1
|
Farookhi H, Xia X. Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species. Microorganisms 2024; 12:768. [PMID: 38674712 PMCID: PMC11052298 DOI: 10.3390/microorganisms12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
Collapse
Affiliation(s)
- Heba Farookhi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Westhof E, Yusupov M, Yusupova G. The multiple flavors of GoU pairs in RNA. J Mol Recognit 2019; 32:e2782. [PMID: 31033092 PMCID: PMC6617799 DOI: 10.1002/jmr.2782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022]
Abstract
Wobble GU pairs (or GoU) occur frequently within double‐stranded RNA helices interspersed within the standard G═C and A─U Watson‐Crick pairs. However, other types of GoU pairs interacting on their Watson‐Crick edges have been observed. The structural and functional roles of such alternative GoU pairs are surprisingly diverse and reflect the various pairings G and U can form by exploiting all the subtleties of their electronic configurations. Here, the structural characteristics of the GoU pairs are updated following the recent crystallographic structures of functional ribosomal complexes and the development in our understanding of ribosomal translation.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
3
|
An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci Rep 2019; 9:3184. [PMID: 30816249 PMCID: PMC6395768 DOI: 10.1038/s41598-019-39369-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
Collapse
|
4
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
5
|
Devi M, Chingbiaknem E, Lyngdoh RHD. A molecular mechanics study on GA codon box translation. J Theor Biol 2018; 441:28-43. [PMID: 29305181 DOI: 10.1016/j.jtbi.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
The GA codon box incorporates the two-fold degeneracy of aspartic acid and of glutamic acid. Using the molecular mechanics approach of the AMBER suite, the four codons of the GA box are paired via H-bonding with two aspartic acid anticodons and two glutamic acid anticodons to yield 8 cognate and 11 non-cognate codon-anticodon duplexes. In addition four select non-cognate duplexes between the GA box codons and three alanine anticodons are also studied. These 23 duplexes display a variety of base-pairing possibilities at the wobble position. Cognate duplexes are differentiated from non-cognate duplexes on the grounds of structure and stability (chiefly the former). The results are in line with Crick's wobble hypothesis, and corroborate the observed reading properties of the aspartic acid anticodons GUC and QUC and of the glutamic acid anticodons CUC and SmnUC.
Collapse
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Esther Chingbiaknem
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R H Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
6
|
Devi M, Lyngdoh RD. Favored and less favored codon–anticodon duplexes arising from the GC codon family box encoding for alanine: some computational perspectives. J Biomol Struct Dyn 2017; 36:1029-1049. [DOI: 10.1080/07391102.2017.1308886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R.H. Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
7
|
Wei Y, Wang J, Xia X. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species. Mol Biol Evol 2016; 33:2357-67. [PMID: 27297468 PMCID: PMC4989110 DOI: 10.1093/molbev/msw107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3. This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Juan Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| |
Collapse
|
8
|
Abstract
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.
Collapse
|
9
|
Salavirta H, Oksanen I, Kuuskeri J, Mäkelä M, Laine P, Paulin L, Lundell T. Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events. PLoS One 2014; 9:e97141. [PMID: 24824642 PMCID: PMC4019555 DOI: 10.1371/journal.pone.0097141] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤ 200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.
Collapse
Affiliation(s)
- Heikki Salavirta
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ilona Oksanen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Miia Mäkelä
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Abstract
Studying phage codon adaptation is important not only for understanding the process of translation elongation, but also for reengineering phages for medical and industrial purposes. To evaluate the effect of mutation and selection on phage codon usage, we developed an index to measure selection imposed by host translation machinery, based on the difference in codon usage between all host genes and highly expressed host genes. We developed linear and nonlinear models to estimate the C→T mutation bias in different phage lineages and to evaluate the relative effect of mutation and host selection on phage codon usage. C→T-biased mutations occur more frequently in single-stranded DNA (ssDNA) phages than in double-stranded DNA (dsDNA) phages and affect not only synonymous codon usage, but also nonsynonymous substitutions at second codon positions, especially in ssDNA phages. The host translation machinery affects codon adaptation in both dsDNA and ssDNA phages, with a stronger effect on dsDNA phages than on ssDNA phages. Strand asymmetry with the associated local variation in mutation bias can significantly interfere with codon adaptation in both dsDNA and ssDNA phages.
Collapse
|
11
|
Chithambaram S, Prabhakaran R, Xia X. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Mol Biol Evol 2014; 31:1606-17. [PMID: 24586046 PMCID: PMC4032129 DOI: 10.1093/molbev/msu087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because phages use their host translation machinery, their codon usage should evolve toward that of highly expressed host genes. We used two indices to measure codon adaptation of phages to their host, rRSCU (the correlation in relative synonymous codon usage [RSCU] between phages and their host) and Codon Adaptation Index (CAI) computed with highly expressed host genes as the reference set (because phage translation depends on host translation machinery). These indices used for this purpose are appropriate only when hosts exhibit little mutation bias, so only phages parasitizing Escherichia coli were included in the analysis. For double-stranded DNA (dsDNA) phages, both rRSCU and CAI decrease with increasing number of transfer RNA genes encoded by the phage genome. rRSCU is greater for dsDNA phages than for single-stranded DNA (ssDNA) phages, and the low rRSCU values are mainly due to poor concordance in RSCU values for Y-ending codons between ssDNA phages and the E. coli host, consistent with the predicted effect of C→T mutation bias in the ssDNA phages. Strong C→T mutation bias would improve codon adaptation in codon families (e.g., Gly) where U-ending codons are favored over C-ending codons (“U-friendly” codon families) by highly expressed host genes but decrease codon adaptation in other codon families where highly expressed host genes favor C-ending codons against U-ending codons (“U-hostile” codon families). It is remarkable that ssDNA phages with increasing C→T mutation bias also increased the usage of codons in the “U-friendly” codon families, thereby achieving CAI values almost as large as those of dsDNA phages. This represents a new type of codon adaptation.
Collapse
Affiliation(s)
- Shivapriya Chithambaram
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramanandan Prabhakaran
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum. PLoS One 2013; 8:e72038. [PMID: 23991034 PMCID: PMC3753355 DOI: 10.1371/journal.pone.0072038] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022] Open
Abstract
Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the functions and evolution of fungal mitochondrial DNA.
Collapse
|
13
|
Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013; 30:1720-8. [PMID: 23564938 PMCID: PMC3684854 DOI: 10.1093/molbev/mst064] [Citation(s) in RCA: 739] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Sun X, Yang Q, Xia X. An improved implementation of effective number of codons (nc). Mol Biol Evol 2012; 30:191-6. [PMID: 22915832 DOI: 10.1093/molbev/mss201] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effective number of codons (N(c)) is a widely used index for characterizing codon usage bias because it does not require a set of reference genes as does codon adaptation index (CAI) and because of the freely available computational tools such as CodonW. However, N(c), as originally formulated has many problems. For example, it can have values far greater than the number of sense codons; it treats a 6-fold compound codon family as a single-codon family although it is made of a 2-fold and a 4-fold codon family that can be under dramatically different selection for codon usage bias; the existing implementations do not handle all different genetic codes; it is often biased by codon families with a small number of codons. We developed a new N(c) that has a number of advantages over the original N(c). Its maximum value equals the number of sense codons when all synonymous codons are used equally, and its minimum value equals the number of codon families when exactly one codon is used in each synonymous codon family. It handles all known genetic codes. It breaks the compound codon families (e.g., those involving amino acids coded by six synonymous codons) into 2-fold and 4-fold codon families. It reduces the effect of codon families with few codons by introducing pseudocount and weighted averages. The new N(c) has significantly improved correlation with CAI than the original N(c) from CodonW based on protein-coding genes from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli, Bacillus subtilis, Micrococcus luteus, and Mycoplasma genitalium. It also correlates better with protein abundance data from the yeast than the original N(c).
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing, China
| | | | | |
Collapse
|
15
|
Fonseca MM, Rocha S, Posada D. Base-pairing versatility determines wobble sites in tRNA anticodons of vertebrate mitogenomes. PLoS One 2012; 7:e36605. [PMID: 22590575 PMCID: PMC3348875 DOI: 10.1371/journal.pone.0036605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vertebrate mitochondrial genomes typically have one transfer RNA (tRNA) for each synonymous codon family. This limited anticodon repertoire implies that each tRNA anticodon needs to wobble (establish a non-Watson-Crick base pairing between two nucleotides in RNA molecules) to recognize one or more synonymous codons. Different hypotheses have been proposed to explain the factors that determine the nucleotide composition of wobble sites in vertebrate mitochondrial tRNA anticodons. Until now, the two major postulates--the "codon-anticodon adaptation hypothesis" and the "wobble versatility hypothesis"--have not been formally tested in vertebrate mitochondria because both make the same predictions regarding the composition of anticodon wobble sites. The same is true for the more recent "wobble cost hypothesis". PRINCIPAL FINDINGS In this study we have analyzed the occurrence of synonymous codons and tRNA anticodon wobble sites in 1553 complete vertebrate mitochondrial genomes, focusing on three fish species with mtDNA codon usage bias reversal (L-strand is GT-rich). These mitogenomes constitute an excellent opportunity to study the evolution of the wobble nucleotide composition of tRNA anticodons because due to the reversal the predictions for the anticodon wobble sites differ between the existing hypotheses. We observed that none of the wobble sites of tRNA anticodons in these unusual mitochondrial genomes coevolved to match the new overall codon usage bias, suggesting that nucleotides at the wobble sites of tRNA anticodons in vertebrate mitochondrial genomes are determined by wobble versatility. CONCLUSIONS/SIGNIFICANCE Our results suggest that, at wobble sites of tRNA anticodons in vertebrate mitogenomes, selection favors the most versatile nucleotide in terms of wobble base-pairing stability and that wobble site composition is not influenced by codon usage. These results are in agreement with the "wobble versatility hypothesis".
Collapse
Affiliation(s)
- Miguel M Fonseca
- CIBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
16
|
The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria. BMC Evol Biol 2011; 11:134. [PMID: 21599892 PMCID: PMC3121625 DOI: 10.1186/1471-2148-11-134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/20/2011] [Indexed: 11/30/2022] Open
Abstract
Background The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch Rhabdopleura compacta to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution. Results The mitochondrial DNA of Rhabdopleura compacta corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in R. compacta is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of R. compacta, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in R. compacta but possess an identical mutation in the anticodon sequence of the tRNALys. Conclusion A strong reversed asymmetrical mutational constraint in the mitochondrial genome of Rhabdopleura compacta may have arisen by an inversion of the replication direction and adaptation to this bias in the protein sequences leading to an enigmatic mitochondrial genome. Although, phylogenetic analyses of protein coding sequences are hampered, features of the tRNA system of R. compacta support the monophyly of Ambulacraria. The identical reassignment of AGG to Lysine in two distinct groups may have occurred by convergent evolution in the anticodon sequence of the tRNALys.
Collapse
|
17
|
Behura SK, Severson DW. Coadaptation of isoacceptor tRNA genes and codon usage bias for translation efficiency in Aedes aegypti and Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2011; 20:177-87. [PMID: 21040044 PMCID: PMC3057532 DOI: 10.1111/j.1365-2583.2010.01055.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The transfer RNAs (tRNAs) are essential components of translational machinery. We determined that tRNA isoacceptors (tRNAs with different anticodons but incorporating the same amino acid in protein synthesis) show differential copy number abundance, genomic distribution patterns and sequence evolution between Aedes aegypti and Anopheles gambiae mosquitoes. The tRNA-Ala genes are present in unusually high copy number in the Ae. aegypti genome but not in An. gambiae. Many of the tRNA-Ala genes of Ae. aegypti are flanked by a highly conserved sequence that is not observed in An. gambiae. The relative abundance of tRNA isoacceptor genes is correlated with preferred (or optimal) and nonpreferred (or rare) codons for ∼2-4% of the predicted protein coding genes in both species. The majority (∼74-85%) of these genes are related to pathways involved with translation, energy metabolism and carbohydrate metabolism. Our results suggest that these genes and the related pathways may be under translational selection in these mosquitoes.
Collapse
Affiliation(s)
| | - David W. Severson
- Correspondence: David W. Severson, Phone: 574-631-3826, FAX: 574-631-7413,
| |
Collapse
|
18
|
A distance-based least-square method for dating speciation events. Mol Phylogenet Evol 2011; 59:342-53. [PMID: 21320613 DOI: 10.1016/j.ympev.2011.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/09/2011] [Accepted: 01/21/2011] [Indexed: 01/14/2023]
Abstract
Distance-based phylogenetic methods are widely used in biomedical research. However, there has been little development of rigorous statistical methods and software for dating speciation and gene duplication events by using evolutionary distances. Here we present a simple, fast and accurate dating method based on the least-squares (LS) method that has already been widely used in molecular phylogenetic reconstruction. Dating methods with a global clock or two different local clocks are presented. Single or multiple fossil calibration points can be used, and multiple data sets can be integrated in a combined analysis. Variation of the estimated divergence time is estimated by resampling methods such as bootstrapping or jackknifing. Application of the method to dating the divergence time among seven ape species or among 35 mammalian species including major mammalian orders shows that the estimated divergence time with the LS criterion is nearly identical to those obtained by the likelihood method or Bayesian inference.
Collapse
|
19
|
Yu H, Li Q. Mutation and selection on the wobble nucleotide in tRNA anticodons in marine bivalve mitochondrial genomes. PLoS One 2011; 6:e16147. [PMID: 21267462 PMCID: PMC3022732 DOI: 10.1371/journal.pone.0016147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis. Principal Findings In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family. Conclusions/Significance These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.
Collapse
Affiliation(s)
- Hong Yu
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
20
|
Yu H, Li Q. Mutation and selection on the wobble nucleotide in tRNA anticodons in marine bivalve mitochondrial genomes. PLoS One 2011; 6:e16147. [PMID: 21267462 DOI: 10.1371/journal.pone0016147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/07/2010] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis. PRINCIPAL FINDINGS In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNA(Trp) with an anticodon CCA fixed in Pectinoida species, tRNA(Ser) with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNA(Met) translating the AUR codon family. CONCLUSIONS/SIGNIFICANCE These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.
Collapse
Affiliation(s)
- Hong Yu
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | | |
Collapse
|
21
|
Xia X. Information-theoretic indices and an approximate significance test for testing the molecular clock hypothesis with genetic distances. Mol Phylogenet Evol 2009; 52:665-76. [PMID: 19416757 DOI: 10.1016/j.ympev.2009.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/25/2009] [Accepted: 04/27/2009] [Indexed: 11/29/2022]
Abstract
Distance-based phylogenetic methods are widely used in biomedical research. However, distance-based dating of speciation events and the test of the molecular clock hypothesis are relatively underdeveloped. Here I develop an approximate test of the molecular clock hypothesis for distance-based trees, as well as information-theoretic indices that have been used frequently in model selection, for use with distance matrices. The results are in good agreement with the conventional sequence-based likelihood ratio test. Among the information-theoretic indices, AICu is the most consistent with the sequence-based likelihood ratio test. The confidence in model selection by the indices can be evaluated by bootstrapping. I illustrate the usage of the indices and the approximate significance test with both empirical and simulated sequences. The tests show that distance matrices from protein gel electrophoresis and from genome rearrangement events do not violate the molecular clock hypothesis, and that the evolution of the third codon position conforms to the molecular clock hypothesis better than the second codon position in vertebrate mitochondrial genes. I outlined evolutionary distances that are appropriate for phylogenetic reconstruction and dating.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ont., Canada.
| |
Collapse
|
22
|
Higgs PG, Ran W. Coevolution of Codon Usage and tRNA Genes Leads to Alternative Stable States of Biased Codon Usage. Mol Biol Evol 2008; 25:2279-91. [DOI: 10.1093/molbev/msn173] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|