1
|
Dong Y, Huang L, Liu L. Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights. Gen Comp Endocrinol 2024; 356:114562. [PMID: 38848820 DOI: 10.1016/j.ygcen.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Collapse
Affiliation(s)
- Yaqun Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
3
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Luo H, Mipam T, Wu S, Xu C, Yi C, Zhao W, Chai Z, Chen X, Wu Z, Wang J, Wang J, Wang H, Zhong J, Cai X. DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 2022; 191:153-167. [PMID: 35988507 DOI: 10.1016/j.theriogenology.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Cai X, Wu S, Mipam T, Luo H, Yi C, Xu C, Zhao W, Wang H, Zhong J. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Funct Integr Genomics 2021; 21:665-678. [PMID: 34626308 DOI: 10.1007/s10142-021-00806-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Cattleyaks are the crossbred offspring between cattle and yaks, exhibiting the prominent adaptability to the harsh environment as yaks and much higher growth performances than yaks around Qinghai-Tibet plateau. Unfortunately, cattleyak cannot be effectively used in yak breeding due to its male infertility resulted from spermatogenic arrest. In this study, we performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine the expression profiles of long noncoding RNA (lncRNA) from cattleyak and yak testis. A total of 604 differentially expressed (DE) lncRNAs (135 upregulated and 469 downregulated) were identified in cattleyak with respect to yak. Through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we identified several DE lncRNAs regulating the mitotic cell cycle processes by targeting the genes significantly associated with the mitotic cell cycle checkpoint and DNA damage checkpoint term and also significantly involved in p53 signaling pathway, mismatch repair and homologous recombination pathway (P < 0.05). The reverse transcription PCR (RT-PCR) and quantitative Real-Time PCR (qRT-PCR) analysis of the randomly selected fourteen DE lncRNAs and the seven target genes validated the RNA-seq data and their true expressions during spermatogenesis in vivo. Molecular cloning and sequencing indicated that the testis lncRNAs NONBTAT012170 and NONBTAT010258 presented higher similarity among different cattleyak and yak individuals. The downregulation of these target genes in cattleyak contributed to the abnormal DNA replication and spermatogenic arrest during the S phase of mitotic cell cycle. This study provided a novel insight into lncRNA expression profile changes associated with spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongying Wang
- College of Chemistry&Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Chukrallah LG, Badrinath A, Seltzer K, Snyder EM. Of rodents and ruminants: a comparison of small noncoding RNA requirements in mouse and bovine reproduction. J Anim Sci 2021; 99:6156131. [PMID: 33677580 DOI: 10.1093/jas/skaa388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear. Small noncoding RNAs, such as piRNAs and miRNAs, are known to be important regulators of germ-cell physiology in mouse (the best-studied mammalian model organism) and emerging evidence suggests that this is also the case in a range of ruminant species, in particular bovine. Similarities exist between mouse and bovids, especially in the case of meiotic and postmeiotic male germ cells. However, fundamental differences in small RNA abundance and metabolism between these species have been observed in the female germ cell, differences that likely have profound impacts on their physiology. Further, parentally derived small noncoding RNAs are known to influence early embryos and significant species-specific differences in germ-cell born small noncoding RNAs have been observed. These findings demonstrate the mouse to be an imperfect model for understanding germ-cell small noncoding RNA biology in ruminants and highlight the need to increase research efforts in this underappreciated aspect of animal reproduction.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ
| | - Kelly Seltzer
- Department of Animal Science, Rutgers University, New Brunswick, NJ
| | | |
Collapse
|
7
|
Dong W, Yang J, Zhang Y, Liu S, Ning C, Ding X, Wang W, Zhang Y, Zhang Q, Jiang L. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet 2021; 138:562-573. [PMID: 33620112 DOI: 10.1111/jbg.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023]
Abstract
Epigenetic modification plays a critical role in establishing and maintaining cell differentiation, embryo development, tumorigenesis and many complex diseases. However, little is known about the epigenetic regulatory mechanisms for milk production in dairy cattle. Here, we conducted an epigenome-wide study, together with gene expression profiles to identify important epigenetic candidate genes related to the milk production traits in dairy cattle. Whole-genome bisulphite sequencing and RNA sequencing were employed to detect differentially methylated genes (DMG) and differentially expressed genes (DEG) in blood samples in dry period and lactation period between two groups of cows with extremely high and low milk production performance. A total of 10,877 and 6,617 differentially methylated regions were identified between the two groups in the two periods, which corresponded to 3,601 and 2,802 DMGs, respectively. Furthermore, 156 DEGs overlap with DMGs in comparison of the two groups, and 131 DEGs overlap with DMGs in comparison of the two periods. By integrating methylome, transcriptome and GWAS data, some potential candidate genes for milk production traits in dairy cattle were suggested, such as DOCK1, PTK2 and PIK3R1. Our studies may contribute to a better understanding of epigenetic modification on milk production traits of dairy cattle.
Collapse
Affiliation(s)
- Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenwen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Zhang X, Zhou J, Li L, Huang W, Ahmad HI, Li H, Jiang H, Chen J. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon ( Acipenser schrenckii). Front Zool 2020; 17:11. [PMID: 32308726 PMCID: PMC7147073 DOI: 10.1186/s12983-020-00355-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| |
Collapse
|
9
|
Zhang GW, Wang L, Chen H, Guan J, Wu Y, Zhao J, Luo Z, Huang W, Zuo F. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility. Epigenetics 2020; 15:914-931. [PMID: 32141383 DOI: 10.1080/15592294.2020.1738026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Hybrid male sterility (HMS) is a postzygotic reproductive isolation mechanism that enforces speciation. A bovine example of HMS is the yattle (also called dzo), an interspecies hybrid of taurine cattle (Bos taurus) and yak (Bos grunniens). The molecular mechanisms underlying HMS of yattle are not well understood. Epigenetic modifications of DNA methylation and P-element induced wimpy testis (PIWI)-interacting RNA (piRNAs) are important regulators in spermatogenesis. In this study, we investigated DNA methylation patterns and piRNA expression in adult testes in hybrid infertile yattle bulls and fertile cattle and yak bulls using whole genome bisulphite-seq and small RNA-seq. Promoter hypermethylation in yattle were associated with DNA methylation involved in gamete generation, piRNA metabolic processes, spermatogenesis, and spermatid development (P < 2.6 × 10-5). Male infertility in yattle was associated with the promoter hypermethylation-associated silencing of PIWI/piRNA pathway genes including PIWIL1, DDX4, PLD6, MAEL, FKBP6, TDRD1 and TDRD5. The downstream effects of silencing these genes were diminished production of 29- to 31- nucleotide pachytene piRNAs in yattle testes. Hypermethylation events at transposable element loci (LINEs, SINEs, and LTRs) were found in yattle. LINE-derived prepachytene piRNAs increased and SINE-derived prepachytene piRNAs were reduced in yattle testes. Our data suggests that DNA methylation affects the PIWI/piRNA pathway and is involved in gene expression and pachytene piRNA production during spermatogenesis in bovine HMS. DNA hypermethylation and disruption of piRNA production contributed to unsuccessful germ cell development that may drive bovine HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Ling Wang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Huiyou Chen
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jiuqiang Guan
- Yak Research Institution, Sichuan Academy of Grassland Science , Chengdu, Sichuan, China
| | - Yuhui Wu
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jianjun Zhao
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Zonggang Luo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Wenming Huang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| |
Collapse
|
10
|
Wu S, Mipam T, Xu C, Zhao W, Shah MA, Yi C, Luo H, Cai X, Zhong J. Testis transcriptome profiling identified genes involved in spermatogenic arrest of cattleyak. PLoS One 2020; 15:e0229503. [PMID: 32092127 PMCID: PMC7039509 DOI: 10.1371/journal.pone.0229503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with cattle productivity. Much attempt has been made to examine the mechanisms of male sterility caused by spermatogenic arrest, but yet there is no research systematically and precisely elucidated testis gene expression profiling between cattleyak and yak. Methods To explore the higher resolution comparative transcriptome map between the testes of yak and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest in cattleyak. We characterized the comparative transcriptome profile from the testes of yak and cattleyak using high-throughput sequencing. Then we used quantitative analysis to validate several differentially expressed genes (DEGs) in testicular tissue and spermatogenic cells. Results Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregulated) between cattleyak and yak. Further analysis revealed that the marker genes and apoptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs associated with mitotic checkpoint, and cell cycle progression were downregulated in cattleyak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal complex assembly, and meiotic progression presented no sign of expression in cattleyak. Even worse, dozens of genes involved in acrosome formation, and flagellar development were dominantly downregulated in cattleyak. Conclusion DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentiation stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis and spermatocyte meiosis, which contributes to the scarcely presented sperms in cattleyak.
Collapse
Affiliation(s)
- Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| |
Collapse
|
11
|
Xu C, Shah MA, Mipam T, Wu S, Yi C, Luo H, Yuan M, Chai Z, Zhao W, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Int J Biol Sci 2020; 16:239-250. [PMID: 31929752 PMCID: PMC6949159 DOI: 10.7150/ijbs.38232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
12
|
Yang GC, Wang RR, Liu ZQ, Ma KY, Feng JB, Qiu GF. Alternative splice variants and differential relative abundance patterns of vasa mRNAs during gonadal development in the Chinese mitten crab Eriocheir sinensis. Anim Reprod Sci 2019; 208:106131. [PMID: 31405476 DOI: 10.1016/j.anireprosci.2019.106131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Gonadal development usually involves alternative splicing of sex-related genes. Vasa, a highly conserved ATP-dependent RNA helicase present mainly in germ cells, has an important function in gonadal development. As an important sex-related gene, recent evidence indicates that different splice variants of vasa exist in many species. In this study, there was identification of two types of vasa splice variants in the Chinese mitten crab Eriocheir sinensis, termed Esvasa-l and Esvasa-s, respectively. Furthermore, splice variants of Esvasa-s were sub-divided into Esvasa-s1, Esvasa-s2, Esvasa-s3, Esvasa-s4, and Esvasa-s5, based on differing numbers of TGG repeats. Results from genomic structure analyses indicated that these forms are alternatively spliced transcripts from a single vasa gene. Results from tissue distribution assessments indicate the vasa splice variants were exclusively expressed in the gonads of male and female adult crabs. In situ hybridization results indicate Esvasa mRNA was mainly present in the cytoplasm of previtellogenic oocytes. As oocyte size increased, relative abundance of Esvasa mRNA decreased and became distributed near the cellular membrane. The Esvasa mRNA was not detectable in mature oocytes. In testis, Esvasa mRNA was detected in spermatids and spermatozoa, but not in spermatogonia and spermatocytes. Notably, results from qPCR analysis of Esvasa-l and Esvasa-s indicate there are different relative proportions during gametogenesis, implying that splice variants of the Esvasa gene may have different biological functions during crab gonadal development.
Collapse
Affiliation(s)
- Guo-Cui Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Rui-Rui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 200082 Shanghai, People's Republic of China
| | - Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Jian-Bin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Ahlawat S, Sharma R, Arora R, Kumari N, Mishra AK, Tantia MS. Promoter methylation and expression analysis of Bvh gene in bulls with varying semen motility parameters. Theriogenology 2018; 125:152-156. [PMID: 30447494 DOI: 10.1016/j.theriogenology.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/09/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Crossbreds of low-producing indigenous cattle and high-producing exotic dairy bulls (Holstein Friesian and Jersey) have contributed in ensuring that India continues to be the world's top milk-producing country. However, subfertility observed in crossbred male progenies has been a major obstacle in exploitation of heterosis due to crossbreeding. There is sufficient scientific evidence in support of genetic and epigenetic regulation of key physiological processes including spermatogenesis. Bovine Vasa Homology (Bvh) is considered a molecular marker for the study of gametogenesis. Significant negative correlation between DNA methylation and gene expression has been reported in cattle-yaks hybrids and their parents. The present study analyzed promoter methylation status and expression profile of Bvh gene in spermatozoa from exotic Holstein Friesian cattle, indigenous Sahiwal cattle and their crossbreds with varying semen motility parameters. The degree of methylation of the Bvh promoter region was significantly higher in poor motility crossbred bulls (13.3%) as compared to good motility crossbreds (5.3%), Sahiwal (3%) and Holstein Friesian bulls (1%) (P < 0.05). Gene expression analysis revealed significantly higher mRNA abundance of Bvh in purebreds (Holstein Friesian and Sahiwal) as compared to crossbred counterparts (P < 0.001). Inverse correlation observed in this study between promoter methylation and gene expression of Bvh gene in spermatozoa from crossbred bulls with poor motility phenotype as compared to purebred parents provides an important insight into understanding the graded fertility of crossbred bulls.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Namita Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - A K Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
14
|
Sarova N, Ahlawat S, Grewal A, Sharma R, Arora R. Differential promoter methylation of DAZL gene in bulls with varying seminal parameters. Reprod Domest Anim 2018; 53:914-920. [PMID: 29604148 DOI: 10.1111/rda.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/03/2018] [Indexed: 12/19/2022]
Abstract
In India, cross-breeding of indigenous cattle with exotic cattle such as Holstein Friesian and Jersey has been going on since last four decades to improve milk production. Although it has led to increased milk yield, the subfertility in male cross-bred progeny has remained a significant problem. Epigenetic modifications (DNA methylation, histone modifications and chromatin remodelling) are regarded as key players influencing gene expression. DAZL gene plays an important role in germline development and gametogenesis. The methylation and mRNA expression level of this gene have been significantly negatively correlated in the testes of cattle-yak hybrids and their parents. This study analysed the methylation profile of DAZL gene promoter in bull spermatozoa in an attempt to speculate its role in cross-bred cattle subfertility. Semen samples from Sahiwal, Holstein Friesian and Frieswal bulls (Sahiwal X Holstein Friesian) with varying semen motility parameters were collected, and DNA was isolated. Methylation-specific primers were used to amplify part of promoter and exon 1 of DAZL gene using bisulphite-converted DNA. The amplified products were sequenced after cloning in pTZ57R/T vector. Sequence analysis revealed significantly higher DNA methylation of DAZL gene in Frieswal bulls with poor motility (28.26%) as compared to medium (15.21%) and high motility phenotype (6.52%). In pure-bred counterparts, Sahiwal and Holstein Friesian, epigenetic marks were more in the former (15.21%) than the latter (4.34%), but in both cases, the values were lower as compared to the poor motility Frieswal bulls. This suggests that differential hypermethylation of the CpG islands could possibly influence reproductive parameters in bovines.
Collapse
Affiliation(s)
- N Sarova
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - A Grewal
- University Institute of Engineering and Technology, Kurukshetra, India
| | - R Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - R Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
15
|
Liu X, Yang J, Zhang Q, Jiang L. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle. Genetica 2017; 145:387-395. [PMID: 28667419 PMCID: PMC5594039 DOI: 10.1007/s10709-017-9974-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.
Collapse
Affiliation(s)
- Xuan Liu
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Beijing, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China. .,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Zhang GW, Guan JQ, Luo ZG, Zhang WX, Wang L, Luo XL, Zuo FY. A tremendous expansion of copy number in crossbred bulls ( × ). J Anim Sci 2017; 94:1398-407. [PMID: 27135999 DOI: 10.2527/jas.2015-9983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Crossbreeding between cattle () and yak () exhibits significant hybrid advantages in milk yield and meat production. By contrast, cattle-yak F hybrid bulls are sterile. Copy number variations (CNV) of multicopy gene families in male-specific regions of the mammalian Y chromosome (MSY) affect human and animal fertility. The present study investigated CNV of (), (), (), and () in 5 yak breed bulls ( = 63), cattle-yak F ( = 22) and F ( = 2) hybrid bulls, and Chinese Yellow (CY) cattle bulls ( = 10) by quantitative real-time PCR. showed restricted amplification in yak bulls in that the average geometric mean copy number (CN) was estimated to be 4 copies. The most compelling finding is that there is a tremendous expansion of CN in F hybrids (385 copies; 95% confidence interval [CI] = 351-421) and F hybrids (356 copies) compared with the male parent breed CY cattle (142 copies; 95% CI = 95-211). Copy numbers of and were also extensively expanded on the Y chromosome in yak and CY cattle bulls. The geometric mean CN of and were estimated to be 123 (95% CI = 114-132) and 250 copies (95% CI = 233-268) in yak bulls and 71 (95% CI = 61-82) and 133 (95% CI = 107-164) copies in CY cattle, respectively. Yak and CY cattle have 2 copies of the gene on the Y chromosome. Similarly to gene, the F and F hybrid bulls have higher CN of , , and than CY cattle ( < 0.01). These results indicated that the MSY of yak and cattle-yak crossbred hybrids was fundamentally different from cattle MSY in the context of genomic organization. Based on the model of cattle-yak F and F hybrid bull sterility, the CNV of may serve as a potential risk factor for crossbred bull ( × ) infertility. To our knowledge, this is the first study to examine differences in multicopy genes in MSY between yak and cattle-yak bulls.
Collapse
|
17
|
Jin SD, Lee BR, Hwang YS, Lee HJ, Rim JS, Han JY. Regulatory elements and transcriptional control of chicken vasa homologue ( CVH) promoter in chicken primordial germ cells. J Anim Sci Biotechnol 2017; 8:6. [PMID: 28101336 PMCID: PMC5237207 DOI: 10.1186/s40104-016-0133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Primordial germ cells (PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cell-specific RNA binding proteins (RBPs) by modulating tissue-specific cis- and trans-regulatory elements. Studies on gene structures of chicken vasa homologue (CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cell fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cell-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH. RESULTS We constructed green fluorescence protein (GFP) or luciferase reporter vectors containing the various 5' flanking regions of CVH gene. From the 5' deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at -316 to +275 base pair fragment with the highest luciferase activity. Additionally, we confirmed for the first time that the 5' untranslated region (UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siRNA-mediated knockdown, we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression. CONCLUSIONS These results demonstrate that cis-elements and transcription factors localizing in the 5' flanking region including the 5' UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Finally, this information will contribute to research studies in areas of reproductive biology, constructing of germ cell-specific synthetic promoter for tracing primordial germ cells as well as understanding the transcriptional regulation for maintaining germness in PGCs.
Collapse
Affiliation(s)
- So Dam Jin
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Bo Ram Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jong Seop Rim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
- Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598 Japan
| |
Collapse
|
18
|
Cai X, Yu S, Mipam T, Yang F, Zhao W, Liu W, Cao S, Shen L, Zhao F, Sun L, Xu C, Wu S. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 2017; 88:28-42. [DOI: 10.1016/j.theriogenology.2016.09.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 01/29/2023]
|
19
|
Xiao Y, Pollack D, Andrusier M, Levy A, Callaway M, Nieves E, Reddi P, Vigodner M. Identification of cell-specific targets of sumoylation during mouse spermatogenesis. Reproduction 2016; 151:149-66. [PMID: 26701181 DOI: 10.1530/rep-15-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings suggest diverse and potentially multiple roles of small ubiquitin-like modifier (SUMO) in testicular function and spermatogenesis. However, SUMO targets remain uncharacterized in the testis due to the complex multicellular nature of testicular tissue, the inability to maintain and manipulate spermatogenesis in vitro, and the technical challenges involved in identifying low-abundance endogenous SUMO targets. In this study, we performed cell-specific identification of sumoylated proteins using concentrated cell lysates prepared with de-sumoylation inhibitors from freshly purified spermatocytes and spermatids. One-hundred and twenty proteins were uniquely identified in the spermatocyte and/or spermatid fractions. The identified proteins are involved in the regulation of transcription, stress response, microRNA biogenesis, regulation of major enzymatic pathways, nuclear-cytoplasmic transport, cell-cycle control, acrosome biogenesis, and other processes. Several proteins with important roles during spermatogenesis were chosen for further characterization by co-immunoprecipitation, co-localization, and in vitro sumoylation studies. GPS-SUMO Software was used to identify consensus and non-consensus sumoylation sites within the amino acid sequences of the proteins. The analyses confirmed the cell-specific sumoylation and/or SUMO interaction of several novel, previously uncharacterized SUMO targets such as CDK1, RNAP II, CDC5, MILI, DDX4, TDP-43, and STK31. Furthermore, several proteins that were previously identified as SUMO targets in somatic cells (KAP1 and MDC1) were identified as SUMO targets in germ cells. Many of these proteins have a unique role in spermatogenesis and during meiotic progression. This research opens a novel avenue for further studies of SUMO at the level of individual targets.
Collapse
Affiliation(s)
| | | | | | | | - Myrasol Callaway
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Edward Nieves
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Prabhakara Reddi
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Margarita Vigodner
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis-specific geneFKBP6in testes of yak and cattle-yak hybrids. Reprod Domest Anim 2016; 51:1030-1038. [DOI: 10.1111/rda.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- B Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Luo
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Weng
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - S Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Pan
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Xie
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - W Wu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
21
|
Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis. Int J Mol Sci 2016; 17:ijms17091422. [PMID: 27589721 PMCID: PMC5037701 DOI: 10.3390/ijms17091422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA), a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase) activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS). The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals) at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics.
Collapse
|
22
|
Yu S, Cai X, Sun L, Zuo Z, Mipam T, Cao S, Shen L, Ren Z, Chen X, Yang F, Deng J, Ma X, Wang Y. Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattleyak. J Proteomics 2016; 142:102-13. [DOI: 10.1016/j.jprot.2016.04.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/15/2022]
|
23
|
Song Y, Lai L, Li L, Huang Y, Wang A, Tang X, Pang D, Li Z, Ouyang H. Germ cell-specific expression of Cre recombinase using the VASA promoter in the pig. FEBS Open Bio 2015; 6:50-5. [PMID: 27047735 PMCID: PMC4794798 DOI: 10.1002/2211-5463.12005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/15/2022] Open
Abstract
The Cre–loxP system is a powerful tool for genetic analysis of distinct cell lineages and tissue‐specific gene knockout in animal models. VASA is specifically expressed in reproductive tissues, and is known to play important roles in spermatogenesis and germ‐cell growth. In this study, Cre recombinase transgenic pigs under the control of the VASA promoter were generated by somatic cell nuclear transfer. Germ cell‐specific expression of Cre recombinase in VASA‐Cre transgenic pigs was shown by western blotting and immunohistochemistry. VASA‐Cre transgenic pigs will be a useful tool for germ cell‐specific gene knockout and a disease model for disorders of the reproductive system.
Collapse
Affiliation(s)
- Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Li Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Yongye Huang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Anfeng Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering Jilin University Changchun China
| |
Collapse
|
24
|
Li B, Wu W, Luo H, Liu Z, Liu H, Li Q, Pan Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015; 573:50-6. [PMID: 26165450 DOI: 10.1016/j.gene.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Kaushik R, Singh KP, Bahuguna V, Rameshbabu K, Singh MK, Manik RS, Palta P, Singla SK, Chauhan MS. Molecular characterization and expression of buffalo (Bubalus bubalis) DEAD-box family VASA gene and mRNA transcript variants isolated from testis tissue. Gene 2015; 572:17-26. [PMID: 26127001 DOI: 10.1016/j.gene.2015.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 06/01/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
VASA is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. In the present study, we isolated, sequenced, and characterized VASA gene in buffalo testis. Here, we demonstrated that VASA mRNA is expressed as multiple isoforms and uses four alternative transcriptional start sites (TSSs) and four different polyadenylation sites. The TSSs identified by 5'-RNA ligase-mediated rapid amplification of cDNA ends (RLM-5'-RACE) were positioned at 48, 53, 85, and 88 nucleotides upstream relative to the translation initiation codon. 3'-RACE experiment revealed the presence of tandem polyadenylation signals, which lead to the expression of at least four different 3'-untranslated regions (209, 233, 239 and 605 nucleotides). The full-length coding region of VASA was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. VASA variants are highly expressed in testis of adult buffalo. We found five variants, one full length VASA (729 aa) and four splice variants VASA 2, 4, 5, 6 (683, 685, 679, 703 aa). The expression level of VASA 1 was significantly higher than rest of all (P < 0.05) except VASA 6. The relative ratio for VASA 1:2:4:5:6 was 100:1.0:1.6:0.9:48.
Collapse
Affiliation(s)
- Ramakant Kaushik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Karn Pratap Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Vivek Bahuguna
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - K Rameshbabu
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Radhey Shyam Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India.
| |
Collapse
|
26
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
27
|
Congras A, Yerle-Bouissou M, Pinton A, Vignoles F, Liaubet L, Ferchaud S, Acloque H. Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars. Biol Reprod 2014; 91:137. [PMID: 25320151 DOI: 10.1095/biolreprod.114.119610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes.
Collapse
Affiliation(s)
- Annabelle Congras
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Martine Yerle-Bouissou
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Alain Pinton
- Université de Toulouse INPT ENVT, UMR1388 Génétique Physiologie et Systèmes d'Elevage GenPhySE, Toulouse, France
| | - Florence Vignoles
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Laurence Liaubet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Stéphane Ferchaud
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Hervé Acloque
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| |
Collapse
|