1
|
Li H, Zhou C, Zhang M, Yuan N, Huang X, Xiang J, Wang L, Shi L. Transcriptomics yields valuable information regarding the response mechanisms of Chinese Min pigs infected with PEDV. Front Vet Sci 2023; 10:1295723. [PMID: 38192721 PMCID: PMC10773921 DOI: 10.3389/fvets.2023.1295723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes porcine epidemic diarrhea (PED), a highly infectious disease, which has resulted in huge economic losses for the pig industry. To date, the pathogenic and immune response mechanism was not particularly clear. The purpose of this study was to investigate the pathogenic and immune responses of pigs infected with PEDV.In this study, 12 Min pigs were randomly selected without taking colostrum. At 3 days old, eight piglets were infected with 1 mL of PEDV solution (10 TCID50/ml), and the remaining four piglets were handled by 1 mL of 0.9% normal saline. Within the age of 7 days old, four piglets died and were considered as the death group. Correspondingly, four alive individuals were classified into the resistance group. Tissues of the duodenum, jejunum, ileum, colon, cecum, and rectum of piglets in the three groups were collected to measure the PEDV content. Additionally, the jejunum was used for the measurements and analyses of Hematoxylin-eosinstaining (HE), immunohistochemical sections, and transcriptomics. The phenotypes of Min piglets infected with PEDV showed that the viral copy numbers and jejunal damage had significant differences between the death and resistance groups. We also observed the transcriptome of the jejunum, and the differentially expressed (DE) analysis observed 6,585 DE protein-coding genes (PCGs), 3,188 DE long non-coding RNAs (lncRNAs), and 350 DE microRNAs (miRNAs), which were mainly involved in immune response and metabolic pathways. Furthermore, the specific expressed molecules for each group were identified, and 97 PCGs,108 lncRNAs, and 51 miRNAs were included in the ceRNA-regulated networks. By weighted gene co-expression network analysis (WGCNA) and transcription factor (TF) prediction, 27 significant modules and 32 significant motifs (E-value < 0.05) annotated with 519 TFs were detected. Of these TFs, 53 were DE PCGs. In summary, the promising key PCGs, lncRNAs, and miRNAs related to the pathogenic and immunological response of pigs infected with PEDV were detected and provided new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Huihui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiang Zhou
- Huanghe Science and Technology University, Zhengzhou, China
| | - Meimei Zhang
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Na Yuan
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Xiaoyu Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaojiao Xiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Herrera-Uribe J, Zaldívar-López S, Aguilar C, Entrenas-García C, Bautista R, Claros MG, Garrido JJ. Study of microRNA expression in Salmonella Typhimurium-infected porcine ileum reveals miR-194a-5p as an important regulator of the TLR4-mediated inflammatory response. Vet Res 2022; 53:35. [PMID: 35598011 PMCID: PMC9123658 DOI: 10.1186/s13567-022-01056-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Infection with Salmonella Typhimurium (S. Typhimurium) is a common cause of food-borne zoonosis leading to acute gastroenteritis in humans and pigs, causing economic losses to producers and farmers, and generating a food security risk. In a previous study, we demonstrated that S. Typhimurium infection produces a severe transcriptional activation of inflammatory processes in ileum. However, little is known regarding how microRNAs regulate this response during infection. Here, small RNA sequencing was used to identify 28 miRNAs differentially expressed (DE) in ileum of S. Typhimurium-infected pigs, which potentially regulate 14 target genes involved in immune system processes such as regulation of cytokine production, monocyte chemotaxis, or cellular response to interferon gamma. Using in vitro functional and gain/loss of function (mimics/CRISPR-Cas system) approaches, we show that porcine miR-194a-5p (homologous to human miR-194-5p) regulates TLR4 gene expression, an important molecule involved in pathogen virulence, recognition and activation of innate immunity in Salmonella infection.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Viral Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain.
| | - Carmen Aguilar
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Carmen Entrenas-García
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain
| | - Rocío Bautista
- Andalusian Platform of Bioinformatics-SCBI, University of Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Andalusian Platform of Bioinformatics-SCBI, University of Málaga, Málaga, Spain.,Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Research Group GA-14, Córdoba, Spain
| |
Collapse
|
3
|
Comparing of backfat microRNAomes of Landrace and Neijiang pig by high-throughput sequencing. Genes Genomics 2021; 43:543-551. [PMID: 33725278 DOI: 10.1007/s13258-021-01078-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) could regulate the expression of target genes and play important roles in modulation of various metabolic processes. Nevertheless, little is known about the backfat microRNAome (miRNAome) of the Neijiang pig. OBJECTIVES The primary objective of this study was to analyse miRNAomes of Landrace and Neijiang pig backfat (LPB and NPB resp.). Furthermore, investigating differentially expressed miRNAs participating in lipid metabolism and mining potential biomarker for Neijiang pig breeding. METHODS Here we used the Landrace pig with different metabolic characteristics as a control to analyse the Neijiang pig-specific backfat miRNAome. A comprehensive analysis of miRNAomes was performed by deep sequencing. RESULTS Small RNA sequencing identified 326 unique miRNAs, 280 were co-expressed in both libraries. Only 11 and 35 miRNAs were specifically expressed in LPB and NPB respectively. Sixty seven differentially expressed miRNAs were identified by IDEG6. MiR-1-3p were identified that may participate in lipid metabolism. Furthermore, qPCR results revealed that lower expression of miR-1-3p in NPB could increase the expression of LXRα, which is an enzyme important for the synthesis and accumulation of lipid. The double luciferase report experiment suggested that LXRα was the direct target gene of miR-1-3p. In short, miR-1-3p could modulate the synthesis and accumulation of lipid by target LXRα. It may be a potential marker for pig breeding. CONCLUSION Our investigation has delineated the different miRNAs expression patterns of LPB and NPB, which may help understand the regulatory mechanisms of miRNAs in the lipid metabolism, and provide potential biomarkers for Neijiang pig breeding.
Collapse
|
4
|
Wang Q, Sun Q, Wang J, Qiu X, Qi R, Huang J. Lactobacillus Plantarum 299v Changes miRNA Expression in the Intestines of Piglets and Leads to Downregulation of LITAF by Regulating ssc-miR-450a. Probiotics Antimicrob Proteins 2021; 13:1093-1105. [PMID: 33486700 DOI: 10.1007/s12602-021-09743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
Lactiplantibacillus plantarum subsp. plantarum 299v (L. plantarum 299v) is one of the most important probiotic strains in animal health, but the molecular mechanisms of how it exerts health benefits remain unclear. The purpose of this study was to explore the changes in miRNA expression profiles in the intestinal tissues of piglets by L. plantarum 299v and to explore its possible molecular regulatory mechanism in intestinal function. Neonatal piglets were orally administered L. plantarum 299v daily from 1 to 20 days old, and high-throughput sequencing was conducted to analyse the changes in miRNA expression in the jejunum and ileum. The results showed that 370 known porcine miRNAs were identified from eight libraries. Five miRNAs (ssc-miR-21-5p, -143-3p, -194b-5p, -192, and -126-3p) were highly expressed in the intestinal tissues. There were 15 differentially expressed miRNAs between the control group and the L. plantarum group, and only miR-450a was expressed differentially in both intestinal tissues. KEGG analysis revealed that the target genes of the 15 differentially expressed miRNAs were involved in 37 significantly enriched pathways (P < 0.01). Then, quantitative polymerase chain reaction confirmed that the miRNA expression was corresponded well with those from the sequencing. Luciferase reporter assays verified that lipopolysaccharide-induced TNF-α factor is a target of miR-450a. Our results also showed L. plantarum 299v could influence intestinal function by changing the levels of cytokines via miRNA expression. This is the first study to analyse differential expression miRNA profiles in intestinal tissue after L. plantarum 299v treatment and investigate the molecular regulatory mechanism of functional miRNA.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
5
|
miR-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E.coli F18 in Piglets. Genes (Basel) 2020; 11:genes11091053. [PMID: 32906628 PMCID: PMC7563519 DOI: 10.3390/genes11091053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Previous research has revealed that miR-215 might be an important miRNA regulating weaned piglets’ resistance to Escherichia coli (E. coli) F18. In this study, target genes of miR-215 were identified by RNA-seq, bioinformatics analysis and dual luciferase detection. The relationship between target genes and E. coli infection was explored by RNAi technology, combined with E. coli stimulation and enzyme linked immunosorbent assay (ELISA) detection. Molecular regulating mechanisms of target genes expression were analyzed by methylation detection of promoter regions and dual luciferase activity assay of single nucleotide polymorphisms (SNPs) in core promoter regions. The results showed that miR-215 could target EREG, NIPAL1 and PTPRU genes. Expression levels of three genes in porcine intestinal epithelial cells (IPEC-J2) in the RNAi group were significantly lower than those in the negative control pGMLV vector (pGMLV-NC) group after E. coli F18 stimulation, while cytokines levels of TNF-α and IL-1β in the RNAi group were significantly higher than in the pGMLV-NC group. Variant sites in the promoter region of three genes could affect their promoter activities. These results suggested that miR-215 could regulate weaned piglets’ resistance to E. coli F18 by targeting EREG, NIPAL1 and PTPRU genes. This study is the first to annotate new biological functions of EREG, NIPAL1 and PTPRU genes in pigs, and provides a new experimental basis and reference for the research of piglets disease-resistance breeding.
Collapse
|
6
|
Stein T, Ran G, Bohmer M, Sharbati S, Einspanier R. Expression profiling of key pathways in rat liver after a one-year feeding trial with transgenic maize MON810. Sci Rep 2019; 9:18915. [PMID: 31831783 PMCID: PMC6908735 DOI: 10.1038/s41598-019-55375-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
In a recent one-year feeding study, we observed no adverse effects on tissue level in organs of rats fed with the genetically-modified maize MON810. Here, we assessed RNA expression levels of 86 key genes of the apoptosis-, NF-кB-, DNA-damage response (DDR)-, and unfolded-protein response (UPR) pathways by RT-qPCR in the rat liver. Male and female rats were fed either with 33% MON810 (GMO), isogenic- (ISO), or conventional maize (CONV) and RNAs were quantified from eight rats from each of the six feeding groups. Only Birc2 transcript showed a significant (p ≤ 0.05) consistent difference of ≥1.5-fold between the GMO and ISO groups in both sexes. Unsupervised cluster analysis showed a strong separation of male and female rats, but no clustering of the feeding groups. Individual analysis of the pathways did not show any clustering of the male or female feeding groups either, though transcript levels of UPR pathway-associated genes caused some clustering of the male GMO and CONV feeding group samples. These differences were not seen between the GMO and ISO control or within the female cohort. Our data therefore does not support an adverse effect on rat liver RNA expression through the long-term feeding of MON810 compared to isogenic control maize.
Collapse
Affiliation(s)
- Torsten Stein
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Guangyao Ran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Department of Liquor Making Engineering, Moutai Institute, Luban Avenue, 564507, Renhuai, China
| | - Marc Bohmer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- SGS Institute Fresenius GmbH, Life Sciences Services, Tegeler Weg 33, 10589, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
7
|
Zhao XW, Huang DW, Zhu HL, Pan XC, Wang XX, Qi YX, Cheng GL, Zhao HL, Yang YX. Alterations of the circular RNA profile in the jejunum of neonatal calves in response to colostrum and milk feeding. J Dairy Sci 2019; 102:7038-7048. [PMID: 31178190 DOI: 10.3168/jds.2018-15942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
Circular RNA (circRNA) have been suggested to contribute to regulating gene expression in various tissues and cells of eukaryotes. However, little is known regarding the expression pattern of circRNA and their potential function in the small intestine of neonatal calves that receive colostrum. In the current study, jejunum tissue samples were collected from control calves (2 h after birth; CT; n = 3) and neonatal calves that ingested colostrum (24 h after birth; CO; n = 3) or milk (24 h after birth; MK; n = 3) to compare the circRNA expression patterns using a high-throughput RNA sequencing approach. A total of 21,213, 17,861, and 21,737 circRNA were identified in the CT, CO, and MK groups, respectively. Only 13,254 of these circRNA were common to the 3 groups, suggesting high specificity of circRNA expression depending on nutrient type. In total, 243, 249, and 283 circRNA were differentially expressed in the CO versus CT, CO versus MK, and MK versus CT comparisons, respectively. Gene ontology analysis showed that the differentially expressed circRNA and their predicted or known target genes from the CO and MK groups were mainly involved in macromolecule metabolic process, response to stress, and vesicle-mediated transport. Moreover, pathway analysis showed that the Rap1 signaling pathway, focal adhesion, ubiquitin-mediated proteolysis, and extracellular matrix-receptor interaction were the most significantly enriched pathways. These data collectively indicate that circRNA are abundant and dynamically expressed when calves receive colostrum and act as microRNA sponges to regulate their target genes for jejunum function during the early development of newborn calves.
Collapse
Affiliation(s)
- X W Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - D W Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - H L Zhu
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - X C Pan
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - X X Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Y X Qi
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - G L Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - H L Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Y X Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
8
|
zur Bruegge J, Bohmer M, Hahn E, Steiner C, Einspanier R, Sharbati S. MicroRNA-15 family targets the hedgehog signaling pathway during postnatal development of porcine intestine. Biochem Biophys Res Commun 2019; 508:832-837. [DOI: 10.1016/j.bbrc.2018.11.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
|
9
|
Li X, Qiao R, Ye J, Wang M, Zhang C, Lv G, Wang K, Li X, Han X. Integrated miRNA and mRNA transcriptomes of spleen profiles between Yorkshire and Queshan black pigs. Gene 2018; 688:204-214. [PMID: 30529098 DOI: 10.1016/j.gene.2018.11.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Disease causes large economic losses to the pig industry worldwidely, immunity plays an important role in the process of resistance to disease. In the present study, to elucidate the molecular mechanisms underlying different levels of disease resistance, we obtained the miRNA and mRNA expression profiles from the spleens of three groups of sows, including 180-day-old Queshan Black (Q-F), 3-day-old Yorkshire (Y-N) and 180-day-old Yorkshire (Y-F) pigs. The results showed that 85 miRNAs and 5093 genes were differentially expressed in Y-F vs Y-N, and 20 miRNAs and 1283 genes were differentially expressed in Q-F vs Y-F. Gene ontology analysis of these differentially expressed genes revealed their critical roles in response to immune response-related signaling pathways. To investigate the molecular mechanisms underlying immune diversity based on differentially expressed miRNAs and genes, the regulatory network between the node miRNAs and genes were established using Cytoscape. The results showed that the identified candidate miRNAs and genes were associated with immune response, and also indicated their potential roles in disease resistance variance between different pig breeds and stages. From the above, this research detected the key factors that were involved in disease resistance, and provide useful information for disease resistance breeding.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Ruimin Qiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Jianwei Ye
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Mingyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Chen Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Gang Lv
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Kejun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xiuling Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xuelei Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China.
| |
Collapse
|
10
|
MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell Dev Biol Anim 2018; 54:715-724. [PMID: 30341633 DOI: 10.1007/s11626-018-0292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
In mammalian ovaries, many studies demonstrated that the proliferation and apoptosis of granulosa cells are involved in folliculogenesis. Previous evidence suggests that miR-126-3p might get involved in the proliferation and apoptosis of granulosa cells, and tuberous sclerosis complex 1 (TSC1) gene was predicted as one target of miR-126-3p, and moreover, granulosa cell-specific TSC1 knockout stimulated folliculogenesis in mice. However, the molecular regulation of miR-126-3p on TSC1 and its effects on cell proliferation and apoptosis remain virtually unexplored in granulosa cells. Using porcine granulosa cells as a model, the luciferase report assay, mutation, deletion, Annexin-V/PI staining, and EdU assays were applied to investigate the molecular mechanism for miR-126-3p regulating the expression of TSC1 and their effects on the cell proliferation and apoptosis. We found that miR-126-3p showed a positive effect on cell proliferation and a negative effect on cell apoptosis in porcine granulosa cells, and knockdown of TSC1 significantly promoted cell proliferation and significantly inhibited cell apoptosis in porcine granulosa cells. Furthermore, miR-126-3p might target and repress the expressions of TSC1 at the post-transcriptional level, thereby promoting cell proliferation and inhibiting cell apoptosis of granulosa cells. These findings would provide of great insight in further exploring the molecular regulation of miR-126-3p and TSC1 on the functions of granulosa cells during the folliculogenesis in mammals.
Collapse
|
11
|
Sun WK, Li Y, Cheng C, Chen YH, Zeng K, Chen X, Gu Y, Liu R, Lv X, Gao R. Comparison of stomach microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing. Genes Genomics 2018; 40:937-943. [PMID: 30155707 DOI: 10.1007/s13258-018-0696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
MiRNAs regulate the expression of target genes in diverse cellular processes and hence play important roles in different physiological processes, yet little is known about the stomach microRNAome (miRNAome) of the Tibetan pig. The objective of this experiment was to investigate differentially expressed stomach miRNAs participating in digestion. Firstly, we isolated total RNA by Trizol reagent from three Tibetan and three Yorkshire purebred pigs stomach samples at 90-day-old. Secondly, a comprehensive analysis of Tibetan and Yorkshire pig stomach miRNAomes was performed by small RNA sequencing in the Illumina HiSeq 2000 system. Finally, SYBR Green Real-time RT-PCR was performed to validate the differentially expressed miRNAs. We identified 318 unique miRNAs, 260 were co-expressed in both libraries, 17 and 31 miRNAs were specifically expressed in Tibetan and Yorkshire pigs respectively. Fifty six differentially expressed miRNAs were identified by the identifying differentially expressed genes 6 (IDEG6). Kyoto encyclopedia of genes and genomes analysis revealed that some of the differentially expressed miRNAs were associated with protein and fat digestion. Two differentially expressed miRNAs (miR-214-3p and ssc-un39) participating in the digestion of lipid were identified. Additionally, qRT-PCR results suggested that a higher expression of miR-214-3p in the Tibetan pig stomach could lead to relatively lower expression of calcium-dependent phospholipase A2, which is an enzyme important for the digestion of glycerol phospholipid. This study has delineated the different stomach miRNAs expression patterns of Tibetan and Yorkshire pigs, which would help explain the regulatory mechanisms of miRNAs in digestion of Tibetan pigs, and contribute to utilize a the unique digestion merits of Tibetan pig in future porcine hybridization breeding.
Collapse
Affiliation(s)
- Wen-Kui Sun
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Wangjiang Road 29, Chengdu, 610064, Sichuan, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yanyue Li
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Wangjiang Road 29, Chengdu, 610064, Sichuan, China.,Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chi Cheng
- Department of Biology Engineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, China
| | - Yi-Hui Chen
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Wangjiang Road 29, Chengdu, 610064, Sichuan, China
| | - Kai Zeng
- Sichuan Academy of Animal Science, No.7, Niusha Road, Jinjiang District, Chengdu, 610066, Sichuan, China
| | - Xiaohui Chen
- Sichuan Academy of Animal Science, No.7, Niusha Road, Jinjiang District, Chengdu, 610066, Sichuan, China
| | - Yiren Gu
- Sichuan Academy of Animal Science, No.7, Niusha Road, Jinjiang District, Chengdu, 610066, Sichuan, China
| | - Rui Liu
- Sichuan Academy of Animal Science, No.7, Niusha Road, Jinjiang District, Chengdu, 610066, Sichuan, China
| | - Xuebin Lv
- Sichuan Academy of Animal Science, No.7, Niusha Road, Jinjiang District, Chengdu, 610066, Sichuan, China.
| | - Rong Gao
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Wangjiang Road 29, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
12
|
Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2983908. [PMID: 29750148 PMCID: PMC5884403 DOI: 10.1155/2018/2983908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.
Collapse
|
13
|
Hou L, Ji Z, Wang G, Wang J, Chao T, Wang J. Identification and characterization of microRNAs in the intestinal tissues of sheep (Ovis aries). PLoS One 2018; 13:e0193371. [PMID: 29489866 PMCID: PMC5831392 DOI: 10.1371/journal.pone.0193371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/09/2018] [Indexed: 01/21/2023] Open
Abstract
Sheep are small ruminants, and their long intestines exhibit high digestive and absorptive capacity in many different rearing conditions; however, the genetic bases of this characteristic remains unclear. MicroRNAs (miRNAs) play a major role in maintaining both intestinal morphological structure as well as in regulating the physiological functions of this organ. However, no study has reported on the miRNA expression profile in the intestinal tissues of sheep. Here, we analyzed and identified the miRNA expression profile of three different intestinal tissues (i.e., duodenum, cecum, and colon) of sheep (Ovis aries) using high-throughput sequencing and bioinformatic methods. In total, 106 known miRNAs were identified, 458 conserved miRNAs were detected, 192 unannotated novel miRNAs were predicted, and 195 differentially expressed miRNAs were found between the different tissues. Additionally, 3,437 candidate target genes were predicted, and 17 non-redundant significantly enriched GO terms were identified using enrichment analysis. A total of 99 candidate target genes were found to significantly enriched in 4 KEGG biological pathways. A combined regulatory network was constructed based on 92 metabolism-related candidate target genes and 65 differentially expressed miRNAs, among which 7 miRNAs were identified as hub miRNAs. Via these mechanisms, miRNAs may play a role in maintaining intestinal homeostasis and metabolism. This study helps to further explain the mechanisms that underlie differences in tissue morphology and function in three intestinal segments of sheep.
Collapse
Affiliation(s)
- Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| |
Collapse
|
14
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
15
|
Herrera-Uribe J, Zaldívar-López S, Aguilar C, Luque C, Bautista R, Carvajal A, Claros MG, Garrido JJ. Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection. Vet Res 2018; 49:9. [PMID: 29391047 PMCID: PMC5796392 DOI: 10.1186/s13567-018-0506-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Carmen Aguilar
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cristina Luque
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain.,Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| |
Collapse
|
16
|
Sharbati J, Bohmer M, Bohmer N, Keller A, Backes C, Franke A, Steinberg P, Zeljenková D, Einspanier R. Transcriptomic Analysis of Intestinal Tissues from Two 90-Day Feeding Studies in Rats Using Genetically Modified MON810 Maize Varieties. Front Genet 2017; 8:222. [PMID: 29312443 PMCID: PMC5742243 DOI: 10.3389/fgene.2017.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Global as well as specific expression profiles of selected rat tissues were characterized to assess the safety of genetically modified (GM) maize MON810 containing the insecticidal protein Cry1Ab. Gene expression was evaluated by use of Next Generation Sequencing (NGS) as well as RT-qPCR within rat intestinal tissues based on mandatory 90-day rodent feeding studies. In parallel to two 90-day feeding studies, the transcriptional response of rat tissues was assessed as another endpoint to enhance the mechanistic interpretation of GM feeding studies and/or to facilitate the generation of a targeted hypothesis. Rats received diets containing 33% GM maize (MON810) or near-isogenic control maize. As a site of massive exposure to ingested feed the transcriptomic response of ileal and colonic tissue was profiled via RT-qPCR arrays targeting apoptosis, DNA-damage/repair, unfolded protein response (UPR). For global RNA profiling of rat ileal tissue, we applied NGS. Results: No biological response to the GM-diet was observed in male and in female rat tissues. Transcriptome wide analysis of gene expression by RNA-seq confirmed these findings. Nevertheless, gene ontology (GO) analysis clearly associated a set of distinctly regulated transcripts with circadian rhythms. We confirmed differential expression of circadian clock genes using RT-qPCR and immunoassays for selected factors, thereby indicating physiological effects caused by the time point of sampling. Conclusion: Prediction of potential unintended effects of GM-food/feed by transcriptome based profiling of intestinal tissue presents a novel approach to complement classical toxicological testing procedures. Including the detection of alterations in signaling pathways in toxicity testing procedures may enhance the confidence in outcomes of toxicological trials. In this study, no significant GM-related changes in intestinal expression profiles were found in rats fed GM-maize MON810. Relevant alterations of selected cellular pathways (apoptosis, DNA damage and repair, UPR) pointing toward intestinal toxicity of the diets were not observed. Transcriptomic profiles did not reveal perturbations of pathways associated with toxicity, underlining the study results revealed by classical OECD endpoints.
Collapse
Affiliation(s)
- Jutta Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marc Bohmer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nils Bohmer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dagmar Zeljenková
- Faculty of Public Health, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Selected microRNA-192 mutant indicates association with several function genes in bovine cells. Genes Genomics 2017; 40:361-371. [PMID: 29892841 DOI: 10.1007/s13258-017-0635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
MicroRNAs are implicated in many cellular processes such as cell differentiation and development, tumorigenesis, and immune regulation. In this study, miR192 was detected using quantitative real-time polymerase chain reaction (qRT-PCR) when MDBK cells were exposed to Escherichia coli. Cells with malfunction of bta-miR-192 were established using transcription activator-like effector nuclease (TALEN) technology. Finally, bta-miR-192 mutant cells were screened for differentially expressed genes using RNA-sequencing (RNA-seq). The results showed that miR192 significantly decreased in cells exposed to E. coli F18ac and E. coli K88ac. The RNA-seq results showed that 1673 differentially expressed transcripts were identified; 890 genes were upregulated and 775 genes were downregulated. With the gene ontology enrichment analysis, 431 differentially expressed genes (DEGs) were classified into 937 gene ontology terms. The pathway enrichment analysis showed that 535 genes were involved in 254 pathway terms. Interestingly, most of these DEGs were associated with the pathways in cancers or infectious diseases. When the selected DEGs (n = 162) in these pathways were intersected with 120 differential transcripts, 11 DEGs were identified. Subsequently, several genes associated with regulation, cancers, or viral infections, such as LEF1, AXIN2, MX1, and FCGR2B, were identified among the DEGs using functional analysis. Furthermore, associations between bta-miR-192 and DEGs were detected by intersecting the bta-miR-192's target genes with the DEGs, indicating that three genes including CBL, DICER1 and TRERF1 were involved in this relationship. These findings provided useful guidance for investigating the role played by bta-miR-192 in cellular functionality in bovine cells.
Collapse
|
18
|
Dawson HD, Chen C, Gaynor B, Shao J, Urban JF. The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genomics 2017; 18:643. [PMID: 28830355 PMCID: PMC5568366 DOI: 10.1186/s12864-017-4009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are relevant to human studies and for comparative evaluation with rodent models. Furthermore, they contain a significant number of errors due to their primary reliance on machine-based annotation. To address these deficiencies, a comprehensive literature-based survey was conducted to identify certain selected genes that have demonstrated function in humans, mice or pigs. RESULTS The process identified 13,054 candidate human, bovine, mouse or rat genes/proteins used to select potential porcine homologs by searching multiple online sources of porcine gene information. The data in the Porcine Translational Research Database (( http://www.ars.usda.gov/Services/docs.htm?docid=6065 ) is supported by >5800 references, and contains 65 data fields for each entry, including >9700 full length (5' and 3') unambiguous pig sequences, >2400 real time PCR assays and reactivity information on >1700 antibodies. It also contains gene and/or protein expression data for >2200 genes and identifies and corrects 8187 errors (gene duplications artifacts, mis-assemblies, mis-annotations, and incorrect species assignments) for 5337 porcine genes. CONCLUSIONS This database is the largest manually curated database for any single veterinary species and is unique among porcine gene databases in regard to linking gene expression to gene function, identifying related gene pathways, and connecting data with other porcine gene databases. This database provides the first comprehensive description of three major Super-families or functionally related groups of proteins (Cluster of Differentiation (CD) Marker genes, Solute Carrier Superfamily, ATP binding Cassette Superfamily), and a comparative description of porcine microRNAs.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA.
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Brady Gaynor
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| |
Collapse
|
19
|
Zhang S, Wang R, Su H, Wang B, Sizhu S, Lei Z, Jin M, Chen H, Cao J, Zhou H. Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively. Int J Mol Sci 2017; 18:ijms18040749. [PMID: 28368362 PMCID: PMC5412334 DOI: 10.3390/ijms18040749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
The prevalence of swine pandemic H1N1/2009 influenza A virus (SIV-H1N1/2009) in pigs has the potential to generate novel reassortant viruses, posing a great threat to human health. Cellular microRNAs (miRNAs) have been proven as promising small molecules for regulating influenza A virus replication by directly targeting viral genomic RNA. In this study, we predicted potential Sus scrofa (ssc-, swine) miRNAs targeting the genomic RNA of SIV-H1N1/2009 by RegRNA 2.0, and identified ssc-miR-204 and ssc-miR-4331 to target viral HA and NS respectively through dual-luciferase reporter assays. The messenger RNA (mRNA) levels of viral HA and NS were significantly suppressed when newborn pig trachea (NPTr) cells respectively overexpressed ssc-miR-204 and ssc-miR-4331 and were infected with SIV-H1N1/2009, whereas the suppression effect could be restored when respectively decreasing endogenous ssc-miR-204 and ssc-miR-4331 with inhibitors. Because of the importance of viral HA and NS in the life cycle of influenza A virus, ssc-miR-204 and ssc-miR-4331 exhibited an inhibition effect on SIV-H1N1/2009 replication. The antiviral effect was sequence-specific of SIV-H1N1/2009, for the target sites in HA and NS of H5N1 or H9N2 influenza A virus were not conserved. Furthermore, SIV-H1N1/2009 infection reversely downregulated the expression of ssc-miR-204 and ssc-miR-4331, which might facilitate the virus replication in the host. In summary, this work will provide us some important clues for controlling the prevalence of SIV-H1N1/2009 in pig populations.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cells, Cultured
- Gene Expression Regulation, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sus scrofa
- Trachea/cytology
- Trachea/metabolism
- Trachea/virology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Shishuo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huijuan Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Biaoxiong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Suolang Sizhu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jiyue Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
20
|
Li H, Zhang M, Zheng E. Comprehensive miRNA expression profiles in the ilea of Lawsonia intracellularis-infected pigs. J Vet Med Sci 2016; 79:282-289. [PMID: 27916787 PMCID: PMC5326932 DOI: 10.1292/jvms.16-0423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To analyze the miRNA expression profiles in Lawsonia
intracellularis-infected porcine intestines, infected pigs were first identified
using PCR (Polymerase Chain Reaction). Then, RNA from infected intestines and control
tissues were isolated and subjected to microarray analysis and RT-PCR. Results showed that
a total of 83 miRNAs were differentially expressed between the infected samples and
controls, out of which 53 were upregulated and 30 were downregulated. Validation using
RT-PCR showed a high degree of confidence for the obtained data. Using the current miRBase
release 21.0, nine groups of miRNAs were located in the same cluster, and three groups of
miRNAs were found to belong to the same family. Interestingly, except for ssc-miR-10a-5p,
all clustered miRNAs and the family members exhibited the same expression patterns.
Pathway analysis of the putative gene targets of the differentially expressed miRNAs
showed that they were involved in the immune response, amino acid metabolism and cell
communication/growth/motility. Thus, the results indicate that altered miRNA expression
profiles can affect immunity, metabolism and cellular processes.
Collapse
Affiliation(s)
- Hongyi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Science, Longyan University, Fujian, 364012, China
| | | | | |
Collapse
|
21
|
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11:59. [PMID: 27809935 PMCID: PMC5093996 DOI: 10.1186/s13062-016-0160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Results Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Conclusions Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. Reviewers This article was reviewed by Neil R Smalheiser and Weixiong Zhang. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0160-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Weiyun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Seng Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
22
|
Characterization and differential expression of microRNA in skeletal muscle of Laiwu and Yorkshire pig breeds. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0484-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Tao X, Xu Z, Men X. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets. PLoS One 2016; 11:e0162776. [PMID: 27632531 PMCID: PMC5025173 DOI: 10.1371/journal.pone.0162776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/29/2016] [Indexed: 01/27/2023] Open
Abstract
Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- * E-mail:
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Feeding of Enterococcus faecium NCIMB 10415 Leads to Intestinal miRNA-423-5p-Induced Regulation of Immune-Relevant Genes. Appl Environ Microbiol 2016; 82:2263-2269. [PMID: 26826223 DOI: 10.1128/aem.04044-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
Probiotics are widely used in human and animal health, but little is known about the mode of action of probiotics. One possible mechanism at the molecular level could be an influence on microRNAs (miRNAs) and the related immune-relevant target genes. Here, we analyzed differential expression of miRNA and potential target genes of ileal and jejunal lymphatic tissues from Enterococcus faeciumNCIMB 10415-fed piglets versus untreated controls by using next-generation sequencing. We identified miR-423-5p as being greatly affected by the treatment group (2.32-fold;P= 0.014). Validation by reverse transcription-quantitative PCR (RT-qPCR) confirmed a significant upregulation of miR-423-5p (2.11-fold;P= 0.03) and, additionally, downregulation of the important immune-relevant immunoglobulin lambda light C region (IGLC) (0.61-fold;P= 0.03) and immunoglobulin kappa constant (IGKC) (0.69-fold;P= 0.04) target genes. Expression analysis of miR-423-5p and IGLC at different age points shows a clear anti correlated relationship. Luciferase reporter assays with a HeLa cell line verified IGLC as a target of miR-423-5p. The results provided evidence for an effect of feeding of E. faeciumon the expression of miR-423-5p and on the regulation of the IGLC gene through miR-423-5p. This might be a possible mode of action of E. faeciumon immune cell regulation in the small intestine.
Collapse
|
25
|
Pawar K, Sharbati J, Einspanier R, Sharbati S. Mycobacterium bovis BCG Interferes with miR-3619-5p Control of Cathepsin S in the Process of Autophagy. Front Cell Infect Microbiol 2016; 6:27. [PMID: 27014637 PMCID: PMC4783571 DOI: 10.3389/fcimb.2016.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Main survival mechanism of pathogenic mycobacteria is to escape inimical phagolysosomal environment inside the macrophages. Many efforts have been made to unravel the molecular mechanisms behind this process. However, little is known about the involvement of microRNAs (miRNAs) in the regulation of phagolysosomal biosynthesis and maturation. Based on a bottom up approach, we searched for miRNAs that were involved in phagolysosomal processing events in the course of mycobacterial infection of macrophages. After infecting THP-1 derived macrophages with viable and heat killed Mycobacterium bovis BCG (BCG), early time points were identified after co-localization studies of the phagosomal marker protein LAMP1 and BCG. Differences in LAMP1 localization on the phagosomes of both groups were observed at 30 min and 4 h. After in silico based pre-selection of miRNAs, expression analysis at the identified time points revealed down-regulation of three miRNAs: miR-3619-5p, miR-637, and miR-324-3p. Consequently, most likely targets were predicted that were supposed to be mutually regulated by these three studied miRNAs. The lysosomal cysteine protease Cathepsin S (CTSS) and Rab11 family-interacting protein 4 (RAB11FIP4) were up-regulated and were considered to be connected to lysosomal trafficking and autophagy. Interaction studies verified the regulation of CTSS by miR-3619-5p. Down-regulation of CTSS by ectopic miR-3619-5p as well as its specific knockdown by siRNA affected the process of autophagy in THP-1 derived macrophages.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Jutta Sharbati
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Soroush Sharbati
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
26
|
Li Y, Li X, Sun WK, Cheng C, Chen YH, Zeng K, Chen X, Gu Y, Gao R, Liu R, Lv X. Comparison of liver microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing. Gene 2016; 577:244-50. [DOI: 10.1016/j.gene.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
|
27
|
Laganà A, Veneziano D, Spata T, Tang R, Zhu H, Mohler PJ, Kilic A. Identification of General and Heart-Specific miRNAs in Sheep (Ovis aries). PLoS One 2015; 10:e0143313. [PMID: 26599010 PMCID: PMC4657999 DOI: 10.1371/journal.pone.0143313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small regulatory RNAs crucial for modulation of signaling pathways in multiple organs. While the link between miRNAs and heart disease has grown more readily apparent over the past three years, these data are primarily limited to small animal models or cell-based systems. Here, we performed a high-throughput RNA sequencing (RNAseq) analysis of left ventricle and other tissue from a pre-clinical ovine model. We identified 172 novel miRNA precursors encoding a total of 264 mature miRNAs. Notably, 84 precursors were detected in both the left ventricle and other tissues. However, 10 precursors, encoding 11 mature sequences, were specific to the left ventricle. Moreover, the total 168 novel miRNA precursors included 22 non-conserved ovine-specific sequences. Our data identify and characterize novel miRNAs in the left ventricle of sheep, providing fundamental new information for our understanding of protein regulation in heart and other tissues.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| | - Dario Veneziano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Tyler Spata
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Richard Tang
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Mohler
- The Davis Heart and Lung Research Institute, Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States of America
| | - Ahmet Kilic
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| |
Collapse
|
28
|
Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi JT. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics 2015; 16:952. [PMID: 26573221 PMCID: PMC4647483 DOI: 10.1186/s12864-015-2156-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background Human erythrocytes are terminally differentiated, anucleate cells long thought to lack RNAs. However, previous studies have shown the persistence of many small-sized RNAs in erythrocytes. To comprehensively define the erythrocyte transcriptome, we used high-throughput sequencing to identify both short (18–24 nt) and long (>200 nt) RNAs in mature erythrocytes. Results Analysis of the short RNA transcriptome with miRDeep identified 287 known and 72 putative novel microRNAs. Unexpectedly, we also uncover an extensive repertoire of long erythrocyte RNAs that encode many proteins critical for erythrocyte differentiation and function. Additionally, the erythrocyte long RNA transcriptome is significantly enriched in the erythroid progenitor transcriptome. Joint analysis of both short and long RNAs identified several loci with co-expression of both microRNAs and long RNAs spanning microRNA precursor regions. Within the miR-144/451 locus previously implicated in erythroid development, we observed unique co-expression of several primate-specific noncoding RNAs, including a lncRNA, and miR-4732-5p/-3p. We show that miR-4732-3p targets both SMAD2 and SMAD4, two critical components of the TGF-β pathway implicated in erythropoiesis. Furthermore, miR-4732-3p represses SMAD2/4-dependent TGF-β signaling, thereby promoting cell proliferation during erythroid differentiation. Conclusions Our study presents the most extensive profiling of erythrocyte RNAs to date, and describes primate-specific interactions between the key modulator miR-4732-3p and TGF-β signaling during human erythropoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2156-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer F Doss
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - Dereje D Jima
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, 27710, USA.
| | - Sandeep S Dave
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
29
|
Wang Z, Li Q, Chamba Y, Zhang B, Shang P, Zhang H, Wu C. Identification of Genes Related to Growth and Lipid Deposition from Transcriptome Profiles of Pig Muscle Tissue. PLoS One 2015; 10:e0141138. [PMID: 26505482 PMCID: PMC4624711 DOI: 10.1371/journal.pone.0141138] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023] Open
Abstract
Transcriptome profiles established using high-throughput sequencing can be effectively used for screening genome-wide differentially expressed genes (DEGs). RNA sequences (from RNA-seq) and microRNA sequences (from miRNA-seq) from the tissues of longissimus dorsi muscle of two indigenous Chinese pig breeds (Diannan Small-ear pig [DSP] and Tibetan pig [TP]) and two introduced pig breeds (Landrace [LL] and Yorkshire [YY]) were examined using HiSeq 2000 to identify and compare the differential expression of functional genes related to muscle growth and lipid deposition. We obtained 27.18 G clean data through the RNA-seq and detected that 18,208 genes were positively expressed and 14,633 of them were co-expressed in the muscle tissues of the four samples. In all, 315 DEGs were found between the Chinese pig group and the introduced pig group, 240 of which were enriched with functional annotations from the David database and significantly enriched in 27 Gene Ontology (GO) terms that were mainly associated with muscle fiber contraction, cadmium ion binding, response to organic substance and contractile fiber part. Based on functional annotation, we identified 85 DEGs related to growth traits that were mainly involved in muscle tissue development, muscle system process, regulation of cell development, and growth factor binding, and 27 DEGs related to lipid deposition that were mainly involved in lipid metabolic process and fatty acid biosynthetic process. With miRNA-seq, we obtained 23.78 M reads and 320 positively expressed miRNAs from muscle tissues, including 271 known pig miRNAs and 49 novel miRNAs. In those 271 known miRNAs, 20 were higher and 10 lower expressed in DSP-TP than in LL-YY. The target genes of the 30 miRNAs were mainly participated in MAPK, GnRH, insulin and Calcium signaling pathway and others involved cell development, growth and proliferation, etc. Combining the DEGs and the differentially expressed (DE) miRNAs, we drafted a network of 46 genes and 18 miRNAs for regulating muscle growth and a network of 15 genes and 16 miRNAs for regulating lipid deposition. We identified that CAV2, MYOZ2, FRZB, miR-29b, miR-122, miR-145-5p and miR-let-7c, etc, were key genes or miRNAs regulating muscle growth, and FASN, SCD, ADORA1, miR-4332, miR-182, miR-92b-3p, miR-let-7a and miR-let-7e, etc, were key genes or miRNAs regulating lipid deposition. The quantitative expressions of eight DEGs and seven DE miRNAs measured with real-time PCR certified that the results of differential expression genes or miRNAs were reliable. Thus, 18,208 genes and 320 miRNAs were positively expressed in porcine longissimus dorsi muscle. We obtained 85 genes and 18 miRNAs related to muscle growth and 27 genes and 16 miRNAs related to lipid deposition, which provided new insights into molecular mechanism of the economical traits in pig.
Collapse
Affiliation(s)
- Zhixiu Wang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, People’s Republic of China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Bo Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Peng Shang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Hao Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| | - Changxin Wu
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Abstract
Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features.
Collapse
|
31
|
Torrado M, Franco D, Lozano-Velasco E, Hernández-Torres F, Calviño R, Aldama G, Centeno A, Castro-Beiras A, Mikhailov A. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:263151. [PMID: 26221584 PMCID: PMC4499376 DOI: 10.1155/2015/263151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022]
Abstract
Spontaneous self-terminating atrial fibrillation (AF) is one of the most common heart rhythm disorders, yet the regulatory molecular mechanisms underlying this syndrome are rather unclear. MicroRNA (miRNA) transcriptome and expression of candidate transcription factors (TFs) with potential roles in arrhythmogenesis, such as Pitx2, Tbx5, and myocardin (Myocd), were analyzed by microarray, qRT-PCR, and Western blotting in left atrial (LA) samples from pigs with transitory AF established by right atrial tachypacing. Induced ectopic tachyarrhythmia caused rapid and substantial miRNA remodeling associated with a marked downregulation of Pitx2, Tbx5, and Myocd expression in atrial myocardium. The downregulation of Pitx2, Tbx5, and Myocd was inversely correlated with upregulation of the corresponding targeting miRNAs (miR-21, miR-10a/10b, and miR-1, resp.) in the LA of paced animals. Through in vitro transient transfections of HL-1 atrial myocytes, we further showed that upregulation of miR-21 did result in downregulation of Pitx2 in cardiomyocyte background. The results suggest that immediate-early miRNA remodeling coupled with deregulation of TF expression underlies the onset of AF.
Collapse
Affiliation(s)
- Mario Torrado
- Institute of Health Sciences, University of La Coruña, 15006 La Coruña, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | - Ramón Calviño
- University Hospital Center of La Coruña, La Coruña, Spain
| | | | | | | | - Alexander Mikhailov
- Institute of Health Sciences, University of La Coruña, 15006 La Coruña, Spain
| |
Collapse
|
32
|
Song X, Zhao X, Huang Y, Xiang H, Zhang W, Tong D. Transmissible gastroenteritis virus (TGEV) infection alters the expression of cellular microRNA species that affect transcription of TGEV gene 7. Int J Biol Sci 2015; 11:913-22. [PMID: 26157346 PMCID: PMC4495409 DOI: 10.7150/ijbs.11585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. TGEV infection has emerged as a major cause of severe gastroenteritis and leads to alterations of many cellular processes. Meanwhile, the pathogenic mechanism of TGEV is still unclear. microRNAs (miRNAs) are a novel class of small non-coding RNAs which are involved in the regulation of numerous biological processes such as viral infection and cell apoptosis. Accumulating data show that miRNAs are involved in the process of coronavirus infection such as replication of severe acute respiratory syndrome coronavirus (SARS-CoV). However, the link between miRNAs and TGEV infection is unknown. In this study, we performed microRNA microarray assay and predicted targets of altered miRNAs. The results showed TGEV infection caused the change of miRNAs profile. Then we selected miR-4331 for further analysis and subsequently identified cell division cycle-associated protein 7 (CDCA7) as the target of miR-4331. Moreover, miR-4331 showed the ability to inhibit transcription of TGEV gene 7 (a non-structure gene) via directly targeting CDCA7. In conclusion, differentially expressed miR-4331 that is caused by TGEV infection can suppress transcription of TGEV gene 7 via targeting cellular CDCA7. Our key finding is that TGEV selectively manipulates the expression of some cellular miRNAs to regulate its subgenomic transcription.
Collapse
Affiliation(s)
- Xiangjun Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hailing Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
33
|
Ma J, Wang H, Liu R, Jin L, Tang Q, Wang X, Jiang A, Hu Y, Li Z, Zhu L, Li R, Li M, Li X. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types. Int J Mol Sci 2015; 16:9635-53. [PMID: 25938964 PMCID: PMC4463610 DOI: 10.3390/ijms16059635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.
Collapse
Affiliation(s)
- Jideng Ma
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hongmei Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Rui Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Long Jin
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qianzi Tang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xun Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Anan Jiang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yaodong Hu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Zongwen Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Li Zhu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Mingzhou Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xuewei Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
34
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
35
|
Pawlina K, Gurgul A, Oczkowicz M, Bugno-Poniewierska M. The characteristics of the porcine (Sus scrofa) liver miRNAome with the use of next generation sequencing. J Appl Genet 2014; 56:239-52. [PMID: 25230983 DOI: 10.1007/s13353-014-0245-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/29/2014] [Accepted: 08/24/2014] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNAs, which play a vital role in the regulation of gene expression by binding to the 3' untranslated region (3'UTR) of a target mRNA. Despite a significant improvement in the identification of miRNAs in a variety of species, the coverage of the porcine miRNAome is still scarce. To identify porcine miRNAs potentially regulating processes taking place in the liver, we applied next generation sequencing. As a result, we detected 206 distinct miRNAs, of which 68 represented potential novel miRNAs. Among these new miRNAs, there were miRNAs deriving from the opposite arm of a hairpin precursor of already known miRNAs. Moreover, we observed 3' and 5' length and sequence variants, probably constituting so called isomiRs, as well as differentially mapped precursor loci, alternative precursor sequences and clustering of miRNA encoding genes. On the basis of expression levels, reflected by the number of sequence reads, we identified the most abundant miRNAs followed by gene target prediction and pathway analysis. The enriched pathways were connected with cellular and metabolic processes, growth factors as well as enzymatic activity. The obtained results are the first ones to concern the porcine liver miRNAome. Consequently, they will increase the number of known porcine miRNAs and facilitate further research on gene regulation mechanisms as well as biological processes associated with the liver functioning in pigs.
Collapse
Affiliation(s)
- Klaudia Pawlina
- Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice n. Krakow, Poland,
| | | | | | | |
Collapse
|
36
|
Cowled C, Stewart CR, Likic VA, Friedländer MR, Tachedjian M, Jenkins KA, Tizard ML, Cottee P, Marsh GA, Zhou P, Baker ML, Bean AG, Wang LF. Characterisation of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics 2014; 15:682. [PMID: 25128405 PMCID: PMC4156645 DOI: 10.1186/1471-2164-15-682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. Results This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. Conclusions MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-682) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Cowled
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Geelong East, Victoria 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Anthon C, Tafer H, Havgaard JH, Thomsen B, Hedegaard J, Seemann SE, Pundhir S, Kehr S, Bartschat S, Nielsen M, Nielsen RO, Fredholm M, Stadler PF, Gorodkin J. Structured RNAs and synteny regions in the pig genome. BMC Genomics 2014; 15:459. [PMID: 24917120 PMCID: PMC4124155 DOI: 10.1186/1471-2164-15-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Background Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. Results We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). Conclusions We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at
http://rth.dk/resources/rnannotator/susscr102/version1.02. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-459) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
38
|
Minami K, Uehara T, Morikawa Y, Omura K, Kanki M, Horinouchi A, Ono A, Yamada H, Ohno Y, Urushidani T. miRNA expression atlas in male rat. Sci Data 2014; 1:140005. [PMID: 25977763 PMCID: PMC4322570 DOI: 10.1038/sdata.2014.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/26/2014] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small (~22 nucleotide) noncoding RNAs that play pivotal roles in regulation of gene expression. The value of miRNAs as circulating biomarkers is now broadly recognized; such tissue-specific biomarkers can be used to monitor tissue injury and several pathophysiological conditions in organs. In addition, miRNA profiles of normal organs and tissues are important for obtaining a better understanding of the source of modulated miRNAs in blood and how those modulations reflect various physiological and toxicological conditions. This work was aimed at creating an miRNA atlas in rats, as part of a collaborative effort with the Toxicogenomics Informatics Project in Japan (TGP2). We analyzed genome-wide miRNA profiles of 55 different organs and tissues obtained from normal male rats using miRNA arrays. The work presented herein represents a comprehensive dataset derived from normal samples profiled in a single study. Here we present the whole dataset with miRNA profiles of multiple organs, as well as precise information on experimental procedures and organ-specific miRNAs identified in this dataset.
Collapse
Affiliation(s)
- Keiichi Minami
- Exploratory Research Laboratories, Tsukuba Research Institute, Ono Pharmaceutical Co., Ltd. , 17-2 Wadai, Tsukuba-shi, Ibaraki 300-4247, Japan
| | - Takeki Uehara
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd. , 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan ; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation , 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuji Morikawa
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd. , 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan ; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation , 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ko Omura
- Drug Safety Research Laboratories, Astellas Pharma Inc. , 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Masayuki Kanki
- Drug Safety Research Laboratories, Astellas Pharma Inc. , 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Akira Horinouchi
- Chemistry, Manufacturing and Controls Center, Takeda Pharmaceutical Company Limited , 17-85, Jusohonmachi 2-chome, Yodogawaku, Osaka 532-8686, Japan
| | - Atsushi Ono
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation , 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan ; National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation , 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuo Ohno
- National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tetsuro Urushidani
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation , 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan ; Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo , Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
39
|
Martini P, Sales G, Brugiolo M, Gandaglia A, Naso F, De Pittà C, Spina M, Gerosa G, Chemello F, Romualdi C, Cagnin S, Lanfranchi G. Tissue-specific expression and regulatory networks of pig microRNAome. PLoS One 2014; 9:e89755. [PMID: 24699212 PMCID: PMC3974652 DOI: 10.1371/journal.pone.0089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Despite the economic and medical importance of the pig, knowledge about its genome organization, gene expression regulation, and molecular mechanisms involved in physiological processes is far from that achieved for mouse and rat, the two most used model organisms in biomedical research. MicroRNAs (miRNAs) are a wide class of molecules that exert a recognized role in gene expression modulation, but only 280 miRNAs in pig have been characterized to date. Results We applied a novel computational approach to predict species-specific and conserved miRNAs in the pig genome, which were then subjected to experimental validation. We experimentally identified candidate miRNAs sequences grouped in high-confidence (424) and medium-confidence (353) miRNAs according to RNA-seq results. A group of miRNAs was also validated by PCR experiments. We established the subtle variability in expression of isomiRs and miRNA-miRNA star couples supporting a biological function for these molecules. Finally, miRNA and mRNA expression profiles produced from the same sample of 20 different tissue of the animal were combined, using a correlation threshold to filter miRNA-target predictions, to identify tissue-specific regulatory networks. Conclusions Our data represent a significant progress in the current understanding of miRNAome in pig. The identification of miRNAs, their target mRNAs, and the construction of regulatory circuits will provide new insights into the complex biological networks in several tissues of this important animal model.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Brugiolo
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Alessandro Gandaglia
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Filippo Naso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Michele Spina
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections. J Virol 2014; 88:6268-80. [PMID: 24672033 DOI: 10.1128/jvi.00097-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4(+) T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5'-3'-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of miRNA biogenesis machinery during infection. These findings suggest that the disruption of miRNA in the small intestine likely plays a role in intestinal enteropathy during HIV infection.
Collapse
|
41
|
Structural analysis of microRNA-target interaction by sequential seed mutagenesis and stem-loop 3' RACE. PLoS One 2013; 8:e81427. [PMID: 24282594 PMCID: PMC3839922 DOI: 10.1371/journal.pone.0081427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/12/2013] [Indexed: 11/19/2022] Open
Abstract
Background As a consequence of recent RNAseq efforts, miRNAomes of diverse tissues and species are available. However, most interactions between microRNAs and regulated mRNAs are still to be deciphered. While in silico analysis of microRNAs results in prediction of hundreds of potential targets, bona-fide interactions have to be verified e.g. by luciferase reporter assays using fused target sites as well as controls incorporating mutated seed sequences. The aim of this study was the development of a straightforward approach for sequential mutation of multiple target sites within a given 3’ UTR. Methodology/Principal Findings The established protocol is based on Seed Mutagenesis Assembly PCR (SMAP) allowing for rapid identification of microRNA target sites. Based on the presented approach, we were able to determine the transcription factor NKX3.1 as a genuine target of miR-155. The sequential mutagenesis of multiple microRNA target sites was examined by miR-29a mediated CASP7 regulation, which revealed one of two predicted target sites as the predominant site of interaction. Since 3’ UTR sequences of non-model organisms are either lacking in databases or computationally predicted, we developed a Stem-Loop 3’ UTR RACE PCR (SLURP) for efficient generation of required 3’ UTR sequence data. The stem-loop primer allows for first strand cDNA synthesis by nested PCR amplification of the 3’ UTR. Besides other applications, the SLURP method was used to gain data on porcine CASP7 3’UTR evaluating evolutionary conservation of the studied interaction. Conclusions/Significance Sequential seed mutation of microRNA targets based on the SMAP approach allows for rapid structural analysis of several target sites within a given 3’ UTR. The combination of both methods (SMAP and SLURP) enables targeted analysis of microRNA binding sites in hitherto unknown mRNA 3’ UTRs within a few days.
Collapse
|
42
|
Martini P, Sales G, Calura E, Brugiolo M, Lanfranchi G, Romualdi C, Cagnin S. Systems biology approach to the dissection of the complexity of regulatory networks in the S. scrofa cardiocirculatory system. Int J Mol Sci 2013; 14:23160-87. [PMID: 24284405 PMCID: PMC3856112 DOI: 10.3390/ijms141123160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 12/23/2022] Open
Abstract
Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Gabriele Sales
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Enrica Calura
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Mattia Brugiolo
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| |
Collapse
|
43
|
Tao X, Xu Z. MicroRNA transcriptome in swine small intestine during weaning stress. PLoS One 2013; 8:e79343. [PMID: 24260202 PMCID: PMC3832476 DOI: 10.1371/journal.pone.0079343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in intestinal diseases; however, the role of miRNAs during weaning stress is unknown. In our study, six jejunal small RNA libraries constructed from weaning piglets at 1, 4 and 7 d after weaning (libraries W1, W4 and W7, respectively) and from suckling piglets on the same days as the weaning piglets (libraries S1, S4 and S7, respectively) were sequenced using Solexa high-throughput sequencing technology. Overall, 260 known swine miRNAs and 317 novel candidate miRNA precursors were detected in the six libraries. The results revealed that 16 differentially expressed miRNAs were found between W1 and S1; 98 differentially expressed miRNAs were found between W4 and S4 (ssc-mir-146b had the largest difference); and 22 differentially expressed miRNAs were found between W7 and S7. Sequencing miRNA results were validated using RT-qPCR. Approximately 11,572 miRNA-mRNA interactions corresponding to 3,979 target genes were predicted. The biological analysis further describe that the differentially expressed miRNAs regulated small intestinal metabolisms, stressful responses and immune functions in piglets. Therefore, the small intestine miRNA transcriptome was significantly different between weaning and suckling piglets; the difference varied with the number of days after weaning.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
44
|
Zhang L, Cai Z, Wei S, Zhou H, Zhou H, Jiang X, Xu N. MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue. Int J Mol Sci 2013; 14:20326-39. [PMID: 24129171 PMCID: PMC3821617 DOI: 10.3390/ijms141020326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial and temporal expressions of miRNAs in the porcine developing brain.
Collapse
Affiliation(s)
- Lifan Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China; E-Mail:
| | - Shengjuan Wei
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
| | - Huiyun Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Hongmei Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Xiaoling Jiang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Ningying Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-571-8898-2089
| |
Collapse
|
45
|
Rieger J, Twardziok S, Huenigen H, Hirschberg RM, Plendl J. Porcine intestinal mast cells. Evaluation of different fixatives for histochemical staining techniques considering tissue shrinkage. Eur J Histochem 2013; 57:e21. [PMID: 24085270 PMCID: PMC3794352 DOI: 10.4081/ejh.2013.e21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/02/2022] Open
Abstract
Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly.
Collapse
Affiliation(s)
- J Rieger
- Freie Universität Berlin Institute for Veterinary Anatomy Koserstr. 20 D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
47
|
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013; 8:e67300. [PMID: 23826261 PMCID: PMC3691122 DOI: 10.1371/journal.pone.0067300] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
Collapse
|
48
|
Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, Gao X, Li X. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol 2013; 14:7. [PMID: 23419046 PMCID: PMC3599761 DOI: 10.1186/1471-2199-14-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a type of non-coding small RNA ~22 nucleotides in length that regulate the expression of protein coding genes at the post-transcriptional level. Glycolytic and oxidative myofibers, the two main types of skeletal muscles, play important roles in metabolic health as well as in meat quality and production in the pig industry. Previous expression profile studies of different skeletal muscle types have focused on these aspects of mRNA and proteins; nonetheless, an explanation of the miRNA transcriptome differences between these two distinct muscles types is long overdue. Results Herein, we present a comprehensive analysis of miRNA expression profiling between the porcine longissimus doris muscle (LDM) and psoas major muscle (PMM) using a deep sequencing approach. We generated a total of 16.62 M (LDM) and 18.46 M (PMM) counts, which produced 15.22 M and 17.52 M mappable sequences, respectively, and identified 114 conserved miRNAs and 89 novel miRNA*s. Of 668 unique miRNAs, 349 (52.25%) were co-expressed, of which 173 showed significant differences (P < 0.01) between the two muscle types. Muscle-specific miR-1-3p showed high expression levels in both libraries (LDM, 32.01%; PMM, 20.15%), and miRNAs that potentially affect metabolic pathways (such as the miR-133 and -23) showed significant differences between the two libraries, indicating that the two skeletal muscle types shared mainly muscle-specific miRNAs but expressed at distinct levels according to their metabolic needs. In addition, an analysis of the Gene Ontology (GO) terms and KEGG pathway associated with the predicted target genes of the differentially expressed miRNAs revealed that the target protein coding genes of highly expressed miRNAs are mainly involved in skeletal muscle structural development, regeneration, cell cycle progression, and the regulation of cell motility. Conclusion Our study indicates that miRNAs play essential roles in the phenotypic variations observed in different muscle fiber types.
Collapse
Affiliation(s)
- Yingkai Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
miRNA expression profile analysis in kidney of different porcine breeds. PLoS One 2013; 8:e55402. [PMID: 23372853 PMCID: PMC3555835 DOI: 10.1371/journal.pone.0055402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/23/2012] [Indexed: 11/27/2022] Open
Abstract
microRNAs (miRNAs) are important post-transcriptional regulators in eukaryotes that target mRNAs repressing their expression. The uncertain process of pig domestication, with different origin focuses, and the selection process that commercial breeds suffered, have generated a wide spectrum of breeds with clear genetic and phenotypic variability. The aim of this work was to define the miRNAs expression profile in kidney of several porcine breeds. Small RNA libraries from kidney were elaborated and high-throughput sequenced with the 454 Genome Sequencer FLX (Roche). Pigs used were classified into three groups: the European origin group (Iberian breed and European Wild Boar ancestor), European commercial breeds (Landrace, Large White and Piétrain breeds) and breeds with Asian origin (Meishan and Vietnamese breeds). A total of 229 miRNAs were described in the pig kidney miRNA profile, including 110 miRNAs out of the 257 previously described pig miRNAs and 119 orthologous miRNAs. The most expressed miRNAs in pig kidney microRNAome were Hsa-miR-200b-3p, Ssc-miR-125b and Ssc-miR-23b. Moreover, 5 novel porcine miRNAs and 3 orthologous miRNAs could be validated through RT-qPCR. miRNA sequence variation was determined in 116 miRNAs, evidencing the presence of isomiRs. 125 miRNAs were differentially expressed between breed groups. The identification of breed-specific miRNAs, which could be potentially associated to certain phenotypes, is becoming a new tool for the study of the genetic variability underlying complex traits and furthermore, it adds a new layer of complexity to the interesting process of pig evolution.
Collapse
|
50
|
D'Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013; 78:558-77. [DOI: 10.1016/j.jprot.2012.10.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
|