1
|
Jónsdóttir GÓ, von Elm LM, Ingimarsson F, Tersigni S, Snorrason SS, Pálsson A, Steele SE. Diversity in the internal functional feeding elements of sympatric morphs of Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0300359. [PMID: 38771821 PMCID: PMC11108142 DOI: 10.1371/journal.pone.0300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
The diversity of functional feeding anatomy is particularly impressive in fishes and correlates with various interspecific ecological specializations. Intraspecific polymorphism can manifest in divergent feeding morphology and ecology, often along a benthic-pelagic axis. Arctic charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We studied variation in six upper and lower jaw bones in adults of these four morphs using geometric morphometrics and univariate statistics. We tested for allometric differences in bone size and shape among morphs, morph effects on bone size and shape, and divergence along the benthic-pelagic axis. We also examined the degree of integration between bone pairs. We found differences in bone size between pelagic and benthic morphs for two bones (dentary and premaxilla). There was clear bone shape divergence along a benthic-pelagic axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric shape differences between morphs in the dentary. Notably for the dentary, morph explained more shape variation than bone size. Comparatively, benthic morphs possess a compact and taller dentary, with shorter dentary palate, consistent with visible (but less prominent) differences in external morphology. As these morphs emerged in the last 10,000 years, these results indicate rapid functional evolution of specific feeding structures in arctic charr. This sets the stage for studies of the genetics and development of rapid and parallel craniofacial evolution.
Collapse
Affiliation(s)
| | - Laura-Marie von Elm
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Samuel Tersigni
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Arnar Pálsson
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | - Sarah Elizabeth Steele
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| |
Collapse
|
2
|
Pelletier K, Pitchers WR, Mammel A, Northrop-Albrecht E, Márquez EJ, Moscarella RA, Houle D, Dworkin I. Complexities of recapitulating polygenic effects in natural populations: replication of genetic effects on wing shape in artificially selected and wild-caught populations of Drosophila melanogaster. Genetics 2023; 224:iyad050. [PMID: 36961731 PMCID: PMC10324948 DOI: 10.1093/genetics/iyad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
Identifying the genetic architecture of complex traits is important to many geneticists, including those interested in human disease, plant and animal breeding, and evolutionary genetics. Advances in sequencing technology and statistical methods for genome-wide association studies have allowed for the identification of more variants with smaller effect sizes, however, many of these identified polymorphisms fail to be replicated in subsequent studies. In addition to sampling variation, this failure to replicate reflects the complexities introduced by factors including environmental variation, genetic background, and differences in allele frequencies among populations. Using Drosophila melanogaster wing shape, we ask if we can replicate allelic effects of polymorphisms first identified in a genome-wide association studies in three genes: dachsous, extra-macrochaete, and neuralized, using artificial selection in the lab, and bulk segregant mapping in natural populations. We demonstrate that multivariate wing shape changes associated with these genes are aligned with major axes of phenotypic and genetic variation in natural populations. Following seven generations of artificial selection along the dachsous shape change vector, we observe genetic differentiation of variants in dachsous and genomic regions containing other genes in the hippo signaling pathway. This suggests a shared direction of effects within a developmental network. We also performed artificial selection with the extra-macrochaete shape change vector, which is not a part of the hippo signaling network, but showed a largely shared direction of effects. The response to selection along the emc vector was similar to that of dachsous, suggesting that the available genetic diversity of a population, summarized by the genetic (co)variance matrix (G), influenced alleles captured by selection. Despite the success with artificial selection, bulk segregant analysis using natural populations did not detect these same variants, likely due to the contribution of environmental variation and low minor allele frequencies, coupled with small effect sizes of the contributing variants.
Collapse
Affiliation(s)
- Katie Pelletier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - William R Pitchers
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BiomeBank, 2 Ann Nelson Dr, Thebarton, Adelaide, SA 5031, Australia
| | - Anna Mammel
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Neurocode USA, 3548 Meridian St, Bellingham, WA 98225, USA
| | - Emmalee Northrop-Albrecht
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905USA
| | - Eladio J Márquez
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
- Branch Biosciences, 1 Marina Park Dr., Boston, MA 02210, USA
| | - Rosa A Moscarella
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| | - David Houle
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Guðbrandsson J, Franzdóttir SR, Kristjánsson BK, Ahi EP, Maier VH, Kapralova KH, Snorrason SS, Jónsson ZO, Pálsson A. Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs. PeerJ 2018; 6:e4345. [PMID: 29441236 PMCID: PMC5807978 DOI: 10.7717/peerj.4345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Phenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr (Salvelinus alpinus) and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded. One example is the four Arctic charr morphs in the ∼10,000 year old Lake Thingvallavatn, which differ in numerous morphological and life history traits. We set out to investigate the molecular and developmental roots of this polymorphism by studying gene expression in embryos of three of the morphs reared in a common garden set-up. We performed RNA-sequencing, de-novo transcriptome assembly and compared gene expression among morphs during an important timeframe in early development, i.e., preceding the formation of key trophic structures. Expectedly, developmental time was the predominant explanatory variable. As the data were affected by some form of RNA-degradation even though all samples passed quality control testing, an estimate of 3'-bias was the second most common explanatory variable. Importantly, morph, both as an independent variable and as interaction with developmental time, affected the expression of numerous transcripts. Transcripts with morph effect, separated the three morphs at the expression level, with the two benthic morphs being more similar. However, Gene Ontology analyses did not reveal clear functional enrichment of transcripts between groups. Verification via qPCR confirmed differential expression of several genes between the morphs, including regulatory genes such as AT-Rich Interaction Domain 4A (arid4a) and translin (tsn). The data are consistent with a scenario where genetic divergence has contributed to differential expression of multiple genes and systems during early development of these sympatric Arctic charr morphs.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Freshwater Division, Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Sigríður Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | - Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Karl-Franzens-Universität, Graz, Austria
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
4
|
Carreira VP, Mensch J, Hasson E, Fanara JJ. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster. PLoS One 2016; 11:e0160069. [PMID: 27459710 PMCID: PMC4961385 DOI: 10.1371/journal.pone.0160069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles.
Collapse
Affiliation(s)
- Valeria Paula Carreira
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Julián Mensch
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan José Fanara
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Remington DL. Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins. Evolution 2015; 69:3025-38. [DOI: 10.1111/evo.12775] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/06/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Affiliation(s)
- David L. Remington
- Department of Biology; University of North Carolina at Greensboro; Greensboro North Carolina 27402
| |
Collapse
|
6
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
7
|
Kapralova KH, Gudbrandsson J, Reynisdottir S, Santos CB, Baltanás VC, Maier VH, Snorrason SS, Palsson A. Differentiation at the MHCIIα and Cath2 loci in sympatric Salvelinus alpinus resource morphs in Lake Thingvallavatn. PLoS One 2013; 8:e69402. [PMID: 23894470 PMCID: PMC3722248 DOI: 10.1371/journal.pone.0069402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/09/2013] [Indexed: 11/19/2022] Open
Abstract
Northern freshwater fish may be suitable for the genetic dissection of ecological traits because they invaded new habitats after the last ice age (∼10.000 years ago). Arctic charr (Salvelinus alpinus) colonizing streams and lakes in Iceland gave rise to multiple populations of small benthic morphotypes, often in sympatry with a pelagic morphotype. Earlier studies have revealed significant, but subtle, genetic differentiation between the three most common morphs in Lake Thingvallavatn. We conducted a population genetic screen on four immunological candidate genes Cathelicidin 2 (Cath2), Hepcidin (Hamp), Liver expressed antimicrobial peptide 2a (Leap-2a), and Major Histocompatibility Complex IIα (MHCIIα) and a mitochondrial marker (D-loop) among the three most common Lake Thingvallavatn charr morphs. Significant differences in allele frequencies were found between morphs at the Cath2 and MHCIIα loci. No such signal was detected in the D-loop nor in the other two immunological genes. In Cath2 the small benthic morph deviated from the other two (FST = 0.13), one of the substitutions detected constituting an amino acid replacement polymorphism in the antimicrobial peptide. A more striking difference was found in the MHCIIα. Two haplotypes were very common in the lake, and their frequency differed greatly between the morphotypes (from 22% to 93.5%, FST = 0.67). We then expanded our study by surveying the variation in Cath2 and MHCIIα in 9 Arctic charr populations from around Iceland. The populations varied greatly in terms of allele frequencies at Cath2, but the variation did not correlate with morphotype. At the MHCIIα locus, the variation was nearly identical to the variation in the two benthic morphs of Lake Thingvallavatn. The results are consistent with a scenario where parts of the immune systems have diverged substantially among Arctic charr populations in Iceland, after colonizing the island ∼10.000 years ago.
Collapse
Affiliation(s)
- Kalina H. Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Reynisdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Cristina B. Santos
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Vanessa C. Baltanás
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Valerie H. Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigurdur S. Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
8
|
Abstract
Theoretical explanations of empirically observed standing genetic variation, mutation, and selection suggest that many alleles must jointly affect fitness and metric traits. However, there are few direct demonstrations of the nature and extent of these pleiotropic associations. We implemented a mutation accumulation (MA) divergence experimental design in Drosophila serrata to segregate genetic variants for fitness and metric traits. By exploiting naturally occurring MA line extinctions as a measure of line-level total fitness, manipulating sexual selection, and measuring productivity we were able to demonstrate genetic covariance between fitness and standard metric traits, wing size, and shape. Larger size was associated with lower total fitness and male sexual fitness, but higher productivity. Multivariate wing shape traits, capturing major axes of wing shape variation among MA lines, evolved only in the absence of sexual selection, and to the greatest extent in lines that went extinct, indicating that mutations contributing wing shape variation also typically had deleterious effects on both total fitness and male sexual fitness. This pleiotropic covariance of metric traits with fitness will drive their evolution, and generate the appearance of selection on the metric traits even in the absence of a direct contribution to fitness.
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
9
|
Abstract
The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | |
Collapse
|
10
|
A test for selection employing quantitative trait locus and mutation accumulation data. Genetics 2012; 190:1533-45. [PMID: 22298701 DOI: 10.1534/genetics.111.137075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.
Collapse
|
11
|
Rockman MV. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 2011; 66:1-17. [PMID: 22220860 DOI: 10.1111/j.1558-5646.2011.01486.x] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
12
|
The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:71-83. [PMID: 18510015 DOI: 10.1007/978-0-387-78225-6_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic technologies developed in the last 20 years have lead to novel and exciting methods to identify genes and specific nucleotides within genes that control phenotypes in field collected organisms. In this review we define and explain two of these methods: linkage disequilibrium (LD) mapping and quantitative trait nucleotide (QTN) mapping. The power to detect valid genotype-phenotype associations with LD or QTN mapping depends critically on the extent to which segregating sites in a genome assort independently. LD mapping depends on markers being in disequilibrium with the genes that condition expression of the phenotype. In contrast, QTN mapping depends critically upon most proximal loci being at equilibrium. We show that both patterns actually exist in the genome of Anapheles gambiae, the most important malaria vector in sub-Saharan Africa while segregating sites appear to be largely in equilibrium throughout the genome of Aedes aegypti, the vector of Dengue and Yellow fever flaviviruses. We discuss additional approaches that will be needed to identify genes and nucleotides that control phenotypes in field collected organisms, focusing specifically on ongoing studies of genes conferring resistance to insecticides.
Collapse
|
13
|
Macdonald SJ, Long AD. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics 2007; 176:1261-81. [PMID: 17435224 PMCID: PMC1894589 DOI: 10.1534/genetics.106.069641] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We develop and implement a strategy to map QTL in two synthetic populations of Drosophila melanogaster each initiated with eight inbred founder strains. These recombinant populations allow simultaneous estimates of QTL location, effect, and frequency. Five X-linked QTL influencing bristle number were resolved to intervals of approximately 1.3 cM. We confirm previous observations of bristle number QTL distal to 4A at the tip of the chromosome and identify two novel QTL in 7F-8C, an interval that does not include any classic bristle number candidate genes. If QTL at the tip of the X are biallelic they appear to be intermediate in frequency, although there is evidence that these QTL may reside in multiallelic haplotypes. Conversely, the two QTL mapping to the middle of the X chromosome are likely rare: in each case the minor allele is observed in only 1 of the 16 founders. Assuming additivity and biallelism we estimate that identified QTL contribute 1.0 and 8.7%, respectively, to total phenotypic variation in male abdominal and sternopleural bristle number in nature. Models that seek to explain the maintenance of genetic variation make different predictions about the population frequency of QTL alleles. Thus, mapping QTL in eight-way recombinant populations can distinguish between these models.
Collapse
Affiliation(s)
- Stuart J Macdonald
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
14
|
Gruber JD, Genissel A, Macdonald SJ, Long AD. How repeatable are associations between polymorphisms in achaete-scute and bristle number variation in Drosophila? Genetics 2007; 175:1987-97. [PMID: 17277365 PMCID: PMC1855119 DOI: 10.1534/genetics.106.067108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, the relevance of common genetic variants--particularly those significantly associated with phenotypic variation in laboratory studies--to standing phenotypic variation in the wild is poorly understood. To address this, we quantified the relationship between achaete-scute complex (ASC) polymorphisms and Drosophila bristle number phenotypes in several new population samples. MC22 is a biallelic, nonrepetitive-length polymorphism 97 bp downstream of the scute transcript. It has been previously shown to be associated with sternopleural bristle number variation in both sexes in a set of isogenic lines. We replicated this association in a large cohort of wild-caught Drosophila melanogaster. We also detected a significant association at MC22 in an outbred population maintained under laboratory conditions for approximately 25 years, but the phenotypic effects in this sample were opposite from the direction estimated in the initial study. Finally, no significant associations were detected in a second large wild-caught cohort or in a set of 134 nearly isogenic lines. Our ability to repeat the initial association in wild samples suggests that it was not spurious. Nevertheless, inconsistent results from the other three panels suggest that the relationship between polymorphic genetic markers and loci contributing to continuous variation is not a simple one.
Collapse
Affiliation(s)
- Jonathan D Gruber
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
15
|
Lazzaro BP, Sackton TB, Clark AG. Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Genetics 2006; 174:1539-54. [PMID: 16888344 PMCID: PMC1667071 DOI: 10.1534/genetics.105.054593] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects use a generalized immune response to combat bacterial infection. We have previously noted that natural populations of D. melanogaster harbor substantial genetic variation for antibacterial immunocompetence and that much of this variation can be mapped to genes that are known to play direct roles in immunity. It was not known, however, whether the phenotypic effects of variation in these genes are general across the range of potentially infectious bacteria. To address this question, we have reinfected the same set of D. melanogaster lines with Serratia marcescens, the bacterium used in the previous study, and with three additional bacteria that were isolated from the hemolymph of wild-caught D. melanogaster. Two of the new bacteria, Enterococcus faecalis and Lactococcus lactis, are gram positive. The third, Providencia burhodogranaria, is gram negative like S. marcescens. Drosophila genotypes vary highly significantly in bacterial load sustained after infection with each of the four bacteria, but mean loads are largely uncorrelated across bacteria. We have tested statistical associations between immunity phenotypes and nucleotide polymorphism in 21 candidate immunity genes. We find that molecular variation in some genes, such as Tehao, contributes to phenotypic variation in the suppression of only a subset of the pathogens. Variation in SR-CII and 18-wheeler, however, has effects that are more general. Although markers in SR-CII and 18-wheeler explain >20% of the phenotypic variation in resistance to L. lactis and E. faecalis, respectively, most of the molecular polymorphisms tested explain <10% of the total variance in bacterial load sustained after infection.
Collapse
Affiliation(s)
- Brian P Lazzaro
- Department of Entomology, Field of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
16
|
Emlen DJ, Szafran Q, Corley LS, Dworkin I. Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle ‘horns’. Heredity (Edinb) 2006; 97:179-91. [PMID: 16850039 DOI: 10.1038/sj.hdy.6800868] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Beetle 'horns' are rigid outgrowths of the insect cuticle used as weapons in contests for access to mates. Relative to their body size, beetle horns can be enormous. They protrude from any of five different regions of the head or thorax; they are curved, straight, branched or bladed; and their development is often coupled with the nutrient environment (male dimorphism) or with sex (sexual dimorphism). Here, we show that this extraordinary diversity of horns can be distilled down to four trajectories of morphological change--horn location, shape, allometry and dimorphism--and we illustrate how the developmental mechanisms regulating horn growth could generate each of these types of horn evolution. Specifically, we review two developmental pathways known to regulate growth of morphological structures in Drosophila and other insects: a limb-patterning pathway that specifies the location and shape of a structure, and the insulin pathway, which modulates trait growth in response to larval nutrition. We summarize preliminary evidence indicating that these pathways are associated with the development of beetle horns, and we show how subtle changes in the relative activities of these two pathways would be sufficient to generate most of the extant diversity of horn forms. Our objective is to intuitively connect genotype with phenotype, and to advocate an informed 'candidate gene' approach to studies of the developmental basis of evolution. We end by using this insight from development to offer a solution to the long-standing mystery of the scarabs: the observation by Darwin, Lameere, Arrow and others that this one family of beetles appeared to have a 'special tendency' towards the evolution of horns.
Collapse
Affiliation(s)
- D J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
17
|
Dworkin I, Gibson G. Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 2006; 173:1417-31. [PMID: 16648592 PMCID: PMC1526698 DOI: 10.1534/genetics.105.053868] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wing development in Drosophila is a common model system for the dissection of genetic networks and their roles during development. In particular, the RTK and TGF-beta regulatory networks appear to be involved with numerous aspects of wing development, including patterning, cell determination, growth, proliferation, and survival in the developing imaginal wing disc. However, little is known as to how subtle changes in the function of these genes may contribute to quantitative variation for wing shape, per se. In this study 50 insertional mutations, representing 43 loci in the RTK, Hedgehog, TGF-beta pathways, and their genetically interacting factors were used to study the role of these networks on wing shape. To concurrently examine how genetic background modulates the effects of the mutation, each insertion was introgressed into two wild-type genetic backgrounds. Using geometric morphometric methods, it is shown that the majority of these mutations have profound effects on shape but not size of the wing when measured as heterozygotes. To examine the relationships between how each mutation affects wing shape hierarchical clustering was used. Unlike previous observations of environmental canalization, these mutations did not generally increase within-line variation relative to their wild-type counterparts. These results provide an entry point into the genetics of wing shape and are discussed within the framework of the dissection of complex phenotypes.
Collapse
Affiliation(s)
- Ian Dworkin
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|