1
|
Unel NM, Baloglu MC, Altunoglu YÇ. Comprehensive investigation of cucumber heat shock proteins under abiotic stress conditions: A multi-omics survey. J Biotechnol 2023; 374:49-69. [PMID: 37517677 DOI: 10.1016/j.jbiotec.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.
Collapse
Affiliation(s)
- Necdet Mehmet Unel
- Research and Application Center, Kastamonu University, Kastamonu, Turkey; Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Turkey.
| | - Yasemin Çelik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
2
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
3
|
An Overview of Molecular Basis and Genetic Modification of Floral Organs Genes: Impact of Next-Generation Sequencing. Mol Biotechnol 2022; 65:833-848. [DOI: 10.1007/s12033-022-00633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
|
4
|
Choi BS, Choi SK, Kim NS, Choi IY. NBLAST: a graphical user interface-based two-way BLAST software with a dot plot viewer. Genomics Inform 2022; 20:e40. [PMID: 36239113 PMCID: PMC9576473 DOI: 10.5808/gi.21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
BLAST, a basic bioinformatics tool for searching local sequence similarity, has been one of the most widely used bioinformatics programs since its introduction in 1990. Users generally use the web-based NCBI-BLAST program for BLAST analysis. However, users with large sequence data are often faced with a problem of upload size limitation while using the web-based BLAST program. This proves inconvenient as scientists often want to run BLAST on their own data, such as transcriptome or whole genome sequences. To overcome this issue, we developed NBLAST, a graphical user interface-based BLAST program that employs a two-way system, allowing the use of input sequences either as "query" or "target" in the BLAST analysis. NBLAST is also equipped with a dot plot viewer, thus allowing researchers to create custom database for BLAST and run a dot plot similarity analysis within a single program. It is available to access to the NBLAST with http://nbitglobal.com/nblast.
Collapse
Affiliation(s)
| | - Seon Kang Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Soo Kim
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
| | - Ik-Young Choi
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
5
|
Metabolite profile of African horned cucumber (Cucumis metuliferus E. May. Ex Naudin) fruit grown under differing environmental conditions. Sci Rep 2022; 12:3722. [PMID: 35260684 PMCID: PMC8904803 DOI: 10.1038/s41598-022-07769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Plant metabolites are known as biological compounds that are essential to the growth and development of a plant and have a direct impact on yield and biochemical constituents of plants. For this study, the objective was to conduct primary metabolomics analysis using liquid chromatography mass spectrometry. African horned cucumber fruits were harvested from plants grown under pots experiment (greenhouse, shade net and open field), soil types (loamy soil and sandy loam) and three water stress levels (no water stress-100%-3L, moderate water stress-75%-2L, and severe water stress-35%-1L) during 2017/18 and 2018/19 seasons. Results showed that the treatment of no water stress combined with sandy loam under shade net environment, significantly increased asparagine content from 10 × 106 to 80 × 106 peak intensity. The treatment of no water stress, in combination with sandy loam soil under open field environment increased 4-hydroxyproline from 10 × 106 to 90 × 106 peak intensity compared to other treatments. It can be deduced that the treatment combination of (no water stress and moderate water stress) and all soil types, under greenhouse environment increased most metabolites content of the fruit when compared to other treatments. Therefore, it subsequently has potential to affect fruit quality such as taste and other biochemical constituents.
Collapse
|
6
|
Chaudhary P, Sharma PC. Distribution of simple sequence repeats, transcription factors, and differentially expressed genes in the NGS-based transcriptome of male and female seabuckthorn ( Hippophae salicifolia). J Biomol Struct Dyn 2022; 41:2504-2517. [PMID: 35120412 DOI: 10.1080/07391102.2022.2034669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Seabuckthorn (Hippophae salicifolia) is a perennial, multipurpose wonder plant, popular for its immense medicinal, nutritional, and therapeutic properties. However, due to the lack of whole-genome-based studies, the molecular mechanism governing distinct sexual phenotypes is still not clear. We employed the high-throughput NGS Illumina NovaSeq paired-end technology to generate whole transcriptome profiles of male and female plants of H. salicifolia. In total, 3.2 million raw short reads were generated with an average length of 150 bp, including 50911358 reads from the male leaf tissue samples and 45850364 reads from the female leaf tissue samples. Clustering of the high-quality reads yielded de novo short read assembly of 50259 transcripts of >100 bp length. The final transcripts were assigned Gene Ontology (GO) terms. The digital expression of genes was studied using the DESeq2 of R package that identified 7180 differentially expressed genes (DEGs) between the male and female plant samples. Further, 10,850 simple sequence repeats, and 8,351 transcription factors, distributed in more than 85 transcription families, were also mined from the final assembled transcriptome. Next, COG and KEGG pathway analyses were performed to assign biological functional terms to the DEGs. The findings of the present study will provide a valuable resource for gene expression discovery and other functional genomics studies aiming towards the selection of candidate genes for the development of sex-specific markers in seabuckthorn and other closely related species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parneeta Chaudhary
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
7
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
8
|
Pan J, Wen H, Chen G, Lin WH, Du H, Chen Y, Zhang L, Lian H, Wang G, Cai R, Pan J. A Positive Feedback Loop Mediated by CsERF31 Initiates Female Cucumber Flower Development: ETHYLENE RESPONSE FACTOR31 mediates a positive feedback loop that initiates female cucumber flower development. PLANT PHYSIOLOGY 2021; 186:kiab141. [PMID: 33744968 PMCID: PMC8195516 DOI: 10.1093/plphys/kiab141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 05/24/2023]
Abstract
Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid (ACC) synthases. However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein-DNA interaction assays and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signalling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female-male determination and female-bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.
Collapse
Affiliation(s)
- Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Genetic Diversity Assessment and Cultivar Identification of Cucumber ( Cucumis sativus L.) Using the Fluidigm Single Nucleotide Polymorphism Assay. PLANTS 2021; 10:plants10020395. [PMID: 33669519 PMCID: PMC7923078 DOI: 10.3390/plants10020395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei's genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.
Collapse
|
10
|
Chen L, Yun M, Cao Z, Liang Z, Liu W, Wang M, Yan J, Yang S, He X, Jiang B, Peng Q, Lin Y. Phenotypic Characteristics and Transcriptome of Cucumber Male Flower Development Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:758976. [PMID: 34745192 PMCID: PMC8570340 DOI: 10.3389/fpls.2021.758976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop, which is thermophilic not heat resistant. High-temperature stress always results in sterility at reproductive stage. In the present study, we evaluate the male flower developmental changes under normal (CK) and heat stress (HS) condition. After HS, the activities of peroxidase (POD) and superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were increased. In addition, the pollen fertility was significantly decreased; and abnormal tapetum and microspore were observed by paraffin section. Transcriptome analysis results presented that total of 5828 differentially expressed genes (DEGs) were identified after HS. Among these DEGs, 20 DEGs were found at four stages, including DNA binding transcription factor, glycosyltransferase, and wound-responsive family protein. The gene ontology term of carbohydrate metabolic process was significantly enriched in all anther stages, and many saccharides and starch synthase-related genes, such as invertase, sucrose synthase, and starch branching enzyme, were significantly different expressed in HS compared with CK. Furthermore, co-expression network analysis showed a module (midnightblue) strongly consistent with HS, and two hub genes (CsaV3_6G004180 and CsaV3_5G034860) were found with a high degree of connectivity to other genes. Our results provide comprehensive understandings on male flower development in cucumber under HS.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Maomao Yun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
11
|
Shi G, Li S, Wang Z, Sun D, Zhang S, Guo J, Ai J. EST-SSR markers development and application in an important medicinal plant, Schisandra chinensis (Schisandraceae). BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1822756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Guangli Shi
- Laboratory of Fruit, College of Life Science, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Shuang Li
- Management Office of Teaching and Scientific Research Base, Management Faculty of Facility Agricultural Base, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Zhenxing Wang
- Laboratory of Fruit, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Dan Sun
- Laboratory of Fruit, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Susu Zhang
- Laboratory of Fruit, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Jianhui Guo
- Laboratory of Fruit, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Jun Ai
- Laboratory of Fruit, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| |
Collapse
|
12
|
Abid S, Mohanan P, Kaliraj L, Park JK, Ahn JC, Yang DC. Development of species-specific chloroplast markers for the authentication of Gynostemma pentaphyllum and their distribution in the Korean peninsula. Fitoterapia 2019; 138:104295. [PMID: 31400481 DOI: 10.1016/j.fitote.2019.104295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Gynostemma pentaphyllum is a traditional oriental medicinal herb used as tea since ancient time. Among Gynostemma species, G. pentaphyllum has more active chemical components and better therapeutic effect. It is used to cure depression, diabetes, anxiety, hyperlipidemia, fatigue, immunity, cancer, and oxidative stress. Overexploitation of G. pentaphyllum for its medicinal benefits has been on a rise, due to which they are adulterated or mistakenly identified with other members of Gynostemma species. Hence, we used chloroplast universal regions such as ycf3, accD, petD, psbB and their polymorphism to distinguish G. pentaphyllum from other Gynostemma species. By using the species-specific primers derived from the above regions, we established a multiplex allele-specific PCR for the authentication of G. pentaphyllum from other species. Thus the PCR reaction produced unique amplicons of size 244 bp and 438 bp for G. pentaphyllum amplified by the primers flanking ycf3, and accD regions respectively. While a 607 bp, and 787 bp amplicons from the primers targeting psbB, and petD regions distinguished G. longipes, G. burmanicum, and G. pubescens species. Moreover, these primers were successful to analyze the dried tea samples of Gynostemma as well. Thus, the developed molecular markers could authenticate different Gynostemma species as well as its products thereby preventing the mistaken-identity of this medicinal herb.
Collapse
Affiliation(s)
- Suleman Abid
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Padmanaban Mohanan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Lalitha Kaliraj
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Jin Kyu Park
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
13
|
Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB, Banerjee AK, Banerjee J. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC PLANT BIOLOGY 2019; 19:330. [PMID: 31337343 PMCID: PMC6651928 DOI: 10.1186/s12870-019-1937-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Tejas Chirmade
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Bhushan B. Dholakia
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| |
Collapse
|
14
|
Cossard GG, Toups MA, Pannell JR. Sexual dimorphism and rapid turnover in gene expression in pre-reproductive seedlings of a dioecious herb. ANNALS OF BOTANY 2019; 123:1119-1131. [PMID: 30289430 PMCID: PMC6612945 DOI: 10.1093/aob/mcy183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/06/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Sexual dimorphism in morphology, physiology or life history traits is common in dioecious plants at reproductive maturity, but it is typically inconspicuous or absent in juveniles. Although plants of different sexes probably begin to diverge in gene expression both before their reproduction commences and before dimorphism becomes readily apparent, to our knowledge transcriptome-wide differential gene expression has yet to be demonstrated for any angiosperm species. METHODS The present study documents differences in gene expression in both above- and below-ground tissues of early pre-reproductive individuals of the wind-pollinated dioecious annual herb, Mercurialis annua, which otherwise shows clear sexual dimorphism only at the adult stage. KEY RESULTS Whereas males and females differed in their gene expression at the first leaf stage, sex-biased gene expression peaked just prior to, and after, flowering, as might be expected if sexual dimorphism is partly a response to differential costs of reproduction. Sex-biased genes were over-represented among putative sex-linked genes in M. annua but showed no evidence for more rapid evolution than unbiased genes. CONCLUSIONS Sex-biased gene expression in M. annua occurs as early as the first whorl of leaves is produced, is highly dynamic during plant development and varies substantially between vegetative tissues.
Collapse
Affiliation(s)
- Guillaume G Cossard
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Melissa A Toups
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - John R Pannell
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Wang Y, Yan C, Zou B, Wang C, Xu W, Cui C, Qu S. Morphological, Transcriptomic and Hormonal Characterization of Trimonoecious and Subandroecious Pumpkin ( Cucurbita maxima) Suggests Important Roles of Ethylene in Sex Expression. Int J Mol Sci 2019; 20:ijms20133185. [PMID: 31261811 PMCID: PMC6651883 DOI: 10.3390/ijms20133185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, and transcriptome sequencing was performed using an Illumina HiSeqTM 2000 System. 496 up-regulated genes and 375 down-regulated genes were identified between shoot apices containing mostly male flower buds and only female flower buds. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the differentially expressed genes were mainly enriched in the ethylene and auxin synthesis and signal transduction pathways. In addition, shoot apices at the 4-leaf stage were treated with the ethylene-releasing agent 2-chloroethylphosphonic acid (Ethrel), aminoethoxyvinyl glycine (AVG), AgNO3 and indoleacetic acid (IAA). The number of female flowers up to node 20 on the main stem of ‘2013–12’ increased significantly after Ethrel and IAA treatment and decreased significantly after AVG and AgNO3 treatment. The female flowers in ‘9–6’ showed slight changes after treatment with the exogenous chemicals. The expression of key genes in ethylene synthesis and signal transduction (CmaACS7, CmaACO1, CmaETR1 and CmaEIN3) was determined using quantitative RT-PCR, and the expression of these four genes was positively correlated with the number of female flowers in ‘2013–12’. The variations in gene expression, especially that of CmaACS7, after chemical treatment were small in ‘9–6’. From stage 1 (S1) to stage 7 (S7) of flower development, the expression of CmaACS7 in the stamen was much lower than that in the ovary, stigma and style. These transcriptome data and chemical treatment results indicated that IAA might affect pumpkin sex expression by inducing CmaACS7 expression and indirectly affecting ethylene production, and the ethylene synthesis and signal transduction pathways play crucial roles in pumpkin flower sex expression. A possible reason for the differences in sex expression between pumpkin lines ‘2013–12’ and ‘9–6’ was proposed based on the key gene expression. Overall, these transcriptome data and chemical treatment results suggest important roles for ethylene in pumpkin sex expression.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chundong Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Bingxue Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chongshi Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Pawełkowicz M, Pryszcz L, Skarzyńska A, Wóycicki RK, Posyniak K, Rymuszka J, Przybecki Z, Pląder W. Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. PLANT REPRODUCTION 2019; 32:193-216. [PMID: 30719568 PMCID: PMC6500512 DOI: 10.1007/s00497-019-00362-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Transcriptome data and qPCR analysis revealed new insight into genes regulatory mechanism related to cucumber sex determination. Cucumber (Cucumis sativus L.) is an economically important crop cultivated worldwide. Enhancing the genomic resources for cucumber may enable the regulation of traits relevant to crop productivity and quality. Sequencing technologies and bioinformatics tools provide opportunities for the development of such resources. The aims of this study were to identify and characterize the genes involved in sex determination and flower morphogenesis in cucumber isogenic lines that differed regarding flower sex type. We obtained transcripts for 933 genes related to shoot apex development, among which 310 were differentially expressed genes (DEGs) among the male, female, and hermaphroditic lines. We performed gene ontology and molecular network analyses and explored the DEGs related to already known processes like: hormone synthesis and signaling, lipid and sugar metabolism; and also newly discovered processes related to cell wall, membrane, and cytoskeleton modifications; ion homeostasis which appears to be important for ethylene perception and signaling, and genes expression mediated by transcription factors related to floral organ identities. We proposed a new model of regulatory mechanism network of sex development in cucumber. Our results may be useful for clarifying the molecular genetics and the functional mechanisms underlying the sex determination processes.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Leszek Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał K Wóycicki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
- Philip Morris International R&D, Philip Morris Products S.A., 2000, Neuchâtel, Switzerland
| | - Kacper Posyniak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jacek Rymuszka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
17
|
Chen Y, Cheng L, Zhang X, Cao J, Wu Z, Zheng X. Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3”Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells. Food Res Int 2019; 119:67-75. [DOI: 10.1016/j.foodres.2019.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
|
18
|
Zhou Y, Hu L, Song J, Jiang L, Liu S. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1534556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Yong Zhou
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, PR China
| | - Lifang Hu
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, PR China
| | - Jianbo Song
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| | - Lunwei Jiang
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| | - Shiqiang Liu
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
19
|
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, Patzak J, Sano T, Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics 2018; 19:739. [PMID: 30305019 PMCID: PMC6180420 DOI: 10.1186/s12864-018-5125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. Results The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. Conclusions Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop. Electronic supplementary material The online version of this article (10.1186/s12864-018-5125-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 43846, Žatec, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Department of Applied Biosciences, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Wang M, Jiang B, Peng Q, Liu W, He X, Liang Z, Lin Y. Transcriptome Analyses in Different Cucumber Cultivars Provide Novel Insights into Drought Stress Responses. Int J Mol Sci 2018; 19:ijms19072067. [PMID: 30013000 PMCID: PMC6073345 DOI: 10.3390/ijms19072067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/05/2022] Open
Abstract
Drought stress is one of the most serious threats to cucumber quality and yield. To gain a good understanding of the molecular mechanism upon water deficiency, we compared and analyzed the RNA sequencing-based transcriptomic responses of two contrasting cucumber genotypes, L-9 (drought-tolerant) and A-16 (drought-sensitive). In our present study, combining the analysis of phenotype, twelve samples of cucumber were carried out a transcriptomic profile by RNA-Seq under normal and water-deficiency conditions, respectively. A total of 1008 transcripts were differentially expressed under normal conditions (466 up-regulated and 542 down-regulated) and 2265 transcripts under drought stress (979 up-regulated and 1286 down-regulated). The significant positive correlation between RNA sequencing data and a qRT-PCR analysis supported the results found. Differentially expressed genes (DEGs) involved in metabolic pathway and biosynthesis of secondary metabolism were significantly changed after drought stress. Several genes, which were related to sucrose biosynthesis (Csa3G784370 and Csa3G149890) and abscisic acid (ABA) signal transduction (Csa4M361820 and Csa6M382950), were specifically induced after 4 days of drought stress. DEGs between the two contrasting cultivars identified in our study provide a novel insight into isolating helpful candidate genes for drought tolerance in cucumber.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
21
|
Gao Y, Zhang L, Zhao S, Yan Y. Comparative analysis of the male inflorescence transcriptome profiles of an ms22 mutant of maize. PLoS One 2018; 13:e0199437. [PMID: 30005064 PMCID: PMC6044530 DOI: 10.1371/journal.pone.0199437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
In modern agricultural production, maize is the most successful crop utilizing heterosis. 712C-ms22 is an important male sterile material in maize. In this study, we performed transcriptome sequencing analysis of the V10 stage of male inflorescence. Through this analysis, 27.63 million raw reads were obtained, and trimming of the raw data revealed 26.63 million clean reads, with an average match rate of 94.64%. Using Tophat software, we matched these clean reads to the maize reference genome. The abundance of 39,622 genes was measured, and 35,399 genes remained after filtering out the non-expressed genes across all the samples. These genes were classified into 19 categories by clusters of orthologous groups of protein annotation. Transcriptome sequencing analysis of the male sterile and fertile 712C-ms22 maize revealed some key DEGs that may be related to metabolic pathways. qRT-PCR analysis validated the gene expression patterns identified by RNA-seq. This analysis revealed some of the essential genes responsible for pollen development and for pollen tube elongation. Our findings provide useful markers of male sterility and new insights into the global mechanisms mediating male sterility in maize.
Collapse
Affiliation(s)
- Yonggang Gao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| | - LiJuan Zhang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - ShengChao Zhao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanxin Yan
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| |
Collapse
|
22
|
Cheng YL, Tu SL. Alternative Splicing and Cross-Talk with Light Signaling. PLANT & CELL PHYSIOLOGY 2018; 59:1104-1110. [PMID: 29727006 DOI: 10.1093/pcp/pcy089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Alternative splicing (AS) is the main source of proteome diversity that in large part contributes to the complexity of eukaryotes. Recent global analysis of AS with RNA sequencing has revealed that AS is prevalent in plants, particularly when responding to environmental changes. Light is one of the most important environmental factors for plant growth and development. To optimize light absorption, plants evolve complex photoreceptors and signaling systems to regulate gene expression and biological processes in the cell. Genome-wide analyses have shown that light induces intensive AS in plants. However, the biochemical mechanisms of light regulating AS remain poorly understood. In this review, we aim to discuss recent progress in investigating the functions of AS, discovery of cross-talk between AS and light signaling, and the potential mechanism of light-regulated AS. Understanding how light signaling regulates the efficiency of AS and the biological significance of light-regulated AS in plant systems will provide new insights into the adaptation of plants to their environment and, ultimately, crop improvement.
Collapse
Affiliation(s)
- You-Liang Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
23
|
Nan F, Feng J, Lv J, Liu Q, Xie S. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities. PLoS One 2018; 13:e0197729. [PMID: 29813098 PMCID: PMC5973588 DOI: 10.1371/journal.pone.0197729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/08/2018] [Indexed: 01/25/2023] Open
Abstract
The Rhodophyta Sheathia arcuata is exclusively distributed in freshwater, constituting an important component in freshwater flora. This study presents the first transcriptome profiling of freshwater Rhodophyta taxa. A total of 161,483 assembled transcripts were identified, annotated and classified into different biological categories and pathways based on BLAST against diverse databases. Different gene expression patterns were caused principally by different irradiances considering the similar water conditions of the sampling site when the specimens were collected. Comparison results of gene expression levels under different irradiances revealed that photosynthesis-related pathways significantly up-regulated under the weak light. Molecular responses for improved photosynthetic activity include the transcripts corresponding to antenna proteins (LHCA1 and LHCA4), photosynthetic apparatus proteins (PSBU, PETB, PETC, PETH and beta and gamma subunits of ATPase) and metabolic enzymes in the carbon fixation. Along with photosynthesis, other metabolic activities were also regulated to optimize the growing and development of S. arcuata under appropriate sunlight. Protein-protein interactive networks revealed the most responsive up-expressed transcripts were ribosomal proteins. The de-novo transcriptome assembly of S. arcuata provides a foundation for further investigation on the molecular mechanism of photosynthesis and environmental adaption for freshwater Rhodophyta.
Collapse
Affiliation(s)
- Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, China
- * E-mail:
| |
Collapse
|
24
|
Han Y, Wang X, Zhao F, Gao S, Wei A, Chen Z, Liu N, Zhang Z, Du S. Transcriptomic analysis of differentially expressed genes in flower-buds of genetic male sterile and wild type cucumber by RNA sequencing. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:359-367. [PMID: 29692544 PMCID: PMC5911260 DOI: 10.1007/s12298-018-0515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Cucumber (Cucumis sativus L.) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1-2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.
Collapse
Affiliation(s)
- Yike Han
- Department of Vegetable Science, China Agricultural University, Beijing, 100193 China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Xianyun Wang
- College of Life, Nankai University, Tianjin, 300071 China
| | - Fengyue Zhao
- College of Life, Nankai University, Tianjin, 300071 China
| | - Shang Gao
- The Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, IL 0661 USA
| | - Aimin Wei
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Zhengwu Chen
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Nan Liu
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Zhenxian Zhang
- Department of Vegetable Science, China Agricultural University, Beijing, 100193 China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| |
Collapse
|
25
|
Sun Y, Hou H, Song H, Lin K, Zhang Z, Hu J, Pang E. The comparison of alternative splicing among the multiple tissues in cucumber. BMC PLANT BIOLOGY 2018; 18:5. [PMID: 29301488 PMCID: PMC5755334 DOI: 10.1186/s12870-017-1217-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/19/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Alternative splicing (AS) is an important post-transcriptional process. It has been suggested that most AS events are subject to tissue-specific regulation. However, the global dynamics of AS in different tissues are poorly explored. RESULTS To analyse global changes in AS in multiple tissues, we identified the AS events and constructed a comprehensive catalogue of AS events within each tissue based on the genome-wide RNA-seq reads from ten tissues in cucumber. First, we found that 58% of the multi-exon genes underwent AS. We further obtained 565 genes with significantly more AS events compared with random genes. These genes were found significant enrichment in biological processes related to the regulation of actin filament length. Second, significantly different AS event profiles among ten tissues were found. The tissues with the same origin of development are more likely to have a relatively similar AS profile. Moreover, 7370 genes showed tissue-specific AS events and were highly enriched in biological processes related to the positive regulation of cellular component organization. Root-specificity AS genes were related to the cellular response to DNA damage stimulus. Third, the genes with different intron retention (IR) patterns among the ten tissues showed significant difference in GC percentages of the retained intron, and the number of exons and FPKM of the major transcripts. CONCLUSIONS Our study provided a comprehensive view of AS in multiple tissues. We revealed novel insights into the patterns of AS in multiple tissues and the tissue-specific AS in cucumber.
Collapse
Affiliation(s)
- Ying Sun
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Han Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101 China
| | - Hongtao Song
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinglu Hu
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu-shi, 808-0135 Japan
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, No 19 Xinjiekouwai Street, Beijing, 100875 China
| |
Collapse
|
26
|
Duan D, Jia Y, Yang J, Li ZH. Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China. Genes (Basel) 2017; 8:genes8120393. [PMID: 29257091 PMCID: PMC5748711 DOI: 10.3390/genes8120393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/02/2023] Open
Abstract
The sex determination in gymnosperms is still poorly characterized due to the lack of genomic/transcriptome resources and useful molecular genetic markers. To enhance our understanding of the molecular mechanisms of the determination of sexual recognition of reproductive structures in conifers, the transcriptome of male and female conelets were characterized in a Chinese endemic conifer species, Pinus bungeana Zucc. ex Endl. The 39.62 Gb high-throughput sequencing reads were obtained from two kinds of sexual conelets. After de novo assembly of the obtained reads, 85,305 unigenes were identified, 53,944 (63.23%) of which were annotated with public databases. A total of 12,073 differentially expressed genes were detected between the two types of sexes in P. bungeana, and 5766 (47.76%) of them were up-regulated in females. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched analysis suggested that some of the genes were significantly associated with the sex determination process of P. bungeana, such as those involved in tryptophan metabolism, zeatin biosynthesis, and cysteine and methionine metabolism, and the phenylpropanoid biosynthesis pathways. Meanwhile, some important plant hormone pathways (e.g., the gibberellin (GA) pathway, carotenoid biosynthesis, and brassinosteroid biosynthesis (BR) pathway) that affected sexual determination were also induced in P. bungeana. In addition, 8791 expressed sequence tag-simple sequence repeats (EST-SSRs) from 7859 unigenes were detected in P. bungeana. The most abundant repeat types were dinucleotides (1926), followed by trinucleotides (1711). The dominant classes of the sequence repeat were A/T (4942) in mononucleotides and AT/AT (1283) in dinucleotides. Among these EST-SSRs, 84 pairs of primers were randomly selected for the characterization of potential molecular genetic markers. Finally, 19 polymorphic EST-SSR primers were characterized. We found low to moderate levels of genetic diversity (NA = 1.754; HO = 0.206; HE = 0.205) across natural populations of P. bungeana. The cluster analysis revealed two distinct genetic groups for the six populations that were sampled in this endemic species, which might be caused by the fragmentation of habitats and long-term geographic isolation among different populations. Taken together, this work provides important insights into the molecular mechanisms of sexual identity in the reproductive organs of P. bungeana. The molecular genetic resources that were identified in this study will also facilitate further studies in functional genomics and population genetics in the Pinus species.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
27
|
Devani RS, Sinha S, Banerjee J, Sinha RK, Bendahmane A, Banerjee AK. De novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically masculinized female Coccinia grandis reveals genes associated with sex expression and modification. BMC PLANT BIOLOGY 2017; 17:241. [PMID: 29233089 PMCID: PMC5727884 DOI: 10.1186/s12870-017-1187-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/30/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Coccinia grandis (ivy gourd), is a dioecious member of Cucurbitaceae having heteromorphic sex chromosomes. Chromosome constitution of male and female plants of C. grandis is 22A + XY and 22A + XX respectively. Earlier we showed that a unique gynomonoecious form of C. grandis (22A + XX) also exists in nature bearing morphologically hermaphrodite flowers (GyM-H). Additionally, application of silver nitrate (AgNO3) on female plants induces stamen development leading to the formation of morphologically hermaphrodite flowers (Ag-H) despite the absence of Y-chromosome. Due to the unavailability of genome sequence and the slow pace at which sex-linked genes are identified, sex expression and modification in C. grandis are not well understood. RESULTS We have carried out a comprehensive RNA-Seq study from early-staged male, female, GyM-H, and Ag-H as well as middle-staged male and GyM-H flower buds. A de novo transcriptome was assembled using Trinity and annotated by BLAST2GO and Trinotate pipelines. The assembled transcriptome consisted of 467,233 'Trinity Transcripts' clustering into 378,860 'Trinity Genes'. Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, and GyM-H_Middle_vs_Male_Middle comparisons exhibited 35,694, 3574, and 14,954 differentially expressed transcripts respectively. Further, qRT-PCR analysis of selected candidate genes validated digital gene expression profiling results. Interestingly, ethylene response-related genes were found to be upregulated in female buds compared to male buds. Also, we observed that AgNO3 treatment suppressed ethylene responses in Ag-H flowers by downregulation of ethylene-responsive transcription factors leading to stamen development. Further, GO terms related to stamen development were enriched in early-staged male, GyM-H, and Ag-H buds compared to female buds supporting the fact that stamen growth gets arrested in female flowers. CONCLUSIONS Suppression of ethylene responses in both male and Ag-H compared to female buds suggests a probable role of ethylene in stamen suppression similar to monoecious cucurbits such as melon and cucumber. Also, pollen fertility associated GO terms were depleted in middle-staged GyM-H buds compared to male buds indicating the necessity of Y-chromosome for pollen fertility. Overall, this study would enable identification of new sex-biased genes for further investigation of stamen arrest, pollen fertility, and AgNO3-mediated sex modification.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| | | | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| |
Collapse
|
28
|
Li R, Xiong G, Yuan S, Wu Z, Miao Y, Weng P. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. World J Microbiol Biotechnol 2017; 33:206. [PMID: 29101531 DOI: 10.1007/s11274-017-2376-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/29/2017] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.
Collapse
Affiliation(s)
- Ruoyun Li
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Guotong Xiong
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Shukun Yuan
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yingjie Miao
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
29
|
A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 2017; 7:12785. [PMID: 28986571 PMCID: PMC5630576 DOI: 10.1038/s41598-017-13216-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Pumpkin (Cucurbita moschata) is an economically worldwide crop. Few quantitative trait loci (QTLs) were reported previously due to the lack of genomic and genetic resources. In this study, a high-density linkage map of C. moschata was structured by double-digest restriction site-associated DNA sequencing, using 200 F2 individuals of CMO-1 × CMO-97. By filtering 74,899 SNPs, a total of 3,470 high quality SNP markers were assigned to the map spanning a total genetic distance of 3087.03 cM on 20 linkage groups (LGs) with an average genetic distance of 0.89 cM. Based on this map, both pericarp color and strip were fined mapped to a novel single locus on LG8 in the same region of 0.31 cM with phenotypic variance explained (PVE) of 93.6% and 90.2%, respectively. QTL analysis was also performed on carotenoids, sugars, tuberculate fruit, fruit diameter, thickness and chamber width with a total of 12 traits. 29 QTLs distributed in 9 LGs were detected with PVE from 9.6% to 28.6%. It was the first high-density linkage SNP map for C. moschata which was proved to be a valuable tool for gene or QTL mapping. This information will serve as significant basis for map-based gene cloning, draft genome assembling and molecular breeding.
Collapse
|
30
|
Mei L, Dong N, Li F, Li N, Yao M, Chen F, Tang L. Transcriptome analysis of female and male flower buds of Idesia polycarpa Maxim. var. vestita Diels. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Mohanty JN, Nayak S, Jha S, Joshi RK. Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene 2017; 626:395-406. [DOI: 10.1016/j.gene.2017.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
32
|
Tang P, Zhang Q, Yao X. Comparative transcript profiling explores differentially expressed genes associated with sexual phenotype in kiwifruit. PLoS One 2017; 12:e0180542. [PMID: 28672040 PMCID: PMC5495465 DOI: 10.1371/journal.pone.0180542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/16/2017] [Indexed: 12/02/2022] Open
Abstract
Background Kiwifruit is a perennial, deciduous and functionally dioecious plant. However, very little is known about the whole-genome molecular mechanisms contributing to distinct sexual phenotypes. To gain a global view of genes differentially expressed between male and female flowers, we analyzed genome-wide gene expression profiles in the flowers of male and female plants using high-throughput RNA sequencing. Results A total of 53.5 million reads were generated. Based on the alignments of unigenes to kiwifruit genome predicted genes, a total of 39,040 unique genes with a mean length of 970 bp were identified. There were 2,503 UniGenes differentially expressed between female and male flowers, with 1,793 up-regulated and 710 down-regulated in the female flowers. Moreover, the gene expression pattern of 17 out of 19 unigenes differentially expressed between male and female flowers revealed by RNA-Seq was confirmed by real-time quantitative PCR (qRT-PCR). Conclusions Here, we obtained a large number of EST sequences from female and male flowers of kiwifruit. This comparative transcriptome analysis provides an invaluable resource for gene expression, genomics, and functional genomic studies in A. chinensis and its related species. This study also represents a first step toward the investigation of genes involved in kiwifruit sex determination.
Collapse
Affiliation(s)
- Ping Tang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaohong Yao
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
33
|
Landis JB, Soltis DE, Soltis PS. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 2017; 18:475. [PMID: 28645249 PMCID: PMC5481933 DOI: 10.1186/s12864-017-3868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. RESULTS Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. CONCLUSIONS Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Department of Botany and Plant Sciences, University of California Riverside, 4412 Boyce Hall, 3401 Watkins Drive, Riverside, CA 92521 USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
34
|
Raj-Kumar PK, Vallon O, Liang C. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2017; 94:253-265. [PMID: 28364390 PMCID: PMC5490245 DOI: 10.1007/s11103-017-0605-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 05/22/2023]
Abstract
Alternatively spliced introns are the ones that are usually spliced but can be occasionally retained in a transcript isoform. They are the most frequently used alternative splice form in plants (~50% of alternative splicing events). Chlamydomonas reinhardtii, a unicellular alga, is a good model to understand alternative splicing (AS) in plants from an evolutionary perspective as it diverged from land plants a billion years ago. Using over 7 million cDNA sequences from both pyrosequencing and Sanger sequencing, we found that a much higher percentage of genes (~20% of multi-exon genes) undergo AS than previously reported (3-5%). We found a full component of SR and SR-like proteins possibly involved in AS. The most prevalent type of AS event (40%) was retention of introns, most of which were supported by multiple cDNA evidence (72%) while only 20% of them have coding capacity. By comparing retained and constitutive introns, we identified sequence features potentially responsible for the retention of introns, in the framework of an "intron definition" model for splicing. We find that retained introns tend to have a weaker 5' splice site, more Gs in their poly-pyrimidine tract and a lesser conservation of nucleotide 'C' at position -3 of the 3' splice site. In addition, the sequence motifs found in the potential branch-point region differed between retained and constitutive introns. Furthermore, the enrichment of G-triplets and C-triplets among the first and last 50 nt of the introns significantly differ between constitutive and retained introns. These could serve as intronic splicing enhancers. All the alternative splice forms can be accessed at http://bioinfolab.miamioh.edu/cgi-bin/PASA_r20140417/cgi-bin/status_report.cgi?db=Chre_AS .
Collapse
Affiliation(s)
- Praveen-Kumar Raj-Kumar
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, 15963, USA.
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS/Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
35
|
Du J, Zhang Z, Zhang H, Junhong T. EST–SSR marker development and transcriptome sequencing analysis of different tissues of Korean pine ( Pinus koraiensis Sieb. et Zucc.). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1331755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jia Du
- Department of Environmental Engineering and Science, Hangzhou Dianzi University, Hangzhou, P. R. China
| | - Zhen Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, P. R. China
| | - Hanguo Zhang
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Tang Junhong
- Department of Environmental Engineering and Science, Hangzhou Dianzi University, Hangzhou, P. R. China
| |
Collapse
|
36
|
Zhang XM, Yu HJ, Sun C, Deng J, Zhang X, Liu P, Li YY, Li Q, Jiang WJ. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:98-109. [PMID: 28193581 DOI: 10.1016/j.plaphy.2017.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/08/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The NAC (standing for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF] and cup-shaped cotyledon [CUC]) proteins pertain to one of the plant-specific transcription factor families that play important roles in plant development, abiotic stress resistance and signalling transduction. In the present study, the genomic features of the NAC genes in cucumber were analysed in depth using in silico tools. To reveal a tissue-specific, abiotic stress and hormone-responsive expression profile of CsNAC genes, RT-qPCR was performed under different treatments. Phylogenetic analyses and genome-wide annotation indicated that 82 high-confidence CsNAC genes were clustered into 13 sub-groups with uneven distribution in the cucumber genome. Furthermore, the CsNAC genes exhibited different tissue-specific expression patterns in 10 tissues under normal growth conditions, while 13 (16%) and 28 (34%) genes displayed preferential expression in roots and flowers, respectively. Moreover, CsNAC genes were more sensitive to salinity than other stresses; however, their responses were relatively rapid and transient to nutrition deprivation. Several CsNAC genes, including CsNAC35, which is an orthologue of the known stress-responsive Arabidopsis RD26, were identified as highly responsive to abiotic stresses and hormones. Overall, our findings revealed the genomic landscape and expression profiling of the CsNAC genes in response to multiple stresses and hormones, offering clues for further function analyses and molecular breeding.
Collapse
Affiliation(s)
- Xiao Meng Zhang
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Hong Jun Yu
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Chao Sun
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jie Deng
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Xue Zhang
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Peng Liu
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Yun Yun Li
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China
| | - Qiang Li
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Wei Jie Jiang
- Key Laboratory of Horticultural Crop Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, PR China; Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China.
| |
Collapse
|
37
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|
38
|
Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed ( Brassica napus L.) by Regulating Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:1671. [PMID: 29021800 PMCID: PMC5623956 DOI: 10.3389/fpls.2017.01671] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/11/2017] [Indexed: 05/02/2023]
Abstract
Rapeseed (Brassica napus L.) is a very important edible oil crop in the world, and the production is inhibited by abiotic stresses, such as salinity. Plant hormones can alleviate the stress by regulating the physiological processes and gene expression. To study the plant responses to salinity in combination with GR24, a synthesized strigolactone, the oilseed rape variety (Zhongshuang 11) replications were grown in the pots in a controlled growth chamber under three levels of salinity (0, 100, and 200 mM NaCl) and 0.18 μM GR24 treatments at the seedling stage for 7 days. The results showed that salinity depressed the shoots and roots growth, whereas GR24 improved the growth under salt stress. Leaf chlorophyll contents and gas exchange parameters (net photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and transpiration rate) were also reduced significantly with increasing salinity, and these effects could be partially reversed by GR24 application. Additionally, GR24 treatment significantly increased and decreased the photosystem II quantum yield and non-photochemical quenching, respectively, under salinity stress conditions. The activities of peroxidase and superoxide dismutase increased, and lipid peroxidation measured by the level of malondialdehyde reduced due to GR24 application. The transcriptome analysis of root and shoot was conducted. Three hundred and forty-two common differentially expressed genes (DEGs) after GR24 treatment and 166 special DEGs after GR24 treatment under salinity stress were identified in root and shoot. The DEGs in root were significantly more than that in shoot. Quantitative PCR validated that the stress alleviation was mainly related to the gene expression of tryptophan metabolism, plant hormone signal transduction, and photosynthesis.
Collapse
Affiliation(s)
- Ni Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China
- *Correspondence: Ni Ma, Chunlei Zhang,
| | - Chao Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junlan Xiong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chunlei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, China
- *Correspondence: Ni Ma, Chunlei Zhang,
| |
Collapse
|
39
|
Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD, Sharpe AG, Parkin IAP. The developmental transcriptome atlas of the biofuel crop Camelina sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:879-894. [PMID: 27513981 DOI: 10.1111/tpj.13302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/17/2023]
Abstract
Camelina sativa is currently being embraced as a viable industrial bio-platform crop due to a number of desirable agronomic attributes and the unique fatty acid profile of the seed oil that has applications for food, feed and biofuel. The recent completion of the reference genome sequence of C. sativa identified a young hexaploid genome. To complement this work, we have generated a genome-wide developmental transcriptome map by RNA sequencing of 12 different tissues covering major developmental stages during the life cycle of C. sativa. We have generated a digital atlas of this comprehensive transcriptome resource that enables interactive visualization of expression data through a searchable database of electronic fluorescent pictographs (eFP browser). An analysis of this dataset supported expression of 88% of the annotated genes in C. sativa and provided a global overview of the complex architecture of temporal and spatial gene expression patterns active during development. Conventional differential gene expression analysis combined with weighted gene expression network analysis uncovered similarities as well as differences in gene expression patterns between different tissues and identified tissue-specific genes and network modules. A high-quality census of transcription factors, analysis of alternative splicing and tissue-specific genome dominance provided insight into the transcriptional dynamics and sub-genome interplay among the well-preserved triplicated repertoire of homeologous loci. The comprehensive transcriptome atlas in combination with the reference genome sequence provides a powerful resource for genomics research which can be leveraged to identify functional associations between genes and understand the regulatory networks underlying developmental processes.
Collapse
Affiliation(s)
- Sateesh Kagale
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada
| | - John Nixon
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Venkatesh Bollina
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
40
|
Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. BMC Genomics 2016; 17:822. [PMID: 27769171 PMCID: PMC5075214 DOI: 10.1186/s12864-016-3155-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.
Collapse
Affiliation(s)
- Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Huasong Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| |
Collapse
|
41
|
Recent Perspective of Next Generation Sequencing: Applications in Molecular Plant Biology and Crop Improvement. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0770-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep 2016; 6:27752. [PMID: 27293111 PMCID: PMC4904219 DOI: 10.1038/srep27752] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
Kharchia Local wheat variety is an Indian salt tolerant land race known for its tolerance to salinity. However, there is a lack of detailed information regarding molecular mechanism imparting tolerance to high salinity in this bread wheat. In the present study, differential root transcriptome analysis identifying salt stress responsive gene networks and functional annotation under salt stress in Kharchia Local was performed. A total of 453,882 reads were obtained after quality filtering, using Roche 454-GS FLX Titanium sequencing technology. From these reads 22,241 ESTs were generated out of which, 17,911 unigenes were obtained. A total of 14,898 unigenes were annotated against nr protein database. Seventy seven transcription factors families in 826 unigenes and 11,002 SSRs in 6,939 unigenes were identified. Kyoto Encyclopedia of Genes and Genomes database identified 310 metabolic pathways. The expression pattern of few selected genes was compared during the time course of salt stress treatment between salt-tolerant (Kharchia Local) and susceptible (HD2687). The transcriptome data is the first report, which offers an insight into the mechanisms and genes involved in salt tolerance. This information can be used to improve salt tolerance in elite wheat cultivars and to develop tolerant germplasm for other cereal crops.
Collapse
Affiliation(s)
- Etika Goyal
- Banasthali University, Banasthali, Rajasthan, India.,Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, India
| | - Singh K Amit
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, India
| | - Ravi S Singh
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, India
| | - Ajay K Mahato
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, India
| | - Suresh Chand
- Banasthali University, Banasthali, Rajasthan, India.,Devi Ahilya University, Indore, India
| | - Kumar Kanika
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, India
| |
Collapse
|
43
|
Hao Y, Wang T, Wang K, Wang X, Fu Y, Huang L, Kang Z. Transcriptome Analysis Provides Insights into the Mechanisms Underlying Wheat Plant Resistance to Stripe Rust at the Adult Plant Stage. PLoS One 2016; 11:e0150717. [PMID: 26991894 PMCID: PMC4798760 DOI: 10.1371/journal.pone.0150717] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022] Open
Abstract
Stripe rust (or yellow rust), which is caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. The wheat cultivar Xingzi 9104 (XZ) is an elite wheat germplasm that possesses adult plant resistance (APR), which is non–race-specific and durable. Thus, to better understand the mechanism underlying APR, we performed transcriptome sequencing of wheat seedlings and adult plants without Pst infection, and a total of 157,689 unigenes were obtained as a reference. In total, 2,666, 783 and 2,587 differentially expressed genes (DEGs) were found to be up- or down-regulated after Pst infection at 24, 48 and 120 hours post-inoculation (hpi), respectively, based on a comparison of Pst- and mock-infected plants. Among these unigenes, the temporal pattern of the up-regulated unigenes exhibited transient expression patterns during Pst infection, as determined through a Gene Ontology (GO) enrichment analysis. In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many biological processes, including phenylpropanoid biosynthesis, reactive oxygen species, photosynthesis and thiamine metabolism, which mainly control the mechanisms of lignification, reactive oxygen species and sugar, respectively, are involved in APR. In particular, the continuous accumulation of reactive oxygen species may potentially contribute to the ability of the adult plant to inhibit fungal growth and development. To validate the bioinformatics results, 6 candidate genes were selected for further functional identification using the virus-induced gene silencing (VIGS) system, and 4 candidate genes likely contribute to plant resistance against Pst infection. Our study provides new information concerning the transcriptional changes that occur during the Pst-wheat interaction at the adult stage and will help further our understanding of the detailed mechanisms underlying APR to Pst.
Collapse
Affiliation(s)
- Yingbin Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Ting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
- * E-mail: (ZK); (XW)
| | - Yanping Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, PR China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
- * E-mail: (ZK); (XW)
| |
Collapse
|
44
|
Sobral R, Silva HG, Morais-Cecílio L, Costa MMR. The Quest for Molecular Regulation Underlying Unisexual Flower Development. FRONTIERS IN PLANT SCIENCE 2016; 7:160. [PMID: 26925078 PMCID: PMC4759290 DOI: 10.3389/fpls.2016.00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/30/2016] [Indexed: 05/16/2023]
Abstract
The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled "Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber" published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs.
Collapse
Affiliation(s)
- Rómulo Sobral
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Helena G. Silva
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Leonor Morais-Cecílio
- Departamento de Recursos Naturais Ambiente e Território, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Maria M. R. Costa
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| |
Collapse
|
45
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Matas AJ, Patev S, Fry WE, Rose JKC. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2016; 17:42-54. [PMID: 25808779 PMCID: PMC6638369 DOI: 10.1111/mpp.12260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Antonio J Matas
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
46
|
Yue H, Wang L, Liu H, Yue W, Du X, Song W, Nie X. De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1083. [PMID: 27493657 PMCID: PMC4955294 DOI: 10.3389/fpls.2016.01083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/08/2016] [Indexed: 05/04/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which is well-adapted to extreme environments such as drought, heat, and salinity with an efficient C4 carbon fixation. Discovery and identification of genes involved in these processes will provide valuable information to improve the crop for meeting the challenge of global climate change. However, the lack of genetic resources and genomic information make gene discovery and molecular mechanism studies very difficult. Here, we sequenced and assembled the transcriptome of broomcorn millet using Illumina sequencing technology. After sequencing, a total of 45,406,730 and 51,160,820 clean paired-end reads were obtained for two genotypes Yumi No. 2 and Yumi No. 3. These reads were mixed and then assembled into 113,643 unigenes, with the length ranging from 351 to 15,691 bp, of which 62,543 contings could be assigned to 315 gene ontology (GO) categories. Cluster of orthologous groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned could map 15,514 unigenes into 202 KEGG pathways and 51,020 unigenes to 25 COG categories, respectively. Furthermore, 35,216 simple sequence repeats (SSRs) were identified in 27,055 unigene sequences, of which trinucleotides were the most abundant repeat unit, accounting for 66.72% of SSRs. In addition, 292 differentially expressed genes were identified between the two genotypes, which were significantly enriched in 88 GO terms and 12 KEGG pathways. Finally, the expression patterns of four selected transcripts were validated through quantitative reverse transcription polymerase chain reaction analysis. Our study for the first time sequenced and assembled the transcriptome of broomcorn millet, which not only provided a rich sequence resource for gene discovery and marker development in this important crop, but will also facilitate the further investigation of the molecular mechanism of its favored agronomic traits and beyond.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Le Wang
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Hui Liu
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Wenjie Yue
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Xianghong Du
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Weining Song
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Northwest A&F UniversityYangling, China
- *Correspondence: Weining Song, Xiaojun Nie,
| | - Xiaojun Nie
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- *Correspondence: Weining Song, Xiaojun Nie,
| |
Collapse
|
47
|
Du S, Sang Y, Liu X, Xing S, Li J, Tang H, Sun L. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L. FRONTIERS IN PLANT SCIENCE 2016; 7:871. [PMID: 27379148 PMCID: PMC4910463 DOI: 10.3389/fpls.2016.00871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/02/2016] [Indexed: 05/21/2023]
Abstract
In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.
Collapse
|
48
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Ponnala L, Lee SJ, Matas AJ, Patev S, Fry WE, Rose JKC. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. MOLECULAR PLANT PATHOLOGY 2016; 17:29-41. [PMID: 25845484 PMCID: PMC6638332 DOI: 10.1111/mpp.12263] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holly Center for Agriculture and Health, USDA-ARS, Tower Road, Ithaca, NY, 14853, USA
| | - Lalit Ponnala
- Institute for Biotechnology and Life Science Technologies, Cornell University, Ithaca, NY, 14853, USA
| | - Sang Jik Lee
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Biotechnology Institute, Nongwoo Bio Co., Ltd, Gyeonggi, South Korea
| | - Antonio J Matas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
49
|
Pawełkowicz M, Zieliński K, Zielińska D, Pląder W, Yagi K, Wojcieszek M, Siedlecka E, Bartoszewski G, Skarzyńska A, Przybecki Z. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:77-88. [PMID: 26566826 DOI: 10.1016/j.plantsci.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Konrad Zieliński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kouhei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Wojcieszek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
50
|
Kobayashi M, Ohyanagi H, Yano K. Databases for Solanaceae and Cucurbitaceae Research. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2016. [DOI: 10.1007/978-3-662-48535-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|