1
|
Muthusamy M, Ramasamy KT, Peters SO, Palani S, Gowthaman V, Nagarajan M, Karuppusamy S, Thangavelu V, Aranganoor Kannan T. Transcriptomic Profiling Reveals Altered Expression of Genes Involved in Metabolic and Immune Processes in NDV-Infected Chicken Embryos. Metabolites 2024; 14:669. [PMID: 39728450 DOI: 10.3390/metabo14120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses. METHODS This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs. RESULT RNA-Seq reads were aligned with the chicken reference genome (Galgal7), revealing 594 differentially expressed genes: 264 upregulated and 330 downregulated. The most overexpressed genes, with logFC between 8.15 and 8.75, included C8A, FGG, PIT54, FETUB, APOC3, and FGA. Notably, downregulated genes included BPIFB3 (-4.46 logFC) and TRIM39.1 (-4.26 logFC). The analysis also identified 29 novel transcripts and 20 lncRNAs that were upregulated. Gene Ontology and KEGG pathways' analyses revealed significant alterations in gene expression related to immune function, metabolism, cell cycle, nucleic acid processes, and mitochondrial activity due to NDV infection. Key metabolic genes, such as ALDOB (3.27 logFC), PRPS2 (2.66 logFC), and XDH (2.15 logFC), exhibited altered expression patterns, while DCK2 (-1.99 logFC) and TK1 (-2.11 logFC) were also affected. Several immune-related genes showed significant upregulation in infected lung samples, including ALB (6.15 logFC), TLR4 (1.86 logFC), TLR2 (2.79 logFC), and interleukin receptors, such as IL1R2 (3.15 logFC) and IL22RA2 (1.37 logFC). Conversely, genes such as CXCR4 (-1.49 logFC), CXCL14 (-2.57 logFC), GATA3 (-1.51 logFC), and IL17REL (-2.93 logFC) were downregulated. The higher expression of HSP genes underscores their vital role in immune responses. CONCLUSION Comprehension of these genes' interactions is essential for regulating viral replication and immune responses during infections, potentially aiding in the identification of candidate genes for poultry breed improvement amidst NDV challenges.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Kannaki T Ramasamy
- Indian Council of Agricultural Research-Directorate of Poultry Research, Hyderabad 500030, India
| | | | - Srinivasan Palani
- Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Dharmapuri 635111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | | | - Thiruvenkadan Aranganoor Kannan
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| |
Collapse
|
2
|
Host Responses Following Infection with Canadian-Origin Wildtype and Vaccine Revertant Infectious Laryngotracheitis Virus. Vaccines (Basel) 2022; 10:vaccines10050782. [PMID: 35632538 PMCID: PMC9148004 DOI: 10.3390/vaccines10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is caused by Gallid herpesvirus-1 (GaHV-1) or infectious laryngotracheitis virus (ILTV) and was first described in Canadian poultry flocks. In Canada, ILTV infection is endemic in backyard flocks, and commercial poultry encounters ILT outbreaks sporadically. A common practice to control ILT is the use of live attenuated vaccines. However, outbreaks still occur in poultry flocks globally due to ILTV vaccine strains reverting to virulence and emergence of new ILTV strains due to recombination in addition to circulating wildtype strains. Recent studies reported that most of the ILT outbreaks in Canada were induced by the chicken-embryo-origin (CEO) live attenuated vaccine revertant strains with the involvement of a small percentage of wildtype ILTV. It is not known if the host responses induced by these two ILTV strains are different. The objective of the study was to compare the host responses elicited by CEO revertant and wildtype ILTV strains in chickens. We infected 3-week-old specific pathogen-free chickens with the two types of ILTV isolates and subsequently evaluated the severity of clinical and pathological manifestations, in addition to host responses. We observed that both of the isolates show high pathogenicity by inducing several clinical and pathological manifestations. A significant recruitment of immune cells at both 3 and 7 days post-infection (dpi) was observed in the tracheal mucosa and the lung tissues of the infected chickens with wildtype and CEO vaccine revertant ILTV isolates when compared to uninfected controls. Overall, this study provides a better understanding of the mechanism of host responses against ILTV infection.
Collapse
|
3
|
Wang Z, Qiao Y, Chen Z, Liang Y, Cui L, Zhang Y, Li X, Xu L, Wei P, Liu S, Li H. Fos Facilitates Gallid Alpha-Herpesvirus 1 Infection by Transcriptional Control of Host Metabolic Genes and Viral Immediate Early Gene. Viruses 2021; 13:v13061110. [PMID: 34207926 PMCID: PMC8229045 DOI: 10.3390/v13061110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus–host interactions and the roles of AP-1 in viral infection.
Collapse
Affiliation(s)
- Zhitao Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yangyang Qiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yumeng Liang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Yanhui Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| |
Collapse
|
4
|
Krunkosky M, García M, Beltran G, Williams SM, Hurley DJ, Gogal RM. Ocular exposure to infectious laryngotracheitis virus alters leukocyte subsets in the head-associated lymphoid tissues and trachea of 6-week-old White Leghorn chickens. Avian Pathol 2020; 49:404-417. [PMID: 32301627 DOI: 10.1080/03079457.2020.1757036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes acute respiratory disease primarily infecting the upper respiratory tract and conjunctiva. Administration of live attenuated ILTV vaccines via eye drop, drinking water, or by coarse spray elicits protective mucosal immunity in the head-associated lymphoid tissues (HALT), of which conjunctiva-associated lymphoid tissue (CALT) and the Harderian gland (HG) are important tissue components. The trachea, a non-lymphoid tissue, also receives significant influx of inflammatory cells that dictate the outcome of ILTV infection. The objective of this study was to evaluate leukocyte cellular and phenotypic changes in the CALT, HG and trachea following ocular infection with a virulent ILTV strain. At 1, 3, 5, 7 and 9 days post-infection, CALT, HG, and trachea of 6-week-old specific pathogen free (SPF) chickens ocularly-exposed to vehicle or virulent ILTV strain 63140 were dissociated, the cells enumerated and then phenotyped using flow cytometry. The CALT had the highest viral genomic load, which peaked on day 3. In ILTV-infected birds, the CALT had a decreased percentage of leukocytes. This was reflected by decreased numbers of MHCI+MHCII-, MHCI+MHCIIlow+, and CD4+ cells, while IgM+ and MHCI+MHCIIHigh+ expressing cell populations increased. In the HG, the most notable change in cells from ILTV-infected birds was a decrease in IgM expressing cells and histologically, an increase in Mott cells. In summary, an acute, ocular exposure to ILTV strain 63140 in young birds shifts subsets of lymphocyte populations in the CALT and HG with minimal impact on the trachea.
Collapse
Affiliation(s)
- M Krunkosky
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M García
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - G Beltran
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - S M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - D J Hurley
- Food Animal Health and Management, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - R M Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Borowska D, Kuo R, Bailey RA, Watson KA, Kaiser P, Vervelde L, Stevens MP. Highly multiplexed quantitative PCR-based platform for evaluation of chicken immune responses. PLoS One 2019; 14:e0225658. [PMID: 31794562 PMCID: PMC6890255 DOI: 10.1371/journal.pone.0225658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022] Open
Abstract
To address the need for sensitive high-throughput assays to analyse avian innate and adaptive immune responses, we developed and validated a highly multiplexed qPCR 96.96 Fluidigm Dynamic Array to analyse the transcription of chicken immune-related genes. This microfluidic system permits the simultaneous analysis of expression of 96 transcripts in 96 samples in 6 nanolitre reactions and the 9,216 reactions are ready for interpretation immediately. A panel of 89 genes was selected from an RNA-seq analysis of the transcriptional response of chicken macrophages, dendritic cells and heterophils to agonists of innate immunity and from published transcriptome data. Assays were confirmed to be highly specific by amplicon sequencing and melting curve analysis and the reverse transcription and preamplification steps were optimised. The array was applied to RNA of various tissues from a commercial line of broiler chickens housed at two different levels of biosecurity. Gut-associated lymphoid tissues, bursa, spleen and peripheral blood leukocytes were isolated and transcript levels for immune-related genes were defined. The results identified blood cells as a potentially reliable indicator of immune responses among all the tissues tested with the highest number of genes significantly differentially transcribed between birds housed under varying biosecurity levels. Conventional qPCR analysis of three differentially transcribed genes confirmed the results from the multiplex qPCR array. A highly multiplexed qPCR-based platform for evaluation of chicken immune responses has been optimised and validated using samples from commercial chickens. Apart from applications in selective breeding programmes, the array could be used to analyse the complex interplay between the avian immune system and pathogens by including pathogen-specific probes, to screen vaccine responses, and as a predictive tool for immune robustness.
Collapse
Affiliation(s)
- Dominika Borowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- * E-mail:
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | | | - Kellie A. Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Aviagen Ltd, Edinburgh, Scotland, United Kingdom
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|
6
|
Wang Z, Sun B, Gao Q, Ma Y, Liang Y, Chen Z, Wu H, Cui L, Shao Y, Wei P, Li H, Liu S. Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology 2019; 537:1-13. [PMID: 31425969 PMCID: PMC7172859 DOI: 10.1016/j.virol.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022]
Abstract
Viral spread is considered a promising target for antiviral therapeutics, but the associated mechanisms remain unclear for gallid alpha herpesvirus 1 (ILTV). We previously identified proto-oncogene tyrosine-protein kinase Src (Src) as a crucial host determinant of ILTV infection. The present study revealed accelerated spread of ILTV upon Src inhibition. This phenomenon was independent of either viral replication or the proliferation of infected cells and could not be compromised by neutralizing antibody. Neither extracellular vesicles nor the direct cytosol-to-cytosol connections between adjacent cells contributed to the enhanced spread of ILTV upon Src inhibition. Further genome-wide transcriptional profile analyses in combination with functional validation identified fatty acid metabolism as an essential molecular event during modulation of the intercellular spread and subsequent cytopathic effect of ILTV by Src. Overall, these data suggest that Src controls the cell-to-cell spread of ILTV in a cellular fatty acid metabolism-dependent manner, which determines the virus's cytopathic effect.
Collapse
Affiliation(s)
- Zhitao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bangyao Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Qi Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yong Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yumeng Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hanguang Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
7
|
Vagnozzi AE, Beltrán G, Zavala G, Read L, Sharif S, García M. Cytokine gene transcription in the trachea, Harderian gland, and trigeminal ganglia of chickens inoculated with virulent infectious laryngotracheitis virus (ILTV) strain. Avian Pathol 2018; 47:497-508. [PMID: 29963906 DOI: 10.1080/03079457.2018.1492090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The objective of this study was to determine how cytokine transcription profiles correlate with patterns of infectious laryngotracheitis virus (ILTV) replication in the trachea, Harderian gland, and trigeminal ganglia during the early and late stages of infection after intratracheal inoculation. Viral genomes and transcripts were detected in the trachea and Harderian gland but not in trigeminal ganglia. The onset of viral replication in the trachea was detected at day one post-infection and peaked by day three post-infection. The peak of pro-inflammatory (CXCLi2, IL-1β, IFN-γ) and anti-inflammatory (IL-13, IL-10) cytokine gene transcription, 5 days post-infection, coincided with the increased recruitment of inflammatory cells, extensive tissue damage, and limiting of virus replication in the trachea. In contrast, transcription of the IFN-β gene in the trachea remained unaffected suggesting that ILTV infection blocks type I interferon responses. In the Harderian gland, the most evident transcription change was the early and transient upregulation of the IFN-γ gene at 1 day post-infection, which suggests that the Harderian gland is prepared to rapidly respond to ILTV infection. Overall, results from this study suggest that regulation of Th1 effector cells and macrophage activity by Th1/2 cytokines was pertinent to maintain a balanced immune response capable of providing an adequate Th1-mediated protective immunity, while sustaining some immune homeostasis in preparation for the regeneration of the tracheal mucosa.
Collapse
Affiliation(s)
| | - Gabriela Beltrán
- b Poultry Diagnostic and Research Center, Department of Population Health , College of Veterinary Medicine University of Georgia , Athens , GA , USA
| | | | - Leah Read
- d Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Shayan Sharif
- d Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Maricarmen García
- b Poultry Diagnostic and Research Center, Department of Population Health , College of Veterinary Medicine University of Georgia , Athens , GA , USA
| |
Collapse
|
8
|
Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genomics 2017; 18:989. [PMID: 29281979 PMCID: PMC5745900 DOI: 10.1186/s12864-017-4380-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background Newcastle disease virus (NDV) is a threat to poultry production worldwide. A better understanding of mechanisms of resistance and susceptibility to this virus will improve measures for NDV prevention and control. Males and females from resistant Fayoumi and susceptible Leghorn lines were either challenged with a lentogenic strain of the virus or given a mock infection at 3 weeks of age. The lung transcriptomes generated by RNA-seq were studied using contrasts across the challenged and nonchallenged birds, the two lines, and three time points post-infection, and by using Weighted Gene Co-expression Network Analysis (WGNCA). Results Genetic line and sex had a large impact on the lung transcriptome. When contrasting the challenged and nonchallenged birds, few differentially expressed genes (DEG) were identified within each line at 2, 6, and 10 days post infection (dpi), except for the more resistant Fayoumi line at 10 dpi, for which several pathways were activated and inhibited at this time. The interaction of challenge and line at 10 dpi significantly impacted 131 genes (False Discovery Rate (FDR) <0.05), one of which was PPIB. Many DEG were identified between the Fayoumi and Leghorns. The number of DEG between the two lines in the challenged birds decreased over time, but increased over time in the nonchallenged birds. The nonchallenged Fayoumis at 10 dpi showed enrichment of immune type cells when compared to 2 dpi, suggesting important immune related development at this age. These changes between 10 and 2 dpi were not identified in the challenged Fayoumis. The energy allocated to host defense may have interrupted normal lung development. WGCNA identified important modules and driver genes within those modules that were associated with traits of interest, several of which had no known associated function. Conclusions The lines’ unique response to NDV offers insights into the potential means of their resistance and susceptibility. The lung transcriptome shows a unique response to lentogenic NDV compared to a previous study on the trachea of the same birds. It is important to analyze multiple tissues in order to best understand the chicken’s overall response to NDV challenge and improve strategies to combat this devastating disease. Electronic supplementary material The online version of this article (10.1186/s12864-017-4380-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Infectious Laryngotracheitis Virus Viral Chemokine-Binding Protein Glycoprotein G Alters Transcription of Key Inflammatory Mediators In Vitro and In Vivo. J Virol 2017; 92:JVI.01534-17. [PMID: 29070686 DOI: 10.1128/jvi.01534-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that infects chickens, causing upper respiratory tract disease and significant losses to poultry industries worldwide. Glycoprotein G (gG) is a broad-range viral chemokine-binding protein conserved among most alphaherpesviruses, including ILTV. A number of studies comparing the immunological parameters between infection with gG-expressing and gG-deficient ILTV strains have demonstrated that expression of gG is associated with increased virulence, modification of the amount and the composition of the inflammatory response, and modulation of the immune responses toward antibody production and away from cell-mediated immune responses. The aims of the current study were to examine the establishment of infection and inflammation by ILTV and determine how gG influences that response to infection. In vitro infection studies using tracheal organ tissue specimen cultures and blood-derived monocytes and in vivo infection studies in specific-pathogen-free chickens showed that leukocyte recruitment to the site of infection is an important component of the induced pathology and that this is influenced by the expression of ILTV gG and changes in the transcription of the chicken orthologues of mammalian CXC chemokine ligand 8 (CXCL8), chicken CXCLi1 and chicken CXCLi2, among other cytokines and chemokines. The results from this study demonstrate that ILTV gG interferes with chemokine and cytokine transcription at different steps of the inflammatory cascade, thus altering inflammation, virulence, and the balance of the immune response to infection.IMPORTANCE Infectious laryngotracheitis virus is an alphaherpesvirus that expresses gG, a conserved broad-range viral chemokine-binding protein known to interfere with host immune responses. However, little is known about how gG modifies virulence and influences the inflammatory signaling cascade associated with infection. Here, data from in vitro and in vivo infection studies are presented. These data show that gG has a direct impact on the transcription of cytokines and chemokine ligands in vitro (such as chicken CXCL8 orthologues, among others), which explains the altered balance of the inflammatory response that is associated with gG during ILTV infection of the upper respiratory tract of chickens. This is the first report to associate gG with the dysregulation of cytokine transcription at different stages of the inflammatory cascade triggered by ILTV infection of the natural host.
Collapse
|
10
|
Li X, Su S, Cui N, Zhou H, Liu X, Cui Z. Transcriptome Analysis of Chicken Embryo Fibroblast Cell Infected with Marek’s Disease Virus of GX0101 ∆ LTR. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- X Li
- Shandong Agricultural University, China
| | - S Su
- Shandong Agricultural University, China
| | - N Cui
- Shandong Agricultural University, China
| | - H Zhou
- University of California, USA
| | - X Liu
- Shandong Agricultural University, China
| | - Z Cui
- Shandong Agricultural University, China
| |
Collapse
|
11
|
Röll S, Härtle S, Lütteke T, Kaspers B, Härtle S. Tissue and time specific expression pattern of interferon regulated genes in the chicken. BMC Genomics 2017; 18:264. [PMID: 28351377 PMCID: PMC5371264 DOI: 10.1186/s12864-017-3641-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/18/2017] [Indexed: 01/21/2023] Open
Abstract
Background Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens’ immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. Results A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. Conclusions The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3641-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Röll
- Department for Veterinary Science, University of Munich, Munich, Germany
| | - Stefan Härtle
- formerly Department for Veterinary Science, University of Munich, Munich, Germany
| | - Thomas Lütteke
- Department for Veterinary Science, University of Munich, Munich, Germany.,Institute of Veterinary Physiology and Biochemistry, JLU Giessen, Giessen, Germany
| | - Bernd Kaspers
- Department for Veterinary Science, University of Munich, Munich, Germany
| | - Sonja Härtle
- Department for Veterinary Science, University of Munich, Munich, Germany. .,Institute of Veterinary Physiology and Biochemistry, JLU Giessen, Giessen, Germany.
| |
Collapse
|
12
|
Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. J Virol 2015; 90:9-21. [PMID: 26446601 PMCID: PMC4702564 DOI: 10.1128/jvi.01817-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.
Collapse
|
13
|
Carrillo JA, He Y, Luo J, Menendez KR, Tablante NL, Zhao K, Paulson JN, Li B, Song J. Methylome Analysis in Chickens Immunized with Infectious Laryngotracheitis Vaccine. PLoS One 2015; 10:e0100476. [PMID: 26107953 PMCID: PMC4481310 DOI: 10.1371/journal.pone.0100476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/25/2014] [Indexed: 01/08/2023] Open
Abstract
In this study we investigated the methylome of chickens immunized with Infectious laryngotracheitis (ILT) vaccine derived from chicken embryos. Methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq) method was employed in the detection of the 1,155 differentially methylated regions (DMRs) across the entire genome. After validation, we ascertained the genomic DMRs distribution and annotated them regarding genes, transcription start sites (TSS) and CpG islands. We found that global DNA methylation decreased in vaccinated birds, presenting 704 hypomethylated and 451 hypermethylated DMRs, respectively. Additionally, we performed an enrichment analysis detecting gene networks, in which cancer and RNA post-transcriptional modification appeared in the first place, followed by humoral immune response, immunological disease and inflammatory disease. The top four identified canonical pathways were EIF2 signaling, regulation of EIF4 and p70S6K signaling, axonal guidance signaling and mTOR signaling, providing new insight regarding the mechanisms of ILT etiology. Lastly, the association between DNA methylation and differentially expressed genes was examined, and detected negative correlation in seventeen of the eighteen genes.
Collapse
Affiliation(s)
- José A. Carrillo
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Yanghua He
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Juan Luo
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Kimberly R. Menendez
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Nathaniel L. Tablante
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph N. Paulson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou City, Jiangsu Province, P. R. China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Miao J, Bao Y, Ye J, Shao H, Qian K, Qin A. Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101. PLoS One 2015; 10:e0126992. [PMID: 25973612 PMCID: PMC4431687 DOI: 10.1371/journal.pone.0126992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023] Open
Abstract
Reticuloendotheliosis virus (REV), a member of the Gammaretrovirus genus in the Retroviridae family, causes an immunosuppressive, oncogenic and runting-stunting syndrome in multiple avian hosts. To better understand the host interactions at the transcriptional level, microarray data analysis was performed in chicken embryo fibroblast cells at 1, 3, 5, and 7 days after infection with REV. This study identified 1,785 differentially expressed genes that were classified into several functional groups including signal transduction, immune response, biological adhesion and endocytosis. Significant differences were mainly observed in the expression of genes involved in the immune response, especially during the later post-infection time points. These results revealed that differentially expressed genes IL6, STAT1, MyD88, TLRs, NF-κB, IRF-7, and ISGs play important roles in the pathogenicity of REV infection. Our study is the first to use microarray analysis to investigate REV, and these findings provide insights into the underlying mechanisms of the host antiviral response and the molecular basis of viral pathogenesis.
Collapse
Affiliation(s)
- Ji Miao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yanqing Bao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
15
|
In ovo delivery of CpG DNA reduces avian infectious laryngotracheitis virus induced mortality and morbidity. Viruses 2015; 7:1832-52. [PMID: 25856635 PMCID: PMC4411679 DOI: 10.3390/v7041832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/08/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Endosomal toll-like receptor-21 and -9 sense CpG DNA activating production of pro-inflammatory mediators with antimicrobial effects. Here, we investigated the induction of antiviral response of in ovo delivered CpG DNA against infectious laryngotracheitis virus (ILTV) infection. We found that in ovo delivered CpG DNA significantly reduces ILTV infection pre-hatch correlating with the expression of IL-1β and increase of macrophages in lungs. As assessed in vitro, CpG DNA stimulated avian macrophages could be a potential source of IL-1β and other pro-inflammatory mediators. Since we also found that in ovo CpG DNA delivery maintains increased macrophages in the lungs post-hatch, we infected the chickens on the day of hatch with ILTV. We found that in ovo delivered CpG DNA significantly reduces mortality and morbidity resulting from ILTV infection encountered post-hatch. Thus, CpG DNA can be a candidate innate immune stimulant worthy of further investigation for the control of ILTV infection in chickens.
Collapse
|
16
|
Luo J, Carrillo JA, Menendez KR, Tablante NL, Song J. Transcriptome analysis reveals an activation of major histocompatibility complex 1 and 2 pathways in chicken trachea immunized with infectious laryngotracheitis virus vaccine. Poult Sci 2014; 93:848-55. [DOI: 10.3382/ps.2013-03624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Madsen JM, Zimmermann NG, Timmons J, Tablante NL. Prevalence and differentiation of diseases in Maryland backyard flocks. Avian Dis 2013; 57:587-94. [PMID: 24283123 DOI: 10.1637/10423-101612-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several epidemiologic surveillance studies have implicated backyard flocks as a reservoir for poultry diseases; however, much debate still exists over the risk these small flocks pose. To evaluate this concern, the prevalence of Newcastle disease (ND), infectious laryngotracheitis (ILT), Mycoplasma gallisepticum (MG), and Salmonella was determined in 39 Maryland backyard flocks. Serum, tracheal, and cloacal swabs were randomly collected from 262 birds throughout nine counties in Maryland. Through PCR and ELISA analysis, disease prevalence and seroprevalence were determined in flocks, respectively, for the following: ND (0%, 23%); ILT (26%, 77%); MG (3%, 13%); and Salmonella (0%, not done). Vaccine status could not be accurately confirmed. Premise positives were further differentiated and identified by partial nucleotide sequencing. Screening of the 10 ILT premise positives showed that most were live attenuated vaccines: eight matched a tissue culture origin vaccine, one matched a chicken embryo origin (CEO) vaccine, and one was CEO related. The single MG-positive flock, also positive for the CEO-related sequence, was identified as the infectious S6 strain. The prevalence rates for these economically important poultry diseases ranged from none to relatively low, with the vast majority of sampled flocks presenting no clinical signs.
Collapse
Affiliation(s)
- Jennifer M Madsen
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
18
|
Coppo MJC, Hartley CA, Devlin JM. Immune responses to infectious laryngotracheitis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:454-462. [PMID: 23567343 DOI: 10.1016/j.dci.2013.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease.
Collapse
Affiliation(s)
- Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
19
|
Kong BW, Lee J, Bottje WG, Lassiter K, Lee J, Gentles LE, Chandra YG, Foster DN. Microarray analysis of early and late passage chicken embryo fibroblast cells. Poult Sci 2013; 92:770-81. [PMID: 23436528 DOI: 10.3382/ps.2012-02540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cultured cells derived from normal tissue have a limited lifespan due to replicative senescence and show distinct phenotypes such as irreversible cell cycle arrest and enlarged morphology. Studying senescence-associated genetic alterations in chicken cells will provide valuable knowledge of cellular growth characteristics, when compared with normal and rapidly growing cell lines. Microarray analysis of early- and late-passage (passage 4 and 18, respectively) primary chicken embryo fibroblast (CEF) cells was performed with a 4X44K chicken oligo microarray. A total of 1,888 differentially expressed genes were identified with a 2-fold level cutoff that included 272 upregulated and 1,616 downregulated genes in late-passage senescent CEF cells. Bioinformatic analyses were performed using Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). Of the 1,888 differentially expressed genes in senescent CEF cells, 458 were identified as functionally known genes and only 61 genes showed upregulation. Because senescent cells generally showed the deactivated states of most cellular mechanisms for proliferation and energy metabolism, intensified analysis on upregulated genes revealed that the molecular mechanisms in senescent CEF cells are characterized by the suppression of cell cycle and proliferation, progression of cell death including apoptosis, and increased expression of various secreting factors. These regulatory pathways may be opposite to those found in the immortal CEF cell line, such as the DF-1 immortal line. Further comparison of differentially expressed genes between senescent and immortal DF-1 CEF cells showed that 35 genes overlapped and were oppositely regulated. The global gene expression profiles may provide insight into the cellular mechanisms that regulate cellular senescence and immortalization of CEF cells.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Avian influenza seroprevalence and biosecurity risk factors in Maryland backyard poultry: a cross-sectional study. PLoS One 2013; 8:e56851. [PMID: 23437257 PMCID: PMC3577693 DOI: 10.1371/journal.pone.0056851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
Major implications on a country's economy, food source, and public health. With recent concern over the highly pathogenic avian influenza outbreaks around the world, government agencies are carefully monitoring and inspecting live bird markets, commercial flocks, and migratory bird populations. However, there remains limited surveillance of non-commercial poultry. Therefore, a cross-sectional study was conducted in backyard poultry flocks using a convenience sampling method across three regions of Maryland from July 2011 to August 2011. The objective of this study was to develop a better understanding of the ecology and epidemiology of avian influenza by investigating the prevalence and seroprevalence in this potentially vulnerable population and by evaluating biosecurity risk factors associated with positive findings. Serum, tracheal, and cloacal swabs were randomly collected from 262 birds among 39 registered premises. Analysis indicated bird and flock seroprevalence as 4.2% (11/262) and 23.1% (9/39), respectively. Based on RT-qPCR analysis, none of the samples were found to be positive for AI RNA and evidence of AI hemagglutinin subtypes H5, H7, or H9 were not detected. Although no statistically significant biosecurity associations were identified (p≤0.05), AI seroprevalence was positively associated with exposure to waterfowl, pest control, and location. AI seropositive flocks exposed to waterfowl were 3.14 times as likely to be AI seropositive than those not exposed (p = 0.15). AI seropositive flocks that did not use pest control were 2.5 times as likely to be AI seropositive compared to those that did and AI seropositive flocks located in the Northern region of Maryland were 2.8 times as likely to be AI seropositive than those that were located elsewhere.
Collapse
|
21
|
Park S, Hanning I, Perrota A, Bench B, Alm E, Ricke S. Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poult Sci 2013; 92:546-61. [DOI: 10.3382/ps.2012-02734] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Park SH, Biswas D, Lingbeck J, Koo OK, Ricke SC. Enhancement of chicken macrophage cytokine response to Salmonella Typhimurium when combined with bacteriophage P22. FEMS Microbiol Lett 2013; 339:137-44. [PMID: 23240769 DOI: 10.1111/1574-6968.12064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022] Open
Abstract
Salmonella infections are reported as the second most common pathogen caused foodborne disease in the United States, and several Salmonella serovars can colonize in the intestinal tracts of poultry. Reducing Salmonella in poultry is crucial to decrease the incidence of salmonellosis in humans. In this study, we evaluated the immune response of chicken macrophage cells (HD-11) and effects of bacteriophage P22 against the extra- and intracellular S. Typhimurium LT2. Four treatments, (1) HD-11 cells as control, (2) HD-11 cells with LT2, (3) HD-11 cells with LT2 and P22, and (4) HD-11 cells with P22, were administered, and IL-8 responses of HD-11 cells were measured using an ELISA. Also, four cytokine (IL-4, IL-8, IL-10, and IFN-γ) gene expression levels in the presence of LT2 and/or P22 were quantified by qRT-PCR. We found that P22 lysed the extra- and intracellular LT2, which adhered and were taken up by the HD-11 cells. The ELISA indicated that HD-11 cells produced significantly higher IL-8 cytokine levels in the supernatant during the intracellular lyses of LT2 by P22 (P < 0.05). The IL-8 expression levels measured by qRT-PCR also exhibited similar results with the IL-8 production based on ELISA measurements.
Collapse
Affiliation(s)
- Si Hong Park
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA
| | | | | | | | | |
Collapse
|
23
|
Lee J, Bottje WG, Kong BW. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells. BMC Genomics 2012; 13:143. [PMID: 22530940 PMCID: PMC3353197 DOI: 10.1186/1471-2164-13-143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO) and tissue-culture origin (TCO) vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi), compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA) program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Department of Poultry Science, Division of Agriculture, POSC O-404, 1260 West Maple, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
24
|
Shi F, Kong BW, Song JJ, Lee JY, Dienglewicz RL, Erf GF. Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol 2012; 13:18. [PMID: 22500953 PMCID: PMC3353230 DOI: 10.1186/1471-2172-13-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/13/2012] [Indexed: 01/20/2023] Open
Abstract
Background The Smyth line (SL) of chicken is an excellent avian model for human autoimmune vitiligo. The etiology of vitiligo is complicated and far from clear. In order to better understand critical components leading to vitiligo development, cDNA microarray technology was used to compare gene expression profiles in the target tissue (the growing feather) of SL chickens at different vitiligo (SLV) states. Results Compared to the reference sample, which was from Brown line chickens (the parental control), 395, 522, 524 and 526 out of the 44 k genes were differentially expressed (DE) (P ≤ 0.05) in feather samples collected from SL chickens that never developed SLV (NV), from SLV chickens prior to SLV onset (EV), during active loss of pigmentation (AV), and after complete loss of melanocytes (CV). Comparisons of gene expression levels within SL samples (NV, EV, AV and CV) revealed 206 DE genes, which could be categorized into immune system-, melanocyte-, stress-, and apoptosis-related genes based on the biological functions of their corresponding proteins. The autoimmune nature of SLV was supported by predominant presence of immune system related DE genes and their remarkably elevated expression in AV samples compared to NV, EV and/or CV samples. Melanocyte loss was confirmed by decreased expression of genes for melanocyte related proteins in AV and CV samples compared to NV and EV samples. In addition, SLV development was also accompanied by altered expression of genes associated with disturbed redox status and apoptosis. Ingenuity Pathway Analysis of DE genes provided functional interpretations involving but not limited to innate and adaptive immune response, oxidative stress and cell death. Conclusions The microarray results provided comprehensive information at the transcriptome level supporting the multifactorial etiology of vitiligo, where together with apparent inflammatory/innate immune activity and oxidative stress, the adaptive immune response plays a predominant role in melanocyte loss.
Collapse
Affiliation(s)
- Fengying Shi
- Center of Excellence for Poultry Science, University of Arkansas, Division of Agriculture, Fayetteville, AR 72701, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90:2535-47. [PMID: 22010239 DOI: 10.3382/ps.2011-01435] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Global RNA expression in breast muscle obtained from a male broiler line phenotyped for high or low feed efficiency (FE) was investigated. Pooled RNA samples (n = 6/phenotype) labeled with cyanine 3 or cyanine 5 fluorescent dyes to generate cRNA probes were hybridized on a 4 × 44K chicken oligo microarray. Local polynomial regression normalization was applied to background-corrected red and green intensities with a moderated t-statistic. Corresponding P-values were computed and adjusted for multiple testing by false discovery rate to identify differentially expressed genes. Microarray validation was carried out by comparing findings with quantitative reverse-transcription PCR. A 1.3-fold difference in gene expression was set as a cutoff value, which encompassed 20% (782 of 4,011) of the total number of genes that were differentially expressed between FE phenotypes. Using an online software program (Ingenuity Pathway Analysis), the top 10 upregulated genes identified by Ingenuity Pathway Analysis in the high-FE group were generally associated with anabolic processes. In contrast, 7 of the top 10 downregulated genes in the high-FE phenotype (upregulated in the low-FE phenotype) were associated with muscle fiber development, muscle function, and cytoskeletal organization, with the remaining 3 genes associated with self-recognition or stress-responding genes. The results from this study focusing on only the top differentially expressed genes suggest that the high-FE broiler phenotype is derived from the upregulation of genes associated with anabolic processes as well as a downregulation of genes associated with muscle fiber development, muscle function, cytoskeletal organization, and stress response.
Collapse
Affiliation(s)
- B-W Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kong BW, Lee JY, Bottje WG, Lassiter K, Lee J, Foster DN. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. BMC Genomics 2011; 12:571. [PMID: 22111699 PMCID: PMC3258366 DOI: 10.1186/1471-2164-12-571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. RESULTS A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. CONCLUSIONS The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chen C, Li H, Xie Q, Shang H, Ji J, Bai S, Cao Y, Ma Y, Bi Y. Transcriptional profiling of host gene expression in chicken liver tissues infected with oncogenic Marek's disease virus. J Gen Virol 2011; 92:2724-2733. [PMID: 21832007 DOI: 10.1099/vir.0.034066-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Marek's disease virus (MDV), one of the most potent oncogenic herpesviruses, leads to highly contagious immunosuppressive and neoplastic disease in susceptible chickens. Previous studies mainly focused on the roles of host genes modulated by MDV in the virological rather than the neoplastic stage of disease. To investigate the molecular mechanisms of tumorigenesis in Marek's disease further, a microarray analysis with Affymetrix Gene-Chip Chicken Genome Arrays was performed in a non-lymphoid tissue liver during the neoplastic stage. Of the 32 773 chicken transcriptions arrayed on a chip, 269 genes were significantly differentially expressed during the neoplastic stage caused by MDV infection (upregulated, 175; downregulated, 94). The altered genomic expression of 15 randomly selected genes was confirmed by real-time RT-PCR. Biological functions and pathways of the group of 269 differentially expressed genes were analysed by using a bioinformatics tool (ipa, Ingenuity Pathway Analysis). The results revealed that 19 possible gene networks with intermolecular connections and 22 significant metabolic and signalling pathways (P≤0.05) among 137 differentially expressed genes. These 137 genes were classified into a number of functional groups that included genetic disorder, cancer, cellular growth and proliferation, and cell death. In summary, the investigation of global host-gene expression, providing the biological functions of differentially expressed genes in lymphoid tumours of the liver in response to MDV infections, may contribute to a basic understanding of the molecular mechanisms involved in tumorigenesis following MDV infection.
Collapse
Affiliation(s)
- Cuiying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huiqin Shang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Siwei Bai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yulin Ma
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|