resulting from a complex settlement history.
Collapse
Affiliation(s)
- S Frigi
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - L Mota-Vieira
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPER, Avenida D. Manuel I, 9500-370 Ponta Delgada, São Miguel Island, Azores, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - L Cherni
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - M van Oven
- Turkooislaan 60, 3523 GN Utrecht, The Netherlands
| | - R Pires
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPER, Avenida D. Manuel I, 9500-370 Ponta Delgada, São Miguel Island, Azores, Portugal
| | - S Boussetta
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - A Ben Ammar El-Gaaied
- Laboratory of Molecular Genetics, Immunology and Human Pathology at the Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
25
|
Hernández CL, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet 2017; 18:46. [PMID: 28525980 PMCID: PMC5437654 DOI: 10.1186/s12863-017-0514-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. RESULTS Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. CONCLUSIONS Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
26
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
27
|
Priehodová E, Austerlitz F, Čížková M, Mokhtar MG, Poloni ES, Černý V. The historical spread of
A
rabian
P
astoralists to the eastern
A
frican
S
ahel evidenced by the lactase persistence −13,915*G allele and mitochondrial DNA. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.22950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Edita Priehodová
- Department of Anthropology and Human GeneticsFaculty of Science Charles UniversityPrague Czech Republic
| | - Frédéric Austerlitz
- UMR 7206 EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Musée de l'HommeParis
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science Charles UniversityPrague Czech Republic
| | | | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Faculty of Science, University of Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech RepublicPrague
| |
Collapse
|
28
|
Marrero P, Abu-Amero KK, Larruga JM, Cabrera VM. Carriers of human mitochondrial DNA macrohaplogroup M colonized India from southeastern Asia. BMC Evol Biol 2016; 16:246. [PMID: 27832758 PMCID: PMC5105315 DOI: 10.1186/s12862-016-0816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Background From a mtDNA dominant perspective, the exit from Africa of modern humans to colonize Eurasia occurred once, around 60 kya, following a southern coastal route across Arabia and India to reach Australia short after. These pioneers carried with them the currently dominant Eurasian lineages M and N. Based also on mtDNA phylogenetic and phylogeographic grounds, some authors have proposed the coeval existence of a northern route across the Levant that brought mtDNA macrohaplogroup N to Australia. To contrast both hypothesis, here we reanalyzed the phylogeography and respective ages of mtDNA haplogroups belonging to macrohaplogroup M in different regions of Eurasia and Australasia. Results The macrohaplogroup M has a historical implantation in West Eurasia, including the Arabian Peninsula. Founder ages of M lineages in India are significantly younger than those in East Asia, Southeast Asia and Near Oceania. Moreover, there is a significant positive correlation between the age of the M haplogroups and its longitudinal geographical distribution. These results point to a colonization of the Indian subcontinent by modern humans carrying M lineages from the east instead the west side. Conclusions The existence of a northern route, previously proposed for the mtDNA macrohaplogroup N, is confirmed here for the macrohaplogroup M. Both mtDNA macrolineages seem to have differentiated in South East Asia from ancestral L3 lineages. Taking this genetic evidence and those reported by other disciplines we have constructed a new and more conciliatory model to explain the history of modern humans out of Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0816-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Marrero
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
29
|
Gandini F, Achilli A, Pala M, Bodner M, Brandini S, Huber G, Egyed B, Ferretti L, Gómez-Carballa A, Salas A, Scozzari R, Cruciani F, Coppa A, Parson W, Semino O, Soares P, Torroni A, Richards MB, Olivieri A. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci Rep 2016; 6:25472. [PMID: 27146119 PMCID: PMC4857117 DOI: 10.1038/srep25472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.
Collapse
Affiliation(s)
- Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Balazs Egyed
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
30
|
López S, van Dorp L, Hellenthal G. Human Dispersal Out of Africa: A Lasting Debate. Evol Bioinform Online 2016; 11:57-68. [PMID: 27127403 PMCID: PMC4844272 DOI: 10.4137/ebo.s33489] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023] Open
Abstract
Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings.
Collapse
Affiliation(s)
- Saioa López
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucy van Dorp
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
31
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
32
|
Černý V, Čížková M, Poloni ES, Al‐Meeri A, Mulligan CJ. Comprehensive view of the population history of
A
rabia as inferred by mt
DNA
variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:607-16. [DOI: 10.1002/ajpa.22920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science, Charles University in Prague Czech Republic
| | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of GenevaGeneva Switzerland
| | - Ali Al‐Meeri
- Department of Clinical BiochemistryFaculty of Medicine and Health Sciences, University of Sana'aSana'a Yemen
| | | |
Collapse
|
33
|
Vyas DN, Kitchen A, Miró‐Herrans AT, Pearson LN, Al‐Meeri A, Mulligan CJ. Bayesian analyses of Yemeni mitochondrial genomes suggest multiple migration events with Africa and Western Eurasia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:382-93. [DOI: 10.1002/ajpa.22890] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/21/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Deven N. Vyas
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa City IA52242
| | - Aida T. Miró‐Herrans
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Laurel N. Pearson
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Ali Al‐Meeri
- Department of Clinical Biochemistry, Faculty of Medicine and Health SciencesUniversity of Sana'aSana'a Yemen
| | - Connie J. Mulligan
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| |
Collapse
|
34
|
Hernández CL, Soares P, Dugoujon JM, Novelletto A, Rodríguez JN, Rito T, Oliveira M, Melhaoui M, Baali A, Pereira L, Calderón R. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm. PLoS One 2015; 10:e0139784. [PMID: 26509580 PMCID: PMC4624789 DOI: 10.1371/journal.pone.0139784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, 31073 Toulouse, France
| | - Andrea Novelletto
- Dipartimento di Biologia, Università Tor Vergata di Rome, Rome, Italy
| | | | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Marisa Oliveira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | - Abdellatif Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - Luisa Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
35
|
Fregel R, Cabrera V, Larruga JM, Abu-Amero KK, González AM. Carriers of Mitochondrial DNA Macrohaplogroup N Lineages Reached Australia around 50,000 Years Ago following a Northern Asian Route. PLoS One 2015; 10:e0129839. [PMID: 26053380 PMCID: PMC4460043 DOI: 10.1371/journal.pone.0129839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Background The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route. Methods MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges. Results The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians. Conclusions Apart from a single migration event via a southern route, phylogeny and phylogeography of N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia following a northern route through Asia. Data from other disciplines also support this scenario.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
- * E-mail:
| | - Vicente Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jose M. Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Khaled K. Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ana M. González
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
36
|
Fernandes V, Triska P, Pereira JB, Alshamali F, Rito T, Machado A, Fajkošová Z, Cavadas B, Černý V, Soares P, Richards MB, Pereira L. Genetic stratigraphy of key demographic events in Arabia. PLoS One 2015; 10:e0118625. [PMID: 25738654 PMCID: PMC4349752 DOI: 10.1371/journal.pone.0118625] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (∼8–37 generations for African input into Arabia, and 30–90 generations for “back-to-Africa” migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ∼2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ∼8 ka. The main “back-to-Africa” migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa.
Collapse
Affiliation(s)
- Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Petr Triska
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas da Universidade do Porto (ICBAS), Porto, Portugal
| | - Joana B. Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Farida Alshamali
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Alison Machado
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Zuzana Fajkošová
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Martin B. Richards
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
37
|
Hodgson JA, Mulligan CJ, Al-Meeri A, Raaum RL. Early back-to-Africa migration into the Horn of Africa. PLoS Genet 2014; 10:e1004393. [PMID: 24921250 PMCID: PMC4055572 DOI: 10.1371/journal.pgen.1004393] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural.
Collapse
Affiliation(s)
- Jason A. Hodgson
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| | - Connie J. Mulligan
- Department of Anthropology and the Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Ali Al-Meeri
- Department of Biochemistry and Molecular Biology, Sana'a University, Sana'a, Yemen
| | - Ryan L. Raaum
- Department of Anthropology, Lehman College and The Graduate Center, The City University of New York, Bronx, New York, New York, United States of America
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, United States of America
| |
Collapse
|
38
|
Secher B, Fregel R, Larruga JM, Cabrera VM, Endicott P, Pestano JJ, González AM. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol Biol 2014; 14:109. [PMID: 24885141 PMCID: PMC4062890 DOI: 10.1186/1471-2148-14-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. Results Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. Conclusions The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ana M González
- Department of Genetics, Faculty of Biology, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
39
|
Hernández CL, Reales G, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. Human maternal heritage in Andalusia (Spain): its composition reveals high internal complexity and distinctive influences of mtDNA haplogroups U6 and L in the western and eastern side of region. BMC Genet 2014; 15:11. [PMID: 24460736 PMCID: PMC3905667 DOI: 10.1186/1471-2156-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/17/2014] [Indexed: 12/03/2022] Open
Abstract
Background The archeology and history of the ancient Mediterranean have shown that this sea has been a permeable obstacle to human migration. Multiple cultural exchanges around the Mediterranean have taken place with presumably population admixtures. A gravitational territory of those migrations has been the Iberian Peninsula. Here we present a comprehensive analysis of the maternal gene pool, by means of control region sequencing and PCR-RFLP typing, of autochthonous Andalusians originating from the coastal provinces of Huelva and Granada, located respectively in the west and the east of the region. Results The mtDNA haplogroup composition of these two southern Spanish populations has revealed a wide spectrum of haplogroups from different geographical origins. The registered frequencies of Eurasian markers, together with the high incidence and diversification of African maternal lineages (15% of the total mitochondrial variability) among Huelva Andalusians when compared to its eastwards relatives of Granada and other Iberian populations, constitute relevant findings unknown up-to-date on the characteristics of mtDNA within Andalusia that testifies a female population substructure. Therefore, Andalusia must not be considered a single, unique population. Conclusions The maternal legacy among Andalusians reflects distinctive local histories, pointing out the role of the westernmost territory of Peninsular Spain as a noticeable recipient of multiple and diverse human migrations. The obtained results underline the necessity of further research on genetic relationships in both sides of the western Mediterranean, using carefully collected samples from autochthonous individuals. Many studies have focused on recent North African gene flow towards Iberia, yet scientific attention should be now directed to thoroughly study the introduction of European genes in northwest Africa across the sea, in order to determine its magnitude, timescale and methods, and to compare them to those terrestrial movements from eastern Africa and southwestern Asia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
40
|
Barton R, Bouzouggar A, Hogue J, Lee S, Collcutt S, Ditchfield P. Origins of the Iberomaurusian in NW Africa: New AMS radiocarbon dating of the Middle and Later Stone Age deposits at Taforalt Cave, Morocco. J Hum Evol 2013; 65:266-81. [DOI: 10.1016/j.jhevol.2013.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 11/28/2022]
|