1
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
2
|
Babonis LS. On the evolutionary developmental biology of the cell. Trends Genet 2024; 40:822-833. [PMID: 38971670 DOI: 10.1016/j.tig.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Organisms are complex assemblages of cells, cells that produce light, shoot harpoons, and secrete glue. Therefore, identifying the mechanisms that generate novelty at the level of the individual cell is essential for understanding how multicellular life evolves. For decades, the field of evolutionary developmental biology (Evo-Devo) has been developing a framework for connecting genetic variation that arises during embryonic development to the emergence of diverse adult forms. With increasing access to new single cell 'omics technologies and an array of techniques for manipulating gene expression, we can now extend these inquiries inward to the level of the individual cell. In this opinion, I argue that applying an Evo-Devo framework to single cells makes it possible to explore the natural history of cells, where this was once only possible at the organismal level.
Collapse
Affiliation(s)
- Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Aguilar-Pedrayes I, Gardner JD, Organ CL. The coevolution of rostral keratin and tooth distribution in dinosaurs. Proc Biol Sci 2024; 291:20231713. [PMID: 38229513 DOI: 10.1098/rspb.2023.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Teeth evolved early in vertebrate evolution, and their morphology reflects important specializations in diet and ecology among species. The toothless jaws (edentulism) in extant birds likely coevolved with beak keratin, which functionally replaced teeth. However, extinct dinosaurs lost teeth multiple times independently and exhibited great variation in toothrow distribution and rhamphotheca-like keratin structures. Here, we use rostral jawbone surface texture as a proxy for rostral keratin covering and phylogenetic comparative models to test for the influence of rostral keratin on toothrow distribution in Mesozoic dinosaurs. We find that the evolution of rostral keratin covering explains partial toothrow reduction but not jaw toothlessness. Toothrow reduction preceded the evolution of rostral keratin cover in theropods. Non-theropod dinosaurs evolved continuous toothrows despite evolving rostral keratin covers (e.g. some ornithischians and sauropodomorphs). We also show that rostral keratin covers did not significantly increase the evolutionary rate of tooth loss, which further delineates the antagonistic relationship between these structures. Our results suggest that the evolution of rostral keratin had a limited effect on suppressing tooth development. Independent changes in jaw development may have facilitated further tooth loss. Furthermore, the evolution of strong chemical digestion, a gizzard, and a dietary shift to omnivory or herbivory likely alleviated selective pressures for tooth development.
Collapse
Affiliation(s)
- Isaura Aguilar-Pedrayes
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Earth Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Jacob D Gardner
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Chris L Organ
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
4
|
Dhawan SS, Yedavalli V, Massoud TF. Atavistic and vestigial anatomical structures in the head, neck, and spine: an overview. Anat Sci Int 2023:10.1007/s12565-022-00701-7. [PMID: 36680662 DOI: 10.1007/s12565-022-00701-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Organisms may retain nonfunctional anatomical features as a consequence of evolutionary natural selection. Resultant atavistic and vestigial anatomical structures have long been a source of perplexity. Atavism is when an ancestral trait reappears after loss through an evolutionary change in previous generations, whereas vestigial structures are remnants that are largely or entirely functionless relative to their original roles. While physicians are cognizant of their existence, atavistic and vestigial structures are rarely emphasized in anatomical curricula and can, therefore, be puzzling when discovered incidentally. In addition, the literature is replete with examples of the terms atavistic and vestigial being used interchangeably without careful distinction between them. We provide an overview of important atavistic and vestigial structures in the head, neck, and spine that can serve as a reference for anatomists and clinical neuroscientists. We review the literature on atavistic and vestigial anatomical structures of the head, neck, and spine that may be encountered in clinical practice. We define atavistic and vestigial structures and employ these definitions consistently when classifying anatomical structures. Pertinent anatomical structures are numerous and include human tails, plica semilunaris, the vomeronasal organ, levator claviculae, and external ear muscles, to name a few. Atavistic and vestigial structures are found throughout the head, neck, and spine. Some, such as human tails and branchial cysts may be clinically symptomatic. Literature reports indicate that their prevalence varies across populations. Knowledge of atavistic and vestigial anatomical structures can inform diagnoses, prevent misrecognition of variation for pathology, and guide clinical interventions.
Collapse
Affiliation(s)
- Siddhant Suri Dhawan
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality Neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, USA. .,Center for Academic Medicine, Radiology MC: 5659; 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Vestigial structures and variation in the evolution of the marsupial mammal dental development—a study of the woolly opossum Caluromys philander. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe pattern of dental replacement in marsupial mammals has received much attention for its derived nature and potential relationship to the life history of the group. However, few species have been studied thoroughly, and little is known about the embryonic structures and their use in addressing issues of homology and dental evolution in general. We studied a developmental series of ten individuals of pouch young Caluromys philander to thoroughly document dental development with histological sections and 3D models of dental series. We report that the successor P3 arises from a lingual successional lamina from its predecessor dP3. The germs of vestigial, unerupted deciduous incisors and canines are present alongside their respective permanent successors. These discoveries demonstrate significant differences from the developmental patterns reported for Didelphis and Monodelphis and illustrate that an unsuspected diversity of dental ontogeny is not reflected in the adult pattern of mineralised, erupted or almost erupted teeth.
Collapse
|
6
|
Sadier A, Sears KE, Womack M. Unraveling the heritage of lost traits. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:107-118. [PMID: 33528870 DOI: 10.1002/jez.b.23030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
We synthesize ontogenetic work spanning the past century that show evolutionarily lost structures are rarely entirely absent from earlier developmental stages. We discuss morphological and genetic insights from developmental studies reveal about the evolution of trait loss and regain.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Molly Womack
- Department of Biology, Utah State University, Logan, Utah, USA
| |
Collapse
|
7
|
Le Roy N, Stapane L, Gautron J, Hincke MT. Evolution of the Avian Eggshell Biomineralization Protein Toolkit - New Insights From Multi-Omics. Front Genet 2021; 12:672433. [PMID: 34046059 PMCID: PMC8144736 DOI: 10.3389/fgene.2021.672433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The avian eggshell is a remarkable biomineral, which is essential for avian reproduction; its properties permit embryonic development in the desiccating terrestrial environment, and moreover, are critically important to preserve unfertilized egg quality for human consumption. This calcium carbonate (CaCO3) bioceramic is made of 95% calcite and 3.5% organic matrix; it protects the egg contents against microbial penetration and mechanical damage, allows gaseous exchange, and provides calcium for development of the embryonic skeleton. In vertebrates, eggshell occurs in the Sauropsida and in a lesser extent in Mammalia taxa; avian eggshell calcification is one of the fastest known CaCO3 biomineralization processes, and results in a material with excellent mechanical properties. Thus, its study has triggered a strong interest from the researcher community. The investigation of eggshell biomineralization in birds over the past decades has led to detailed characterization of its protein and mineral constituents. Recently, our understanding of this process has been significantly improved using high-throughput technologies (i.e., proteomics, transcriptomics, genomics, and bioinformatics). Presently, more or less complete eggshell proteomes are available for nine birds, and therefore, key proteins that comprise the eggshell biomineralization toolkit are beginning to be identified. In this article, we review current knowledge on organic matrix components from calcified eggshell. We use these data to analyze the evolution of selected matrix proteins and underline their role in the biological toolkit required for eggshell calcification in avian species. Amongst the panel of eggshell-associated proteins, key functional domains are present such as calcium-binding, vesicle-binding and protein-binding. These technical advances, combined with progress in mineral ultrastructure analyses, have opened the way for new hypotheses of mineral nucleation and crystal growth in formation of the avian eggshell, including transfer of amorphous CaCO3 in vesicles from uterine cells to the eggshell mineralization site. The enrichment of multi-omics datasets for bird species is critical to understand the evolutionary context for development of CaCO3 biomineralization in metazoans, leading to the acquisition of the robust eggshell in birds (and formerly dinosaurs).
Collapse
Affiliation(s)
| | | | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Springer MS, Emerling CA, Gatesy J, Randall J, Collin MA, Hecker N, Hiller M, Delsuc F. Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evol Biol 2019; 19:31. [PMID: 30674270 PMCID: PMC6343362 DOI: 10.1186/s12862-019-1359-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background The gene for odontogenic ameloblast-associated (ODAM) is a member of the secretory calcium-binding phosphoprotein gene family. ODAM is primarily expressed in dental tissues including the enamel organ and the junctional epithelium, and may also have pleiotropic functions that are unrelated to teeth. Here, we leverage the power of natural selection to test competing hypotheses that ODAM is tooth-specific versus pleiotropic. Specifically, we compiled and screened complete protein-coding sequences, plus sequences for flanking intronic regions, for ODAM in 165 placental mammals to determine if this gene contains inactivating mutations in lineages that either lack teeth (baleen whales, pangolins, anteaters) or lack enamel on their teeth (aardvarks, sloths, armadillos), as would be expected if the only essential functions of ODAM are related to tooth development and the adhesion of the gingival junctional epithelium to the enamel tooth surface. Results We discovered inactivating mutations in all species of placental mammals that either lack teeth or lack enamel on their teeth. A surprising result is that ODAM is also inactivated in a few additional lineages including all toothed whales that were examined. We hypothesize that ODAM inactivation is related to the simplified outer enamel surface of toothed whales. An alternate hypothesis is that ODAM inactivation in toothed whales may be related to altered antimicrobial functions of the junctional epithelium in aquatic habitats. Selection analyses on ODAM sequences revealed that the composite dN/dS value for pseudogenic branches is close to 1.0 as expected for a neutrally evolving pseudogene. DN/dS values on transitional branches were used to estimate ODAM inactivation times. In the case of pangolins, ODAM was inactivated ~ 65 million years ago, which is older than the oldest pangolin fossil (Eomanis, 47 Ma) and suggests an even more ancient loss or simplification of teeth in this lineage. Conclusion Our results validate the hypothesis that the only essential functions of ODAM that are maintained by natural selection are related to tooth development and/or the maintenance of a healthy junctional epithelium that attaches to the enamel surface of teeth. Electronic supplementary material The online version of this article (10.1186/s12862-019-1359-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA.
| | - Christopher A Emerling
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Department of Biology, Whittier College, Whittier, CA, 90602, USA
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Jason Randall
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Frédéric Delsuc
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Sci Rep 2018; 8:12952. [PMID: 30154516 PMCID: PMC6113277 DOI: 10.1038/s41598-018-31022-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Modern birds (crown group birds, called Neornithes) are toothless; however, the extinct neornithine Odontopterygiformes possessed bone excrescences (pseudoteeth) which resembled teeth, distributed sequentially by size along jaws. The origin of pseudoteeth is enigmatic, but based on recent evidence, including microanatomical and histological analyses, we propose that conserved odontogenetic pathways most probably regulated the development of pseudodentition. The delayed pseudoteeth growth and epithelium keratinization allowed for the existence of a temporal window during which competent osteoblasts could respond to oral epithelial signaling, in place of the no longer present odontoblasts; thus, bony pseudoteeth developed instead of true teeth. Dynamic morphogenetic fields can explain the particular, sequential size distribution of pseudoteeth along the jaws of these birds. Hence, this appears as a new kind of deep homology, by which ancient odontogenetic developmental processes would have controlled the evolution of pseudodentition, structurally different from a true dentition, but morphologically and functionally similar.
Collapse
|
10
|
Smith KT, Bhullar BAS, Köhler G, Habersetzer J. The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex. Curr Biol 2018; 28:1101-1107.e2. [PMID: 29614279 DOI: 10.1016/j.cub.2018.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/22/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022]
Abstract
The pineal and parapineal organs are dorsal outpocketings of the vertebrate diencephalon that play key roles in orientation and in circadian and annual cycles. Lampreys are four eyed in that both the pineal and parapineal form eyelike photosensory structures, but the pineal is the dominant or sole median photosensory structure in most lower vertebrate clades. The pineal complex has been thought to evolve in a single direction by losing photosensory and augmenting secretory function in the transitions from three-eyed lower vertebrates to two-eyed mammals and archosaurs [1-3]. Yet the widely accepted elaboration of the parapineal instead of the pineal as the primary median photosensory organ [4] in Lepidosauria (lizards, snakes, and tuataras) hints at a more complex evolutionary history. Here we present evidence that a fourth eye re-evolved from the pineal organ at least once within vertebrates, specifically in an extinct monitor lizard, Saniwa ensidens, in which pineal and parapineal eyes were present simultaneously. The tandem midline location of these structures confirms in a striking fashion the proposed homology of the parietal eye with the parapineal organ and refutes the classical model of pineal bilaterality. It furthermore raises questions about the evolution and functional interpretation of the median photosensory organ in other tetrapod clades.
Collapse
Affiliation(s)
- Krister T Smith
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA.
| | - Bhart-Anjan S Bhullar
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Gunther Köhler
- Section of Herpetology, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jörg Habersetzer
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet 2017; 54:787-794. [PMID: 28814606 DOI: 10.1136/jmedgenet-2017-104837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Biology, University of California, Riverside, California, USA
| | - Andrew D Widjaja
- Department of Biochemistry, University of California, Riverside, California, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Nancy N Nguyen
- Department of Bioengineering, University of California, Riverside, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mark S Springer
- Department of Biology, University of California, Riverside, California, USA
| |
Collapse
|
12
|
Jablonski D. Approaches to Macroevolution: 1. General Concepts and Origin of Variation. Evol Biol 2017; 44:427-450. [PMID: 29142333 PMCID: PMC5661017 DOI: 10.1007/s11692-017-9420-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
13
|
Bhullar BAS, Hanson M, Fabbri M, Pritchard A, Bever GS, Hoffman E. How to Make a Bird Skull: Major Transitions in the Evolution of the Avian Cranium, Paedomorphosis, and the Beak as a Surrogate Hand. Integr Comp Biol 2016; 56:389-403. [DOI: 10.1093/icb/icw069] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
15
|
Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evol Biol 2015. [PMID: 26223266 PMCID: PMC4518657 DOI: 10.1186/s12862-015-0431-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Ameloblastin (AMBN) is a phosphorylated, proline/glutamine-rich protein secreted during enamel formation. Previous studies have revealed that this enamel matrix protein was present early in vertebrate evolution and certainly plays important roles during enamel formation although its precise functions remain unclear. We performed evolutionary analyses of AMBN in order to (i) identify residues and motifs important for the protein function, (ii) predict mutations responsible for genetic diseases, and (iii) understand its molecular evolution in mammals. Results In silico searches retrieved 56 complete sequences in public databases that were aligned and analyzed computationally. We showed that AMBN is globally evolving under moderate purifying selection in mammals and contains a strong phylogenetic signal. In addition, our analyses revealed codons evolving under significant positive selection. Evidence for positive selection acting on AMBN was observed in catarrhine primates and the aye-aye. We also found that (i) an additional translation initiation site was recruited in the ancestral placental AMBN, (ii) a short exon was duplicated several times in various species including catarrhine primates, and (iii) several polyadenylation sites are present. Conclusions AMBN possesses many positions, which have been subjected to strong selective pressure for 200 million years. These positions correspond to several cleavage sites and hydroxylated, O-glycosylated, and phosphorylated residues. We predict that these conserved positions would be potentially responsible for enamel disorder if substituted. Some motifs that were previously identified as potentially important functionally were confirmed, and we found two, highly conserved, new motifs, the function of which should be tested in the near future. This study illustrates the power of evolutionary analyses for characterizing the functional constraints acting on proteins with yet uncharacterized structure. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0431-0) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Kawasaki K, Amemiya CT. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 322:390-402. [PMID: 25243252 DOI: 10.1002/jez.b.22546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coelacanth is the basal-most extant sarcopterygian that has teeth and tooth-like structures, comprising bone, dentin, and enamel or enameloid. Formation of these tissues involves many members of the secretory calcium-binding protein (SCPP) family. In tetrapods, acidic-residue-rich SCPPs are used in mineralization of bone and dentin, whereas Pro/Gln-rich SCPPs participate in enamel formation. Teleosts also employ many SCPPs for tissue mineralization. Nevertheless, the repertoire of SCPPs is largely different in teleosts and tetrapods; hence, filling this gap would be critical to elucidate early evolution of mineralized tissues in osteichthyans. In the present study, we searched for SCPP genes in the coelacanth genome and identified 11, of which two have clear orthologs in both tetrapods and teleosts, seven only in tetrapods, and two in neither of them. Given the divergence times of these vertebrate lineages, our discovery of this many SCPP genes shared between the coelacanth and tetrapods, but not with teleosts, suggests a complicated evolutionary scheme of SCPP genes in early osteichthyans. Our investigation also revealed both conserved and derived characteristics of SCPPs in the coelacanth and other vertebrates. Notably, acidic SCPPs independently evolved various acidic repeats in different lineages, while maintaining high acidity, presumably important for interactions with calcium. Furthermore, the three Pro/Gln-rich SCPP genes, required for mineralizing enamel matrix and confirmed only in tetrapods, were all identified in the coelacanth, strongly suggesting that enamel is equivalent in the coelacanth and tetrapods. This finding corroborates the previous proposition that true enamel evolved much earlier than the origin of tetrapods.
Collapse
|
17
|
Lineage-specific loss of FGF17 within the avian orders Galliformes and Passeriformes. Gene 2015; 563:180-9. [PMID: 25791492 DOI: 10.1016/j.gene.2015.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 01/05/2023]
Abstract
The genomic and developmental complexity of vertebrates is commonly attributed to two rounds of whole genome duplications which occurred at the base of the vertebrate radiation. These duplications led to the rise of several, multi-gene families of developmental proteins like the fibroblast growth factors (FGFs); a signaling protein family which functions at various stages of embryonic development. One of the major FGF assemblages arising from these duplications is the FGF8 subfamily, which includes FGF8, FGF17, and FGF18 in tetrapods. While FGF8 and FGF18 are found in all tetrapods and are critical for embryonic survival, genomic analyses suggest putative loss of FGF17 in various lineages ranging from frogs and fish, to the chicken. This study utilizes 27 avian genomes in conjunction with molecular analyses of chicken embryos to confirm the loss of FGF17 in chicken as a true, biological occurrence. FGF17 is also missing in the turkey, black grouse, Japanese quail and northern bobwhite genomes. These species, along with chicken, form a monophyletic clade in the order Galliformes. Four additional species, members of the clade Passeroidea, within the order Passeriformes, are also missing FGF17. Additionally, analysis of intact FGF17 in other avian lineages reveals that it is still under strong purifying selection, despite being seemingly dispensable. Thus, FGF17 likely represents a molecular spandrel arising from a genome duplication event and due to its high connectivity with FGF8/FGF18, and potential for interference with their function, is retained under strong purifying selection, despite itself not having a strong selective advantage.
Collapse
|
18
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
19
|
Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:255-69. [PMID: 25678399 DOI: 10.1002/jez.b.22594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/20/2014] [Indexed: 11/11/2022]
Abstract
A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record.
Collapse
Affiliation(s)
- Alexis J Lainoff
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | | | | | | | | | | |
Collapse
|
20
|
Meredith RW, Zhang G, Gilbert MTP, Jarvis ED, Springer MS. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 2014; 346:1254390. [DOI: 10.1126/science.1254390] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Rashid DJ, Chapman SC, Larsson HC, Organ CL, Bebin AG, Merzdorf CS, Bradley R, Horner JR. From dinosaurs to birds: a tail of evolution. EvoDevo 2014; 5:25. [PMID: 25621146 PMCID: PMC4304130 DOI: 10.1186/2041-9139-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/10/2014] [Indexed: 01/09/2023] Open
Abstract
A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events.
Collapse
Affiliation(s)
- Dana J Rashid
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC 29634, USA
| | - Hans Ce Larsson
- Redpath Museum, McGill University, 859 Sherbrooke Street W., Montreal, Quebec H3A 0C4, Canada
| | - Chris L Organ
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA ; Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, USA
| | - Anne-Gaelle Bebin
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA ; Current address: Vaccine and Gene Therapy FL, 9801 Discovery Way, Port Lucie, FL 34987, USA
| | - Christa S Merzdorf
- Department of Cell Biology & Neuroscience, Montana State University, 513 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Roger Bradley
- Department of Cell Biology & Neuroscience, Montana State University, 513 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - John R Horner
- Museum of the Rockies, Montana State University, 600 West Kagy Blvd, Bozeman, MT 59717, USA
| |
Collapse
|
22
|
Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proc Natl Acad Sci U S A 2014; 111:7707-12. [PMID: 24821783 DOI: 10.1073/pnas.1321171111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparent irreversibility of the loss of complex traits in evolution (Dollo's Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model. Teeth were lost from the mouth and upper pharynx in this group at least 50 million y ago and retained only in the lower pharynx. We identified regional loss of expression of the Ectodysplasin (Eda) signaling ligand as a likely cause of dentition reduction. In addition, we found that overexpression of this gene in the zebrafish is sufficient to restore teeth to the upper pharynx but not to the mouth. Because both regions are competent to respond to Eda signaling with transcriptional output, the likely constraint on the reappearance of oral teeth is the alteration of multiple genetic pathways required for tooth development. The upper pharyngeal teeth are fully formed, but do not exhibit the ancestral relationship to other pharyngeal structures, suggesting that they would not be favored by selection. Our results illustrate an underlying commonality between constraint and selection as explanations for the irreversibility of trait loss; multiple genetic changes would be required to restore teeth themselves to the oral region and optimally functioning ones to the upper pharynx.
Collapse
|
23
|
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN DENTISTRY 2013; 2013:684607. [PMID: 24159389 PMCID: PMC3789414 DOI: 10.1155/2013/684607] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development.
Collapse
Affiliation(s)
- John D. Bartlett
- Harvard School of Dental Medicine & Chair, Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge MA 02142, USA
| |
Collapse
|
24
|
Bradley Shaffer H, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning APJ, Li Y, Literman R, McGaugh SE, Mork L, O'Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 2013; 14:R28. [PMID: 23537068 PMCID: PMC4054807 DOI: 10.1186/gb-2013-14-3-r28] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. RESULTS Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. CONCLUSIONS Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Andrew M Shedlock
- College of Charleston Biology Department and Grice Marine Laboratory, Charleston, SC 29424, USA
- Medical University of South Carolina College of Graduate Studies and Center for Marine Biomedicine and Environmental Sciences, Charleston, SC 29412, USA
| | - Robert C Thomson
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA
| | - Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyle K Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Glen M Borchert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biological Sciences, Life Sciences Building, University of South Alabama, Mobile, AL 36688-0002, USA
| | | | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5, Canada
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mike Czerwinski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kim D Delehaunty
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catrina C Fronick
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tina A Graves
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard E Green
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Ramkumar Hariharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Omar Hernandez
- FUDECI, Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales. Av, Universidad, Bolsa a San Francisco, Palacio de Las Academias, Caracas, Venezuela
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Alisha K Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Daniel Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Lesheng Kong
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - AP Jason de Koning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yang Li
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Lindsey Mork
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michelle O'Laughlin
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - John St John
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Tonia Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Arun Sethuraman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Nay Thane
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava 84248, Slovakia
| | - Laura M Zimmerman
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
25
|
Meredith RW, Gatesy J, Springer MS. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes. BMC Evol Biol 2013; 13:20. [PMID: 23342979 PMCID: PMC3562159 DOI: 10.1186/1471-2148-13-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/16/2013] [Indexed: 11/20/2022] Open
Abstract
Background Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results highlight the power of combining fossil and genomic evidence to decipher macroevolutionary transitions and characterize the functional range of different loci involved in tooth development. The fossil record and phylogenetics combine to predict the occurrence of molecular fossils of tooth-specific genes in the genomes of edentulous amniotes, and in every case these molecular fossils have been discovered. The widespread occurrence of EMP pseudogenes in turtles, birds, and edentulous/enamelless mammals also provides compelling evidence that in amniotes, the only unique, non-redundant function of these genes is in enamel formation.
Collapse
Affiliation(s)
- Robert W Meredith
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
26
|
Hu JCC, Chan HC, Simmer SG, Seymen F, Richardson AS, Hu Y, Milkovich RN, Estrella NMRP, Yildirim M, Bayram M, Chen CF, Simmer JP. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS One 2012; 7:e52052. [PMID: 23251683 PMCID: PMC3522662 DOI: 10.1371/journal.pone.0052052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3) and AMELY (Yp11.2). About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6). We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling "snow-capped" teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240), but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA) removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun Hu J. A post-classical theory of enamel biomineralization… and why we need one. Int J Oral Sci 2012; 4:129-34. [PMID: 22996272 PMCID: PMC3464985 DOI: 10.1038/ijos.2012.59] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.
Collapse
Affiliation(s)
- James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MD, USA.
| | | | | | | | | |
Collapse
|
28
|
Gasse B, Silvent J, Sire JY. Evolutionary analysis suggests that AMTN is enamel-specific and a candidate for AI. J Dent Res 2012; 91:1085-9. [PMID: 22968158 DOI: 10.1177/0022034512460551] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Molecular evolutionary analysis is an efficient method to predict and/or validate amino acid substitutions that could lead to a genetic disease and to highlight residues and motifs that could play an important role in the protein structure and/or function. We have applied such analysis to amelotin (AMTN), a recently identified enamel protein in the rat, mouse, and humans. An in silico search for AMTN provided 42 new mammalian sequences that were added to the 3 published sequences with which we performed the analysis using a dataset representative of all lineages (circa 220 million years of evolution), including 2 enamel-less species, sloth and armadillo. During evolution, of the 209 residues of human AMTN, 17 were unchanged and 34 had conserved their chemical properties. Substituting these important residues could lead to amelogenesis imperfecta (AI). Also, AMTN possesses a well-conserved signal peptide, 2 conserved motifs whose function is certainly important but unknown, and a putative phosphorylation site (SXE). In addition, the sequences of the 2 enamel-less species display mutations revealing that AMTN underwent pseudogenization, which suggests that AMTN is an enamel-specific protein.
Collapse
Affiliation(s)
- B Gasse
- Université Pierre et Marie Curie, UMR 7138, EDS research group, 7 quai St-Bernard, Case 5, 75005 Paris, France
| | | | | |
Collapse
|
29
|
Sperber GH. Quiescent in birds. Br Dent J 2012. [DOI: 10.1038/sj.bdj.2012.848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Tokita M, Chaeychomsri W, Siruntawineti J. Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 2012; 67:260-73. [PMID: 23289576 DOI: 10.1111/j.1558-5646.2012.01752.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The tooth is a major component of the vertebrate feeding apparatus and plays a crucial role in species survival, thus subjecting tooth developmental programs to strong selective constraints. However, irrespective of their functional importance, teeth have been lost in multiple lineages of tetrapod vertebrates independently. To understand both the generality and the diversity of developmental mechanisms that cause tooth agenesis in tetrapods, we investigated expression patterns of a series of tooth developmental genes in the lower jaw of toothless turtles and compared them to that of toothed crocodiles and the chicken as a representative of toothless modern birds. In turtle embryos, we found impairment of Shh signaling in the oral epithelium and early-stage arrest of odontoblast development caused by termination of Msx2 expression in the dental mesenchyme. Our data indicate that such changes underlie tooth agenesis in turtles and suggest that the mechanism that leads to early-stage odontogenic arrest differs between birds and turtles. Our results demonstrate that the cellular and molecular mechanisms that regulate early-stage arrest of tooth development are diverse in tetrapod lineages, and odontogenic developmental programs may respond to changes in upstream molecules similarly thereby evolving convergently with feeding morphology.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
31
|
Abstract
Dental enamel is a hypermineralized tissue, containing only trace amounts of organic components. During enamel formation, matrix metalloproteinase 20 (MMP20) processes proteins comprising enamel matrix and facilitates hypermineralization. In the human genome, 24 distinct MMP genes have been identified. Among these genes, MMP20 is clustered with eight other genes, including MMP13, and all these clustered genes show phylogenetically close relationships. In this study, we investigated MMP20 and closely related MMP genes in various tetrapods and in a teleost fish, fugu. In the genome of the chicken, a toothless tetrapod, we identified degraded exons of MMP20, which supports the previous proposition that MMP20 is important specifically for enamel formation. Nevertheless, for unknown reasons, we failed to identify MMP20 in the platypus genome. In the opossum, lizard, and frog genomes, MMP20 was found clustered with MMP13. Furthermore, in the fugu genome, we identified an MMP20-like gene located adjacent to MMP13, suggesting that MMP20 arose before the divergence of ray-finned fish and lobe-finned fish. The teleost tooth surface is covered with enameloid, a hypermineralized tissue different from enamel. Thus, we hypothesize that MMP20 could have been used in an ancient hypermineralized tissue, which evolved into enameloid in teleosts and into enamel in tetrapods.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
32
|
Hu JCC, Lertlam R, Richardson AS, Smith CE, McKee MD, Simmer JP. Cell proliferation and apoptosis in enamelin null mice. Eur J Oral Sci 2012; 119 Suppl 1:329-37. [PMID: 22243264 DOI: 10.1111/j.1600-0722.2011.00860.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enamelin is a secreted glycoprotein that is critical for dental enamel formation. Ameloblasts in enamelin (Enam) null mice develop atypical features that include the absence of a Tomes' process, expanded endoplasmic reticulum, apparent loss of polarity, and pooling of extracellular matrix in all directions, including between ameloblasts and the stratum intermedium. We hypothesized that ameloblast pathological changes may be associated with increased cell apoptosis. Our objective was to assess apoptotic activity in maxillary first molars of wild-type, Enam(+/-), and Enam(-/-) mice at postnatal days 5, 7, 9, 14, and 17. Mouse maxillae were characterized by light microscopy after terminal deoxynucleotidyl transferase (TdT)-mediated biotin-dUTP nick-end labelling (TUNEL) or 5-bromo-2'-deoxyuridine (BrdU) staining. Following the initial deposition of dentin matrix, ameloblasts became highly dysplastic and no enamel crystal ribbons were deposited. Ameloblast apoptosis was observed in the Enam null mice starting in the secretory stage and with no apparent alteration in cell proliferation. We conclude that in the absence of enamelin and subsequent shutdown of enamel formation, ameloblasts undergo pathological changes early in the secretory stage that are evident as radically altered cell morphology, detachment from the tooth surface, apoptosis, and formation of ectopic calcifications both outside and inside the dystrophic enamel organ.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:165-82. [PMID: 24009032 DOI: 10.1002/wdev.63] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these organs invaluable for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells.
Collapse
Affiliation(s)
- Andrew H Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
34
|
Louchart A, Viriot L. From snout to beak: the loss of teeth in birds. Trends Ecol Evol 2011; 26:663-73. [DOI: 10.1016/j.tree.2011.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
|
35
|
Chan HC, Estrella NMRP, Milkovich RN, Kim JW, Simmer JP, Hu JCC. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011; 119 Suppl 1:311-23. [PMID: 22243262 PMCID: PMC3292789 DOI: 10.1111/j.1600-0722.2011.00857.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.
Collapse
Affiliation(s)
- Hui-Chen Chan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ninna M. R. P. Estrella
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Fisher LW. DMP1 and DSPP: evidence for duplication and convergent evolution of two SIBLING proteins. Cells Tissues Organs 2011; 194:113-8. [PMID: 21555860 DOI: 10.1159/000324254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since first being proposed as a tandem gene family in 2001, the relatedness of the 5 SIBLING proteins (BSP, DMP1, DSPP, MEPE, and SPP1/OPN) has predominantly depended on arguments involving shared intron/exon properties as well as conserved protein biochemical properties (e.g. unstructured and acidic) and specific peptide motifs (e.g. phosphorylation and integrin-binding RGD). This report discusses the evidence that an ancient DMP1 gene underwent a simple duplication in the common ancestor of mammals and reptiles and then separately evolved into DSPP-like paralogs in the 2 classes. Genomic sequence analyses show that different copies of the original DMP1 duplication process were selected by mammalian and reptilian (anole lizard) classes to acquire genetically different but biochemically similar phosphoserine-rich repeat domains by convergent evolution. Mammals, for example, expanded phosphoserine motifs encoded exclusively using motifs containing AGC/T serine codons while the reptile line's repeats also used TCN-encoding serine codons. A similar analysis of the origins of the other 4 SIBLINGs will require even more detailed analysis as genome sequences of various fish and amphibia become available.
Collapse
Affiliation(s)
- Larry W Fisher
- Matrix Biochemistry Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, Md, USA.
| |
Collapse
|
37
|
Smith SD, Rausher MD. Gene loss and parallel evolution contribute to species difference in flower color. Mol Biol Evol 2011; 28:2799-810. [PMID: 21551271 DOI: 10.1093/molbev/msr109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the importance of regulatory and functional sequence evolution in generating species differences has been studied to some extent, much less is known about the role of other types of genomic changes, such as fluctuation in gene copy number. Here, we apply analyses of gene function and expression of anthocyanin pigment pathway genes, as well as cosegregation analyses in backcross populations, to examine the genetic changes involved in the shift from blue to red flowers in Andean Iochroma (Solanaceae). We demonstrate that deletion of a gene coding for an anthocyanin pathway enzyme was necessary for the transition to red floral pigmentation. The downregulation of a second pathway gene was also necessary for the novel flower color, and this regulatory pattern parallels the genetic change in the two other red-flowered species in the sister family Convolvulaceae in which flower color change has been examined genetically. Finally, we document a shift in enzymatic function at a third locus, but the importance of this change in the transition to red flowers depends on the exact order with which the three changes occurred. This study shows that gene inactivation or loss can be involved in the origin of phenotypic differences between species, thereby restricting the possibility of reversion to the ancestral state. It also demonstrates that parallel evolution of red flowers in three different species occurs via a common developmental/regulatory change but by mutations in different genes.
Collapse
|
38
|
Bardet C, Vincent C, Lajarille MC, Jaffredo T, Sire JY. OC-116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:653-62. [PMID: 20665709 DOI: 10.1002/jez.b.21366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In chicken, ovocleidin 116 (OC-116) is found in the eggshell matrix and its encoding gene, OC-116, is expressed in uterine cells. In mammals, its orthologue MEPE encodes the matrix extracellular phosphoglycoprotein (MEPE), which has been shown to be involved in bone mineralization. Using RT-PCR and in situ hybridization on sections, we have checked whether OC-116 was also expressed in osteoblasts and osteocytes during bone development and mineralization in chicken embryos. We monitored OC-116 expression in the tibia and mandible of a growth series of chicken embryos from E3 to E19. Transcripts were identified in the osteoblasts as early as E5 in the tibia and E7 in the mandible, before matrix mineralization, then from these stages onwards in both the osteoblasts lining the mineralized bone matrix and the osteocytes. Therefore, early in chicken ontogeny and as soon as osteogenesis begins, OC-116 is involved. Its function, which remains still unknown, is maintained during further bone growth and mineralization, and later in adult, in which it is recruited for eggshell formation. We hypothesize that the ancestral OC-116/MEPE in a stem amniote was involved in these two functions and that the loss of eggshell in the mammalian lineage has probably favored the recruitment of some MEPE domains toward new functions in osteogenesis and mineralization, and in phosphatemia regulation.
Collapse
Affiliation(s)
- Claire Bardet
- Université Pierre et Marie Curie, Systématique-Adaptation-Evolution, 7 quai Saint-Bernard, Paris, France
| | | | | | | | | |
Collapse
|
39
|
Kawasaki K. The SCPP Gene Family and the Complexity of Hard Tissues in Vertebrates. Cells Tissues Organs 2011; 194:108-12. [DOI: 10.1159/000324225] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Chun YHP, Lu Y, Hu Y, Krebsbach PH, Yamada Y, Hu JCC, Simmer JP. Transgenic rescue of enamel phenotype in Ambn null mice. J Dent Res 2010; 89:1414-20. [PMID: 20940352 DOI: 10.1177/0022034510379223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ameloblastin null mice fail to make an enamel layer, but the defects could be due to an absence of functional ameloblastin or to the secretion of a potentially toxic mutant ameloblastin. We hypothesized that the enamel phenotype could be rescued by the transgenic expression of normal ameloblastin in Ambn mutant mice. We established and analyzed 5 transgenic lines that expressed ameloblastin from the amelogenin (AmelX) promoter and identified transgenic lines that express virtually no transgene, slightly less than normal (Tg+), somewhat higher than normal (Tg++), and much higher than normal (Tg+++) levels of ameloblastin. All lines expressing detectable levels of ameloblastin at least partially recovered the enamel phenotype. When ameloblastin expression was only somewhat higher than normal, the enamel covering the molars and incisors was of normal thickness, had clearly defined rod and interrod enamel, and held up well in function. We conclude that ameloblastin is essential for dental enamel formation.
Collapse
Affiliation(s)
- Y-H P Chun
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee SK, Seymen F, Lee KE, Kang HY, Yildirim M, Tuna EB, Gencay K, Hwang YH, Nam KH, De La Garza RJ, Hu JCC, Simmer JP, Kim JW. Novel WDR72 mutation and cytoplasmic localization. J Dent Res 2010; 89:1378-82. [PMID: 20938048 DOI: 10.1177/0022034510382117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The proven candidate genes for amelogenesis imperfecta (AI) are AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72. We performed mutation analyses on seven families with hypomaturation AI. A novel WDR72 dinucleotide deletion mutation (g.57,426_57,427delAT; c.1467_ 1468delAT; p.V491fsX497) was identified in both alleles of probands from Mexico and Turkey. Haplotype analyses showed that the mutations arose independently in the two families. The disease perfectly segregated with the genotype. Only persons with both copies of the mutant allele were affected. Their hypomineralized enamel suffered attrition and orange-brown staining following eruption. Expression of WDR72 fused to green fluorescent protein showed a cytoplasmic localization exclusively and was absent from the nucleus. We conclude that WDR72 is a cytoplasmic protein that is critical for dental enamel formation.
Collapse
Affiliation(s)
- S-K Lee
- Department of Cell and Developmental Biology, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Al-Hashimi N, Lafont AG, Delgado S, Kawasaki K, Sire JY. The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol 2010; 27:2078-94. [PMID: 20403965 DOI: 10.1093/molbev/msq098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Enamelin (ENAM) has been shown to be a crucial protein for enamel formation and mineralization. Previous molecular analyses have indicated a probable origin early in vertebrate evolution, which is supported by the presence of enamel/enameloid tissues in early vertebrates. In contrast to these hypotheses, ENAM was only characterized in mammals. Our aims were to 1) look for ENAM in representatives of nonmammalian tetrapods, 2) search for a pseudogene in the chicken genome, and 3) see whether the new sequences could bring new information on ENAM evolution. Using in silico approach and polymerase chain reaction, we obtained and characterized the messenger RNA sequences of ENAM in a frog, a lizard, and a crocodile; the genomic DNA sequences of ENAM in a frog and a lizard; and the putative sequence of chicken ENAM pseudogene. The comparison with mammalian ENAM sequences has revealed 1) the presence of an additional coding exon, named exon 8b, in sauropsids and marsupials, 2) a simpler 5'-untranslated region in nonmammalian ENAMs, 3) many sequence variations in the large exons while there are a few conserved regions in small exons, and 4) 25 amino acids that have been conserved during 350 million years of tetrapod evolution and hence of crucial biological importance. The chicken pseudogene was identified in a region that was not expected when considering the gene synteny in mammals. Together with the location of lizard ENAM in a homologous region, this result indicates that enamel genes were probably translocated in an ancestor of the sauropsid lineage. This study supports the origin of ENAM earlier in vertebrate evolution, confirms that tooth loss in modern birds led to the invalidation of enamel genes, and adds information on the important role played by, for example, the phosphorylated serines and the glycosylated asparagines for correct ENAM functions.
Collapse
Affiliation(s)
- Nawfal Al-Hashimi
- Université Pierre et Marie Curie, UMR 7138-Systématique-Adaptation-Evolution, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Al-Hashimi N, Sire JY, Delgado S. Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents and primates. J Mol Evol 2010; 69:635-56. [PMID: 20012271 DOI: 10.1007/s00239-009-9302-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/06/2009] [Indexed: 12/20/2022]
Abstract
Enamelin (ENAM) plays an important role in the mineralization of the forming enamel matrix. We have performed an evolutionary analysis of mammalian ENAM to identify highly conserved residues or regions that could have important function (selective pressure), to predict mutations that could be associated with amelogenesis imperfecta in humans, and to identify possible adaptive evolution of ENAM during 200 million years ago of mammalian evolution. In order to fulfil these objectives, we obtained 36-ENAM sequences that are representative of the mammalian lineages. Our results show a remarkably high conservation pattern in the region of the 32-kDa fragment of ENAM, especially its phosphorylation, glycosylation, and proteolytic sites. In primates and rodents we also identified several sites under positive selection, which could indicate recent evolutionary changes in ENAM function. Furthermore, the analysis of the unusual signal peptide provided new insights on the possible regulation of ENAM secretion, a hypothesis that should be tested in the near future. Taken together, these findings improve our understanding of ENAM evolution and provide new information that would be useful for further investigation of ENAM function as well as for the validation of mutations leading to amelogenesis imperfecta.
Collapse
Affiliation(s)
- Nawfal Al-Hashimi
- Université Pierre et Marie Curie, UMR 7138-Systématique, Adaptation, Evolution, Case 5, 7 Quai Saint-Bernard, Bâtiment A, 4e étage, 75005, Paris, France
| | | | | |
Collapse
|
45
|
McKnight DA, Fisher LW. Molecular evolution of dentin phosphoprotein among toothed and toothless animals. BMC Evol Biol 2009; 9:299. [PMID: 20030824 PMCID: PMC2803795 DOI: 10.1186/1471-2148-9-299] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 12/23/2009] [Indexed: 12/22/2022] Open
Abstract
Background Dentin sialophosphoprotein (DSPP) is the largest member of the SIBLING family and is the most abundant noncollagenous protein in dentin. DSPP is also expressed in non-mineralized tissues including metabolically active ductal epithelia and some cancers. Its function, however, is poorly defined. The carboxy-terminal fragment, dentin phosphoprotein (DPP) is encoded predominantly by a large repetitive domain that requires separate cloning/sequencing reactions and is, therefore, often incomplete in genomic databases. Comparison of DPP sequences from at least one member of each major branch in the mammalian evolutionary tree (including some "toothless" mammals) as well as one reptile and bird may help delineate its possible functions in both dentin and ductal epithelia. Results The BMP1-cleavage and translation-termination domains were sufficiently conserved to permit amplification/cloning/sequencing of most species' DPP. While the integrin-binding domain, RGD, was present in about half of species, only vestigial remnants of this tripeptide were identified in the others. The number of tandem repeats of the nominal SerSerAsp phosphorylation motif in toothed mammals (including baleen whale and platypus which lack teeth as adults), ranged from ~75 (elephant) to >230 (human). These repeats were not perfect, however, and patterns of intervening sequences highlight the rapidity of changes among even closely related species. Two toothless anteater species have evolved different sets of nonsense mutations shortly after their BMP1 motifs suggesting that while cleavage may be important for DSPP processing in other tissues, the DPP domain itself may be required only in dentin. The lizard DSPP had an intact BMP1 site, a remnant RGD motif, as well as a distinctly different Ser/Asp-rich domain compared to mammals. Conclusions The DPP domain of DSPP was found to change dramatically within mammals and was lost in two truly toothless animals. The defining aspect of DPP, the long repeating phosphorylation domain, apparently undergoes frequent slip replication and recombination events that rapidly change specific patterns but not its overall biochemical character in toothed animals. Species may have to co-evolve protein processing mechanisms, however, to handle increased lengths of DSP repeats. While the RGD domain is lost in many species, some evolutionary pressure to maintain integrin binding can be observed.
Collapse
Affiliation(s)
- Dianalee A McKnight
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda MD 20892, USA. -
| | | |
Collapse
|
46
|
Smith CE, Wazen R, Hu Y, Zalzal SF, Nanci A, Simmer JP, Hu JCC. Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur J Oral Sci 2009; 117:485-97. [PMID: 19758243 DOI: 10.1111/j.1600-0722.2009.00666.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null). The purpose of this study was to characterize, by direct micro weighing, changes in enamel mineralization occurring on maxillary and mandibular incisors of mice bred for these alterations in nonamelogenin function (Ambn(+/+, +/-5,6, -5,6/-5,6), Enam(+/+, +/- ,-/-)). The results indicated similar changes to enamel-mineralization patterns within the altered genotypes, including significant decreases by as much as 50% in the mineral content of maturing enamel from heterozygous mice and the formation of a thin, crusty, and disorganized mineralized layer, rather than true enamel, on the labial (occlusal) surfaces of incisors and molars along with ectopic calcifications within enamel organ cells in Ambn(-5,6/-5,6) and Enam(-/-) homozygous mice. These findings confirm that both ameloblastin and enamelin are required by ameloblasts to create an enamel layer by appositional growth as well as to assist in achieving its unique high level of mineralization.
Collapse
Affiliation(s)
- Charles E Smith
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kawasaki K, Buchanan AV, Weiss KM. Biomineralization in Humans: Making the Hard Choices in Life. Annu Rev Genet 2009; 43:119-42. [DOI: 10.1146/annurev-genet-102108-134242] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Anne V. Buchanan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Kenneth M. Weiss
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
48
|
Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 2009; 5:e1000634. [PMID: 19730686 PMCID: PMC2728479 DOI: 10.1371/journal.pgen.1000634] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022] Open
Abstract
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of "molecular fossils" of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the "molecular fossil" hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (omega) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory.
Collapse
Affiliation(s)
- Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Oliver A. Ryder
- San Diego Zoo's Institute for Conservation Research, Escondido, California, United States of America
| | - Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
49
|
Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JCC. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem 2009; 284:19110-21. [PMID: 19578120 DOI: 10.1074/jbc.m109.013623] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kallikrein 4 (Klk4) is believed to play an essential role in enamel biomineralization, because defects in KLK4 cause hypomaturation amelogenesis imperfecta. We used gene targeting to generate a knockin mouse that replaces the Klk4 gene sequence, starting at the translation initiation site, with a lacZ reporter gene. Correct targeting of the transgene was confirmed by Southern blot and PCR analyses. Histochemical X-gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) staining demonstrated expression of beta-galactosidase in maturation stage ameloblasts. No X-gal staining was observed in secretory stage ameloblasts or in odontoblasts. Retained enamel proteins were observed in the maturation stage enamel of the Klk4 null mouse, but not in the Klk4 heterozygous or wild-type mice. The enamel layer in the Klk4 null mouse was normal in thickness and contained decussating enamel rods but was rapidly abraded following weaning, despite the mice being maintained on soft chow. In function the enamel readily fractured within the initial rod and interrod enamel above the parallel enamel covering the dentino-enamel junction. Despite the lack of Klk4 and the retention of enamel proteins, significant levels of crystal maturation occurred (although delayed), and the enamel achieved a mineral density in some places greater than that detected in bone and dentin. An important finding was that individual enamel crystallites of erupted teeth failed to grow together, interlock, and function as a unit. Instead, individual crystallites seemed to spill out of the enamel when fractured. These results demonstrate that Klk4 is essential for the removal of enamel proteins and the proper maturation of enamel crystals.
Collapse
Affiliation(s)
- James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108, USA.
| | | | | | | | | |
Collapse
|
50
|
Davit-Béal T, Tucker AS, Sire JY. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 2009; 214:477-501. [PMID: 19422426 PMCID: PMC2736120 DOI: 10.1111/j.1469-7580.2009.01060.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 12/29/2022] Open
Abstract
Since their recruitment in the oral cavity, approximately 450 million years ago, teeth have been subjected to strong selective constraints due to the crucial role that they play in species survival. It is therefore quite surprising that the ability to develop functional teeth has subsequently been lost several times, independently, in various lineages. In this review, we concentrate our attention on tetrapods, the only vertebrate lineage in which several clades lack functional teeth from birth to adulthood. Indeed, in other lineages, teeth can be absent in adults but be functionally present in larvae and juveniles, can be absent in the oral cavity but exist in the pharyngeal region, or can develop on the upper jaw but be absent on the lower jaw. Here, we analyse the current data on toothless (edentate) tetrapod taxa, including information available on enamel-less species. Firstly, we provide an analysis of the dispersed and fragmentary morphological data published on the various living taxa concerned (and their extinct relatives) with the aim of tracing the origin of tooth or enamel loss, i.e. toads in Lissamphibia, turtles and birds in Sauropsida, and baleen whales, pangolins, anteaters, sloths, armadillos and aardvark in Mammalia. Secondly, we present current hypotheses on the genetic basis of tooth loss in the chicken and thirdly, we try to answer the question of how these taxa have survived tooth loss given the crucial importance of this tool. The loss of teeth (or only enamel) in all of these taxa was not lethal because it was always preceded in evolution by the pre-adaptation of a secondary tool (beak, baleens, elongated adhesive tongues or hypselodonty) useful for improving efficiency in food uptake. The positive selection of such secondary tools would have led to relaxed functional constraints on teeth and would have later compensated for the loss of teeth. These hypotheses raise numerous questions that will hopefully be answered in the near future.
Collapse
Affiliation(s)
- Tiphaine Davit-Béal
- Université Pierre & Marie CurieUMR 7138 ‘Systématique, Adaptation, Evolution’, Paris, France
| | - Abigail S Tucker
- Craniofacial Development and Orthodontics, King's College London, Guy's HospitalLondon, UK
| | - Jean-Yves Sire
- Université Pierre & Marie CurieUMR 7138 ‘Systématique, Adaptation, Evolution’, Paris, France
| |
Collapse
|