1
|
Warmuth VM, Weissensteiner MH, Wolf J. Ineffective silencing of transposable elements on an avian W Chromosome. Genome Res 2022; 32:671-681. [PMID: 35149543 PMCID: PMC8997356 DOI: 10.1101/gr.275465.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
One of the defining features of transposable elements (TEs) is their ability to move to new locations in the host genome. To minimise the potentially deleterious effects of de novo TE insertions, hosts have evolved several mechanisms to control TE activity, including recombination-mediated removal and epigenetic silencing; however, increasing evidence suggests that silencing of TEs is often incomplete. The crow family experienced a recent radiation of LTR retrotransposons (LTRs), offering an opportunity to gain insight into the regulatory control of young, potentially still active TEs. We quantified the abundance of TE-derived transcripts across several tissues in 15 Eurasian crows (Corvus (corone) spp.) raised under common garden conditions and find evidence for ineffective TE suppression on the female-specific W Chromosome. Using RNA-seq data, we show that ~ 9.5% of all transcribed TEs had considerably greater (average: 16-fold) transcript abundance in female crows, and that more than 85% of these female-biased TEs originated on the W Chromosome. After accounting for differences in TE density among chromosomal classes, W-linked TEs were significantly more highly expressed than TEs residing on other chromosomes, consistent with ineffective silencing on the former. Together, our results suggest that the crow W Chromosome acts as a source of transcriptionally active TEs, with possible negative fitness consequences for female birds analogous to Drosophila (an X/Y system), where overexpression of Y-linked TEs is associated with male-specific aging and fitness loss ('toxic Y').
Collapse
|
2
|
Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 2021; 16:e0260514. [PMID: 34941886 PMCID: PMC8699643 DOI: 10.1371/journal.pone.0260514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.
Collapse
|
3
|
Li J, Lyu L, Wen H, Li Y, Wang X, Zhang Y, Yao Y, Qi X. Comparative transcriptomic analysis of gonadal development and renewal in the ovoviviparous black rockfish (Sebastes schlegelii). BMC Genomics 2021; 22:874. [PMID: 34863110 PMCID: PMC8642938 DOI: 10.1186/s12864-021-08169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The black rockfish (Sebastes schlegelii) has an ovoviviparous reproductive pattern and long-term sperm storage, resulting in asynchronous gonadal development between the sexes. However, the comprehensive understanding of gonadal development in black rockfish has not yet been achieved. Here, we studied gonadal development and germ cell renewal using histology and RNA-seq. RESULTS In this study, RNA-seq was performed on testes and ovaries to characterize key pathways and genes that are active during development and gamete maturation in black rockfish. Differentially expressed genes (DEGs) were identified and annotated in 4 comparisons (F_III vs. F_IV, F_IV vs. F_V, M_III vs. M_IV and M_IV vs. M_V). Based on analysis of DEGs enriched in the testis, 11 and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mapped to the M_III vs. M_IV group and the M_IV vs. M_V group, respectively. DEGs in ovarian development were also classified into 10 groups according to their biological functions. The expression patterns of the selected genes determined by qPCR were significantly correlated with the RNA-Seq results, supporting the reliability and accuracy of the RNA-Seq analysis. E2 levels showed down regulation from previtellogenesis to mature stage in female and T level showed down regulation from spermatogenesis to regressed stage in the male. CONCLUSIONS The categories "intercellular interaction and cytoskeleton", "molecule amplification" and "repair in the cell cycle" were revealed to be crucial in testis development and spermatogenesis, as was the biosynthesis of a series of metabolites. Our results provide comprehensive insight into black rockfish gonadal development and provide a basis for further study of reproductive physiology and molecular biology in ovoviviparity teleosts.
Collapse
Affiliation(s)
- Jianshuang Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Likang Lyu
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Haishen Wen
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yun Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xiaojie Wang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Ying Zhang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yijia Yao
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xin Qi
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China.
| |
Collapse
|
4
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
5
|
Shi J, Wang X, Song Y, Liu T, Cheng S, Zhang Q. Excavation of Genes Related to the Mining of Growth, Development, and Meat Quality of Two Crossbred Sheep Populations Based on Comparative Transcriptomes. Animals (Basel) 2021; 11:ani11061492. [PMID: 34064178 PMCID: PMC8224371 DOI: 10.3390/ani11061492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/04/2022] Open
Abstract
Simple Summary In this study, we measured the performance parameters of two crossbred sheep breeds, using Masson staining of the muscle tissue, and using the Illumina high-throughput sequencing platform to determine the differentially expressed genes (DEGs) in Dorper (DP) × Small-tailed Han (STH) sheep and Mongolia (MG) × Small-tailed Han sheep (STH). New transcripts of the muscle transcriptome were examined for the first time. DP × STH sheep were superior to MG × STH sheep in terms of meat quality and muscle morphology. In addition, 13 DEGs were found to play important roles in growth, development, and meat quality. The findings of this work may provide valuable resources for future research on muscle development in sheep. Abstract Crossbreeding can improve production performance and meat quality in sheep. The objective of this study was to look for genes related to sheep growth, development, and muscle. In this study, Dorper (DP) × Small Tailed Han (STH) sheep and Mongolia (MG) × Small-tailed Han (STH) sheep were used to estimate the productive performance and meat quality in a crossbreed. Subsequently, transcriptome analysis and bioinformatic analysis were performed on the Longissimus dorsi muscles of DP × STH and MG × STH sheep to identify differentially expressed genes (DEGs) related to growth, development, and meat quality. The presence of DEGs was confirmed by real-time PCR (qPCR). Productive performance and meat quality of the DP × STH sheep were better than the MG × STH sheep. Compared to DP × STH, a total of 1445 DEGs were identified in MG × STH sheep (1026 DEG were up-regulated and 419 DEG were down-regulated). Of these, 38 DEGs were related to growth, 161 to development, and 43 to muscle. In addition, 13 co-expressed genes (FGFRL1, SIX1, PLCB1, CRYAB, MYL2, ADIPOQ, GPX1, PPARD, GPC1, CDC42, LOC101106246, IGF1, and LARGE) were identified. The expression of DEGs was consistent with the comparative transcriptome analysis. This work provides genetics resources for future research on muscle development in sheep.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yali Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
- Correspondence: (S.C.); (Q.Z.); Tel.: +86-931-763-2509 (S.C.)
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (S.C.); (Q.Z.); Tel.: +86-931-763-2509 (S.C.)
| |
Collapse
|
6
|
Genome-wide transcriptome profiling uncovers differential miRNAs and lncRNAs in ovaries of Hu sheep at different developmental stages. Sci Rep 2021; 11:5865. [PMID: 33712687 PMCID: PMC7971002 DOI: 10.1038/s41598-021-85245-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.
Collapse
|
7
|
Hao Z, Li Z, Huo J, Li J, Liu F, Yin P. Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver. PLoS One 2021; 16:e0245749. [PMID: 33503027 PMCID: PMC7840052 DOI: 10.1371/journal.pone.0245749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P<0.05), total antioxidative capacity (T-AOC) (P<0.05), and catalase (CAT) activity (P<0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P >0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhen Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinjin Huo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
9
|
Wu W, Zhang Z, Chao Z, Li B, Li R, Jiang A, Kim KH, Liu H. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model. Gene 2020; 766:145157. [PMID: 32949697 DOI: 10.1016/j.gene.2020.145157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Glycolytic potential (GP) calculated based on glucose, glycogen, glucose-6-phosphate, and lactate contents is a critical factor for multiple meat quality characteristics. However, the genetic basis of glycolytic metabolism is still unclear. In this study, we constructed six RNA-Seq libraries using longissimus dorsi (LD) muscles from pigs divergent for GP phenotypic values and generated the whole genome-wide gene expression profiles. Furthermore, we identified 25,880 known and 220 novel genes from these skeletal muscle libraries, and 222 differentially expressed genes (DEGs) between the higher and lower GP groups. Notably, we found that the Lactate dehydrogenase B (LDHB) and Fructose-2, 6-biphosphatase 3 (PFKFB3) expression levels were higher in the higher GP group than the lower GP group, and positively correlated with GP and lactic acid (LA), and reversely correlated with pH value at 45 min postmortem (pH45min). Besides, LDHB and PFKFB3 expression were positively correlated with drip loss measured at 48 h postmortem (DL48h) and drip loss measured at 24 h postmortem (DL24h). Collectively, we identified a serial of DEGs as the potential key candidate genes affecting GP and found that LDHB and PFKFB3 are closely related to GP and GP-related traits. Our results lay a solid basis for in-depth studies of the regulatory mechanisms on GP and GP-related traits in pigs.
Collapse
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zengkai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhe Chao
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47897, USA.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Lin Y, Tang Q, Li Y, He M, Jin L, Ma J, Wang X, Long K, Huang Z, Li X, Gu Y, Li M. Genomic analyses provide insights into breed-of-origin effects from purebreds on three-way crossbred pigs. PeerJ 2019; 7:e8009. [PMID: 31737448 PMCID: PMC6855203 DOI: 10.7717/peerj.8009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022] Open
Abstract
Crossbreeding is widely used aimed at improving crossbred performance for poultry and livestock. Alleles that are specific to different purebreds will yield a large number of heterozygous single-nucleotide polymorphisms (SNPs) in crossbred individuals, which are supposed to have the power to alter gene function or regulate gene expression. For pork production, a classic three-way crossbreeding system of Duroc × (Landrace × Yorkshire) (DLY) is generally used to produce terminal crossbred pigs with stable and prominent performance. Nonetheless, little is known about the breed-of-origin effects from purebreds on DLY pigs. In this study, we first estimated the distribution of heterozygous SNPs in three kinds of three-way crossbred pigs via whole genome sequencing data originated from three purebreds. The result suggested that DLY is a more effective strategy for three-way crossbreeding as it could yield more stably inherited heterozygous SNPs. We then sequenced a DLY pig family and identified 95, 79, 132 and 42 allele-specific expression (ASE) genes in adipose, heart, liver and skeletal muscle, respectively. Principal component analysis and unrestricted clustering analyses revealed the tissue-specific pattern of ASE genes, indicating the potential roles of ASE genes for development of DLY pigs. In summary, our findings provided a lot of candidate SNP markers and ASE genes for DLY three-way crossbreeding system, which may be valuable for pig breeding and production in the future.
Collapse
Affiliation(s)
- Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
12
|
Lim KS, Chang SS, Choi BH, Lee SH, Lee KT, Chai HH, Park JE, Park W, Lim D. Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo). Animals (Basel) 2019; 9:ani9100727. [PMID: 31561539 PMCID: PMC6826869 DOI: 10.3390/ani9100727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The functional hemizygosity could be caused by the MAE of a given gene and it can be one of the sources to affect the phenotypic variation in cattle. We aimed to identify MAE genes across the transcriptome in Korean cattle (Hanwoo). For three Hanwoo family trios, the transcriptome data of 17 tissues were generated in three offspring. Sixty-two MAE genes had a monoallelic expression in at least one tissue. Comparing genotypes among each family trio, the preferred alleles of 18 genes were identified (maternal expression, n = 9; paternal expression, n = 9). The MAE genes are involved in gene regulation, metabolic processes, and immune responses, and in particular, six genes encode transcription factors (FOXD2, FOXM1, HTATSF1, SCRT1, NKX6-2, and UBN1) with tissue-specific expression. In this study, we report genome-wide MAE genes in seventeen tissues of adult cattle. These results could help to elucidate epigenetic effects on phenotypic variation in Hanwoo.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Sun-Sik Chang
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea.
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Seung-Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea.
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| |
Collapse
|
13
|
Wang G, Li Y, Yang Q, Xu S, Ma S, Yan R, Zhang R, Jia G, Ai D, Yang Q. Gene expression dynamics during the gonocyte to spermatogonia transition and spermatogenesis in the domestic yak. J Anim Sci Biotechnol 2019; 10:64. [PMID: 31338188 PMCID: PMC6624888 DOI: 10.1186/s40104-019-0360-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Spermatogenesis is a cellular differentiation process that includes three major events: mitosis of spermatogonia, meiosis of spermatocytes and spermiogenesis. Steady-state spermatogenesis relies on functions of spermatogonial stem cells (SSCs). Establishing and maintaining a foundational SSC pool is essential for continued spermatogenesis in mammals. Currently, our knowledge about SSC and spermatogenesis is severely limited in domestic animals. Results In the present study, we examined transcriptomes of testes from domestic yaks at four different stages (3, 5, 8 and 24 months of age) and attempted to identify genes that are associated with key developmental events of spermatogenesis. Histological analyses showed that the most advanced germ cells within seminiferous tubules of testes from 3, 5, 8 and 24 months old yaks were gonocytes, spermatogonia, spermatocytes and elongated spermatids, respectively. RNA-sequencing (RNA-seq) analyses revealed that 11904, 4381 and 2459 genes were differentially expressed during the gonocyte to spermatogonia transition, the mitosis to meiosis transition and the meiosis to post-meiosis transition. Further analyses identified a list of candidate genes than may regulate these important cellular processes. CXCR4, a previously identified SSC niche factor in mouse, was one of the up-regulated genes in the 5 months old yak testis. Results of immunohistochemical staining confirmed that CXCR4 was exclusively expressed in gonocytes and a subpopulation of spermatogonia in the yak testis. Conclusions Together, these findings demonstrated histological changes of postnatal testis development in the domestic yak. During development of spermatogonial lineage, meiotic and haploid germ cells are supported by dynamic transcriptional regulation of gene expression. Our transcriptomic analyses provided a list of candidate genes that potentially play crucial roles in directing the establishment of SSC and spermatogenesis in yak. Electronic supplementary material The online version of this article (10.1186/s40104-019-0360-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guowen Wang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yongchang Li
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qilin Yang
- 3Department of Veterinary Sciences, Qinghai Vocational and Technical Institute of Animal Husbandry and Veterinary, Qinghai University, Xining, 810016 China
| | - Shangrong Xu
- 4Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016 China
| | - Shike Ma
- 4Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016 China
| | - Rongge Yan
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruina Zhang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China
| | - Gongxue Jia
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China
| | - Deqiang Ai
- Animal Husbandry Technology Extension Station of Qinghai Province, Xining, 810001 Qinghai China
| | - Qi'en Yang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,6Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001 Qinghai China.,7CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
14
|
Wei S, Li A, Zhang L, Du M. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: Long noncoding RNAs in adipogenesis and adipose development of meat animals12. J Anim Sci 2019; 97:2644-2657. [PMID: 30959518 DOI: 10.1093/jas/skz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing technology, especially next-generation RNA sequencing, has greatly facilitated the identification and annotation of long noncoding RNAs (lncRNAs). In mammals, a large number of lncRNAs have been identified, which regulate various biological processes. An increasing number of lncRNAs have been identified which could function as key regulators of adipogenesis (adipocyte formation), a key step of the development of adipose tissue. Because proper adipose tissue development is a key factor affecting animal growth efficiency, lean/fat ratio, and meat quality, summarizing the roles and recent advances of lncRNAs in adipogenesis is needed in order to develop strategies to effectively manage fat deposition. In this review, we updated lncRNAs contributed to the regulation of adipogenesis, focusing on their roles in fat development of farm animals.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anning Li
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
15
|
Fu B, Yu X, Tong J, Pang M, Zhou Y, Liu Q, Tao W. Comparative transcriptomic analysis of hypothalamus-pituitary-liver axis in bighead carp (Hypophthalmichthys nobilis) with differential growth rate. BMC Genomics 2019; 20:328. [PMID: 31039751 PMCID: PMC6492341 DOI: 10.1186/s12864-019-5691-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background Growth rate is one of the most important features for aquaculture species and deciphering its regulation mechanism has great significance both in genetics and in economics. Hypothalamus-pituitary growth axis (HP growth axis) or neuro-endocrine axis plays a vital role in growth regulation in different aquaculture animals. Results In this study, the HP and liver transcriptomes of two female groups (H and L) with phenotypically extreme growth rate were sequenced using RNA-Seq. A total of 30,524 and 22,341 genes were found expressed in the two tissues, respectively. The average expression levels for the two tissues were almost the same, but the median differed significantly. A differential expression analysis between H and L groups identified 173 and 204 differentially expressed genes (DEGs) in HP and liver tissue, respectively. Pathway analysis revealed that DEGs in HP tissue were enriched in regulation of cell proliferation and angiogenesis while in liver tissue these genes were overrepresented in sterol biosynthesis and transportation. Genomic overlapping analyses found that 4 and 5 DEGs were within growth-related QTL in HP and liver tissue respectively. A deeper analysis of these 9 genes revealed 3 genes were functionally linked to the trait of interest. The expression of 2075 lncRNAs in HP tissue and 1490 in liver tissue were also detected, and some of lncRNAs were highly expressed in the two tissues. Conclusions Above all, the results of the present study greatly contributed to the knowledge of the regulation of growth and then assisted the design of new selection strategies for bighead carp with improved growth-related traits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5691-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innnovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
16
|
Huang X, Sun W, Yan Z, Shi H, Yang Q, Wang P, Li S, Liu L, Zhao S, Gun S. Integrative Analyses of Long Non-coding RNA and mRNA Involved in Piglet Ileum Immune Response to Clostridium perfringens Type C Infection. Front Cell Infect Microbiol 2019; 9:130. [PMID: 31114763 PMCID: PMC6503642 DOI: 10.3389/fcimb.2019.00130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in regulating host immune and inflammatory responses to bacterial infection. Infection with Clostridium perfringens (C. perfringens), a food-borne zoonotic pathogen, can lead to a series of inflammatory diseases in human and piglet, greatly challenging the healthy development of global pig industry. However, the roles of lncRNAs involved in piglet immune response against C. perfringens type C infection remain unknown. In this study, the regulatory functions of ileum lncRNAs and mRNAs were investigated in piglet immune response to C. perfringens type C infection among resistance (IR), susceptibility (IS) and sham-inoculation (control, IC) groups. A total of 480 lncRNAs and 3,669 mRNAs were significantly differentially expressed, the differentially expressed lncRNAs and mRNAs in the IR and IS groups were enriched in various pathways of ABC transporters, olfactory transduction, PPAR signaling pathway, chemokine signaling pathway and Toll-like receptor signaling pathway, involving in regulating piglet immune responses and resistance during infection. There were 212 lncRNAs and 505 target mRNAs found to have important association with C. perfringens infectious diseases, furthermore, 25 dysregulated lncRNAs corresponding to 13 immune-related target mRNAs were identified to play potential roles in defense against bacterial infection. In conclusion, the results improve our understanding on the characteristics of lncRNAs and mRNAs on regulating host immune response against C. perfringens type C infection, which will provide a reference for future research into exploring C. perfringens-related diseases in human.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
17
|
Gòdia M, Estill M, Castelló A, Balasch S, Rodríguez-Gil JE, Krawetz SA, Sánchez A, Clop A. A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes. Front Genet 2019; 10:299. [PMID: 31040860 PMCID: PMC6476908 DOI: 10.3389/fgene.2019.00299] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Understanding the molecular basis of cell function and ultimate phenotypes is crucial for the development of biological markers. With this aim, several RNA-seq studies have been devoted to the characterization of the transcriptome of ejaculated spermatozoa in relation to sperm quality and fertility. Semen quality follows a seasonal pattern and decays in the summer months in several animal species. The aim of this study was to deeply profile the transcriptome of the boar sperm and to evaluate its seasonal changes. We sequenced the total and the short fractions of the sperm RNA from 10 Pietrain boars, 5 collected in summer and 5 five sampled in winter, and identified a complex and rich transcriptome with 4,436 coding genes of moderate to high abundance. Transcript fragmentation was high but less obvious in genes related to spermatogenesis, chromatin compaction and fertility. Short non-coding RNAs mostly included piwi-interacting RNAs, transfer RNAs and microRNAs. We also compared the transcriptome of the summer and the winter ejaculates and identified 34 coding genes and 7 microRNAs with a significantly distinct distribution. These genes were mostly related to oxidative stress, DNA damage and autophagy. This is the deepest characterization of the boar sperm transcriptome and the first study linking the transcriptome and the seasonal variability of semen quality in animals. The annotation described here can be used as a reference for the identification of markers of sperm quality in pigs.
Collapse
Affiliation(s)
- Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
| | - Molly Estill
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, United States
| | - Anna Castelló
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Joan E. Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Barcelona, Spain
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Armand Sánchez
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Catalonia, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
18
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
19
|
Guillocheau GM, El Hou A, Meersseman C, Esquerré D, Rebours E, Letaief R, Simao M, Hypolite N, Bourneuf E, Bruneau N, Vaiman A, Vander Jagt CJ, Chamberlain AJ, Rocha D. Survey of allele specific expression in bovine muscle. Sci Rep 2019; 9:4297. [PMID: 30862965 PMCID: PMC6414783 DOI: 10.1038/s41598-019-40781-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/22/2019] [Indexed: 02/04/2023] Open
Abstract
Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3’UTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance.
Collapse
Affiliation(s)
| | - Abdelmajid El Hou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, 87060, Limoges, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Morgane Simao
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Hypolite
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Nicolas Bruneau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBiociences Centre, Bundoora, Victoria, Australia
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
20
|
Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from cashmere and milk goats. Genomics 2019; 112:332-345. [PMID: 30779940 DOI: 10.1016/j.ygeno.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFβ and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.
Collapse
|
21
|
Stachowiak M, Szczerbal I, Flisikowski K. Investigation of allele-specific expression of genes involved in adipogenesis and lipid metabolism suggests complex regulatory mechanisms of PPARGC1A expression in porcine fat tissues. BMC Genet 2018; 19:107. [PMID: 30497374 PMCID: PMC6267897 DOI: 10.1186/s12863-018-0696-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background The expression of genes involved in regulating adipogenesis and lipid metabolism may affect economically important fatness traits in pigs. Allele-specific expression (ASE) reflects imbalance between allelic transcript levels and can be used to identify underlying cis-regulatory elements. ASE has not yet been intensively studied in pigs. The aim of this investigation was to analyze the differential allelic expression of four genes, PPARA, PPARG, SREBF1, and PPARGC1A, which are involved in the regulation of fat deposition in porcine subcutaneous and visceral fat and longissimus dorsi muscle. Results Quantification of allelic proportions by pyrosequencing revealed that both alleles of PPARG and SREBF1 are expressed at similar levels. PPARGC1A showed the greatest ASE imbalance in fat deposits in Polish Large White (PLW), Polish Landrace and Pietrain pigs; and PPARA in PLW pigs. Significant deviations of mean PPARGC1A allelic transcript ratio between cDNA and genomic DNA were detected in all tissues, with the most pronounced difference (p < 0.001) in visceral fat of PLW pigs. To search for potential cis-regulatory elements affecting ASE in the PPARGC1A gene we analyzed the effects of four SNPs (rs337351686, rs340650517, rs336405906 and rs345224049) in the promoter region, but none were associated with ASE in the breeds studied. DNA methylation analysis revealed significant CpG methylation differences between samples showing balanced (allelic transcript ratio ≈1) and imbalanced allelic expression for CpG site at the genomic position in chromosome 8 (SSC8): 18527678 in visceral fat (p = 0.017) and two CpG sites (SSC8:18525215, p = 0.030; SSC8:18525237, p = 0.031) in subcutaneous fat. Conclusions Our analysis of differential allelic expression suggests that PPARGC1A is subjected to cis-regulation in porcine fat tissues. Further studies are necessary to identify other regulatory elements localized outside the PPARGC1A proximal promoter region. Electronic supplementary material The online version of this article (10.1186/s12863-018-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| |
Collapse
|
22
|
Kern C, Wang Y, Chitwood J, Korf I, Delany M, Cheng H, Medrano JF, Van Eenennaam AL, Ernst C, Ross P, Zhou H. Genome-wide identification of tissue-specific long non-coding RNA in three farm animal species. BMC Genomics 2018; 19:684. [PMID: 30227846 PMCID: PMC6145346 DOI: 10.1186/s12864-018-5037-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/27/2018] [Indexed: 03/08/2023] Open
Abstract
Background Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs. As one of the FAANG pilot projects, lncRNAs were identified across eight tissues in two adult male biological replicates from chickens, cattle, and pigs. Results Comprehensive lncRNA annotations for the chicken, cattle, and pig genomes were generated by utilizing RNA-seq from eight tissue types from two biological replicates per species at the adult developmental stage. A total of 9393 lncRNAs in chickens, 7235 lncRNAs in cattle, and 14,429 lncRNAs in pigs were identified. Including novel isoforms and lncRNAs from novel loci, 5288 novel lncRNAs were identified in chickens, 3732 in cattle, and 4870 in pigs. These transcripts match previously known patterns of lncRNAs, such as generally lower expression levels than mRNAs and higher tissue specificity. An analysis of lncRNA conservation across species identified a set of conserved lncRNAs with potential functions associated with chromatin structure and gene regulation. Tissue-specific lncRNAs were identified. Genes proximal to tissue-specific lncRNAs were enriched for GO terms associated with the tissue of origin, such as leukocyte activation in spleen. Conclusions LncRNAs were identified in three important farm animal species using eight tissues from adult individuals. About half of the identified lncRNAs were not previously reported in the NCBI annotations for these species. While lncRNAs are less conserved than protein-coding genes, a set of positionally conserved lncRNAs were identified among chickens, cattle, and pigs with potential functions related to chromatin structure and gene regulation. Tissue-specific lncRNAs have potential regulatory functions on genes enriched for tissue-specific GO terms. Future work will include epigenetic data from ChIP-seq experiments to further refine these annotations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5037-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - James Chitwood
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
23
|
Cai W, Li C, Liu S, Zhou C, Yin H, Song J, Zhang Q, Zhang S. Genome Wide Identification of Novel Long Non-coding RNAs and Their Potential Associations With Milk Proteins in Chinese Holstein Cows. Front Genet 2018; 9:281. [PMID: 30105049 PMCID: PMC6077245 DOI: 10.3389/fgene.2018.00281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in various biological processes. However, their role in milk performance is unknown. Here, whole transcriptome RNA sequencing was used to generate the lncRNA transcriptome profiles in mammary tissue samples from 6 Chinese Holstein cows with 3 extremely high and 3 low milk protein percentage phenotypes. In this study, 6,450 lncRNA transcripts were identified through 5 stringent steps and filtration by coding potential. In total, 31 lncRNAs and 18 novel genes were identified to be differentially expressed in high milk protein samples (HP) relative to low milk protein samples (LP), respectively. Differentially expressed lncRNAs were selected to predict target genes through bioinformatics analysis, followed by the integration of differentially expressed mRNA data, gene function, gene ontology (GO) and pathway, genome wide association study (GWAS) and quantitative trait locus (QTL) information, as well as network analysis to further characterize potential interactions. Several lncRNAs were found (such as XLOC_059976) that could be used as candidate markers for milk protein content prediction. This is the first study to perform global expression profiling of lncRNAs and mRNAs related to milk protein traits in dairy cows. These results provide important information and insights into the synthesis of milk proteins, and potential targets for the future improvement of milk quality.
Collapse
Affiliation(s)
- Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Gunawan A, Listyarini K, Furqon A, Sumantri C, Akter SH, Uddin MJ. Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing. Gene 2018; 676:86-94. [PMID: 29958950 DOI: 10.1016/j.gene.2018.06.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023]
Abstract
Mutton consumption is less popular in many Asian countries including Indonesia, whose consumers often complain about the unpleasant flavour and odour of the meat. The main causes of mutton odour are the two compounds of branched chain fatty acid (BCFA): methylnonanoic (MNA), phenol, 3-methyl (MP), 4-methylnonanoic (MNA) and 4-ethyloctanoic (EOA) present in all the adipose tissue; and the 3-methylindole (MI) or skatole and indole, which are originated from pastoral diets. It is crucial to understand the genetic mechanism of mutton odour and flavour (MOF) to select sheep for lower BCFA and indole thus reduce the unpleasant flavour of meat. The aim of the present study was to investigate transcriptome profiling in liver tissue with divergent MOF using RNA deep sequencing. Liver tissues from higher (n = 3) and lower (n = 3) MOF sheep were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample ranged from 21.37 to 25.37 million. Approximately 103 genes were differentially expressed (DEGs) with significance level of p-adjusted value <0.05. Among them, 60 genes were up-regulated, and 43 were down-regulated (p < 0.01, FC > 1.5) in higher MOF group. Differentially regulated genes in high MOF liver samples were enriched in biological processes such as cellular response to chemical stimulus and endogenous stimulus; cellular components such as such as basement membrane and extracellular matrix; and molecular functions such as haeme binding and oxidoreductase activity. Among the DEGs, metabolic phase I related genes belonging to the cytochrome P450 CYP2A6 were dominantly expressed. Additionally, phase II conjugation genes including UDP glucuronosyltransferases UGT2B18, sulfotransferase SULT1C1, and glutathione S-transferase GSTM1 were identified. The dominant candidate genes for SOF could be cytochrome P450, sodium-channel protein, transmembrane protein, glutathione transferase, UDP glucuronosyltransferases and sulfotransferase. Pathway analysis identified steroid hormone biosynthesis and chemical carcinogenesis by cytochrome P450 pathways which may play important roles in MOF-related molecules metabolism. This work highlighted potential genes and gene-networks that may affect meat off flavour and odour in sheep.
Collapse
Affiliation(s)
- Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, 16680 Bogor, Indonesia
| | - Kasita Listyarini
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, 16680 Bogor, Indonesia
| | - Ahmad Furqon
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, 16680 Bogor, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, 16680 Bogor, Indonesia
| | - Syeda Hasina Akter
- School of Veterinary Science, University of Queensland, Gatton Campus, QLD 4343, Australia; Faculty of Veterinary Science, Bangladesh Agricultural University, 2202, Bangladesh.
| | - Muhammad Jasim Uddin
- School of Veterinary Science, University of Queensland, Gatton Campus, QLD 4343, Australia; Faculty of Veterinary Science, Bangladesh Agricultural University, 2202, Bangladesh.
| |
Collapse
|
25
|
Zhong L, Mu H, Wen B, Zhang W, Wei Q, Gao G, Han J, Cao S. Long non-coding RNAs involved in the regulatory network during porcine pre-implantation embryonic development and iPSC induction. Sci Rep 2018; 8:6649. [PMID: 29703926 PMCID: PMC5923264 DOI: 10.1038/s41598-018-24863-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNA) play a key role in the orchestration of transcriptional regulation during development and many other cellular processes. The importance of the regulatory co-expression network was highlighted in the identification of the mechanism of these processes in humans and mice. However, elucidation of the properties of porcine lncRNAs involved in the regulatory network during pre-implantation embryonic development and fibroblast reprogramming to induced pluripotent stem cell (iPSC) has been limited to date. Using a weighted gene co-expression network analysis, we constructed the regulatory network and determined that the novel lncRNAs were functionally involved in key events of embryonic development during the pre-implantation period; moreover, reprogramming could be delineated by a small number of potentially functional modules of co-expressed genes. These findings indicate that lncRNAs may be involved in the transcriptional regulation of zygotic genome activation, first lineage segregation and somatic reprogramming to pluripotency. Furthermore, we performed a conservation and synteny analysis with the significant lncRNAs involved in these vital events and validated the results via experimental assays. In summary, the current findings provide a valuable resource to dissect the protein coding gene and lncRNA regulatory networks that underlie the progressive development of embryos and somatic reprogramming.
Collapse
Affiliation(s)
- Liang Zhong
- The Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.,State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bingqiang Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingqing Wei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Suying Cao
- The Animal Science and Technology College, Beijing University of Agriculture, Beijing, China. .,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
26
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
27
|
Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M, Gurgul A. A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits. Genet Mol Biol 2018; 41:125-136. [PMID: 29658965 PMCID: PMC5901489 DOI: 10.1590/1678-4685-gmb-2016-0101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Pork is the most popular meat in the world. Unfortunately, the selection pressure
focused on high meat content led to a reduction in pork quality. The present
study used RNA-seq technology to identify metabolic process genes related to
pork quality traits and fat deposition. Differentially expressed genes (DEGs)
were identified between pigs of Pulawska and Polish Landrace breeds for two the
most important muscles (semimembranosus and longissimus
dorsi). A total of 71 significant DEGs were reported: 15 for
longissimus dorsi and 56 for
semimembranosus muscles. The genes overexpressed in
Pulawska pigs were involved in lipid metabolism (APOD,
LXRA, LIPE, AP2B1, ENSSSCG00000028753 and
OAS2) and proteolysis (CST6, CTSD, ISG15
and UCHL1). In Polish Landrace pigs, genes playing a role in
biological adhesion (KIT, VCAN, HES1, SFRP2, CDH11, SSX2IP and
PCDH17), actin cytoskeletal organisation (FRMD6,
LIMK1, KIF23 and CNN1) and calcium ion binding
(PVALB, CIB2, PCDH17, VCAN and CDH11) were
transcriptionally more active. The present study allows for better understanding
of the physiological processes associated with lipid metabolism and muscle fiber
organization. This information could be helpful in further research aiming to
estimate the genetic markers.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
28
|
Liu C, Ran X, Yu C, Xu Q, Niu X, Zhao P, Wang J. Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes. Genomics 2018; 111:310-319. [PMID: 29481841 DOI: 10.1016/j.ygeno.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/30/2022]
Abstract
To gain a better knowledge of structural variations (SVs) in Xiang pig, we used next-generation sequencing to analyze the Xiang pigs with larger (XL) or smaller litter sizes (XS). Our analysis yielded 28,040 putative SVs in the Xiang pig. These SVs distributed throughout all of chromosomes. Some functional regions including exons and untranslated regions were less varied than introns and intergenic regions. We detected 4637 and 4119 specific SVs, which contained 1697 and 1582 genes in XL and XS group, respectively. These genes were mainly enriched in the well-known pathways involved in development and reproduction processes. Population validation was carried out on 50 SVs candidates using PCR method in 144 Xiang pig crowds. All of 50 SVs were confirmed by PCR method and 14 SVs were associated with the litter size of Xiang pigs. These results may be helpful for the elucidation of growth and reproduction regulation in Xiang pig.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Changyan Yu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qian Xu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengju Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China; Tongren University, Tongren 554300, China.
| |
Collapse
|
29
|
Drag M, Hansen MB, Kadarmideen HN. Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs. PLoS One 2018; 13:e0192673. [PMID: 29438444 PMCID: PMC5811030 DOI: 10.1371/journal.pone.0192673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/29/2018] [Indexed: 01/14/2023] Open
Abstract
Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed to identify expression quantitative trait loci (eQTLs) with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS) were slaughtered at ~100 kg. Gene expression profiles were obtained by RNA-Seq, and genotype data were obtained by an Illumina 60K Porcine SNP chip. Following quality control and filtering, 10,545 and 12,731 genes from liver and testis were included in the eQTL analysis, together with 20,827 SNP variants. A total of 205 and 109 single-tissue eQTLs associated with 102 and 58 unique genes were identified in liver and testis, respectively. By employing a multivariate Bayesian hierarchical model, 26 eQTLs were identified as significant multi-tissue eQTLs. The highest densities of eQTLs were found on pig chromosomes SSC12, SSC1, SSC13, SSC9 and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits curated by the Animal Genome PigQTL database to be significantly overlapped by the genomic coordinates of cis-acting eQTLs. Finally, a subset of 35 cis-acting eQTLs overlapped with known boar taint QTL traits. These eQTLs could be useful in the development of a DNA test for boar taint but careful monitoring of other overlapping QTL traits should be performed to avoid any negative consequences of selection.
Collapse
Affiliation(s)
- Markus Drag
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mathias B. Hansen
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Haja N. Kadarmideen
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
30
|
Zhang D, Shang T, Huang Y, Wang S, Liu H, Wang J, Wang Y, Ji H, Zhang R. Gene expression profile changes in the jejunum of weaned piglets after oral administration of Lactobacillus or an antibiotic. Sci Rep 2017; 7:15816. [PMID: 29150660 PMCID: PMC5693952 DOI: 10.1038/s41598-017-16158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
The small intestine plays an essential role in the health and well-being of animals. Previous studies have shown that Lactobacillus has a protective effect on intestinal morphology, intestinal epithelium integrity and appropriate maturation of gut-associated tissues. Here, gene expression in jejunum tissue of weaned piglets was investigated by RNA-seq analysis after administration of sterile saline, Lactobacillus reuteri, or an antibiotic (chlortetracycline). In total, 401 and 293 genes were significantly regulated by chlortetracycline and L. reuteri, respectively, compared with control treatment. Notably, the HP, NOX1 and GPX2 genes were significantly up-regulated in the L. reuteri group compared with control, which is related to the antioxidant ability of this strain. In addition, the expression of genes related to arachidonic acid metabolism and linoleic acid metabolism enriched after treatment with L. reuteri. The fatty acid composition in the jejunum and colon was examined by GC-MS analysis and suggested that the MUFA C18:1n9c, and PUFAs C18:2n6c and C20:4n6 were increased in the L. reuteri group, verifying the GO enrichment and KEGG pathway analyses of the RNA-seq results. The results contribute to our understanding of the probiotic activity of this strain and its application in pig production.
Collapse
Affiliation(s)
- Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China
| | - Yan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Lab. of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
31
|
RNA-Seq Analyses Identify Frequent Allele Specific Expression and No Evidence of Genomic Imprinting in Specific Embryonic Tissues of Chicken. Sci Rep 2017; 7:11944. [PMID: 28931927 PMCID: PMC5607270 DOI: 10.1038/s41598-017-12179-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic and genetic cis-regulatory elements in diploid organisms may cause allele specific expression (ASE) – unequal expression of the two chromosomal gene copies. Genomic imprinting is an intriguing type of ASE in which some genes are expressed monoallelically from either the paternal allele or maternal allele as a result of epigenetic modifications. Imprinted genes have been identified in several animal species and are frequently associated with embryonic development and growth. Whether genomic imprinting exists in chickens remains debatable, as previous studies have reported conflicting evidence. Albeit no genomic imprinting has been reported in the chicken embryo as a whole, we interrogated the existence or absence of genomic imprinting in the 12-day-old chicken embryonic brain and liver by examining ASE in F1 reciprocal crosses of two highly inbred chicken lines (Fayoumi and Leghorn). We identified 5197 and 4638 ASE SNPs, corresponding to 18.3% and 17.3% of the genes with a detectable expression in the embryonic brain and liver, respectively. There was no evidence detected of genomic imprinting in 12-day-old embryonic brain and liver. While ruling out the possibility of imprinted Z-chromosome inactivation, our results indicated that Z-linked gene expression is partially compensated between sexes in chickens.
Collapse
|
32
|
Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M, Martínez-Cruz B, Cheng JY, Prieto P, Quesada V, Quilez J, Li G, García F, Rubio-Camarillo M, Frias L, Ribeca P, Capella-Gutiérrez S, Rodríguez JM, Câmara F, Lowy E, Cozzuto L, Erb I, Tress ML, Rodriguez-Ales JL, Ruiz-Orera J, Reverter F, Casas-Marce M, Soriano L, Arango JR, Derdak S, Galán B, Blanc J, Gut M, Lorente-Galdos B, Andrés-Nieto M, López-Otín C, Valencia A, Gut I, García JL, Guigó R, Murphy WJ, Ruiz-Herrera A, Marques-Bonet T, Roma G, Notredame C, Mailund T, Albà MM, Gabaldón T, Alioto T, Godoy JA. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 2016; 17:251. [PMID: 27964752 PMCID: PMC5155386 DOI: 10.1186/s13059-016-1090-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. RESULTS We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. CONCLUSIONS The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José L Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Anna Vlasova
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Begoña Martínez-Cruz
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Jade Yu Cheng
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - Pablo Prieto
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Javier Quilez
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Francisca García
- Servei de Cultius Cel.lulars (SCC, SCAC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miriam Rubio-Camarillo
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Paolo Ribeca
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José M Rodríguez
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Francisco Câmara
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ernesto Lowy
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luca Cozzuto
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ionas Erb
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Michael L Tress
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jose L Rodriguez-Ales
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Reverter
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Casas-Marce
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Laura Soriano
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Javier R Arango
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Belen Lorente-Galdos
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Marta Andrés-Nieto
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - José L García
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Computational Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Tomas Marques-Bonet
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José A Godoy
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain.
| |
Collapse
|
33
|
Gan L, Yang B, Mei H. The effect of iron dextran on the transcriptome of pig hippocampus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Weikard R, Demasius W, Kuehn C. Mining long noncoding RNA in livestock. Anim Genet 2016; 48:3-18. [DOI: 10.1111/age.12493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 02/01/2023]
Affiliation(s)
- R. Weikard
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - W. Demasius
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - C. Kuehn
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
- Faculty of Agricultural and Environmental Sciences; University Rostock; 18059 Rostock Germany
| |
Collapse
|
35
|
Yang Y, Zhou R, Mu Y, Hou X, Tang Z, Li K. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds. Sci Rep 2016; 6:30160. [PMID: 27444743 PMCID: PMC4957084 DOI: 10.1038/srep30160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a crucial epigenetic modification involved in diverse biological processes. There is significant phenotypic variance between Chinese indigenous and western pig breeds. Here, we surveyed the genome-wide DNA methylation profiles of blood leukocytes from three pig breeds (Tongcheng, Landrace, and Wuzhishan) by methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in gene body regions and repetitive sequences. LINE/L1 and SINE/tRNA-Glu were the predominant methylated repeats in pigs. The methylation level in the gene body regions was higher than in the 5' and 3' flanking regions of genes. About 15% of CpG islands were methylated in the pig genomes. Additionally, 2,807, 2,969, and 5,547 differentially methylated genes (DMGs) were identified in the Tongcheng vs. Landrace, Tongcheng vs. Wuzhishan, and Landrace vs. Wuzhishan comparisons, respectively. A total of 868 DMGs were shared by the three contrasts. The DMGs were significantly enriched in development- and metabolism-related biological processes and pathways. Finally, we identified 32 candidate DMGs associated with phenotype variance in pigs. Our research provides a DNA methylome resource for pigs and furthers understanding of epigenetically regulated phenotype variance in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
36
|
Ran M, Chen B, Li Z, Wu M, Liu X, He C, Zhang S, Li Z. Systematic Identification of Long Noncoding RNAs in Immature and Mature Porcine Testes1. Biol Reprod 2016; 94:77. [DOI: 10.1095/biolreprod.115.136911] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/18/2016] [Indexed: 02/01/2023] Open
|
37
|
Histological and transcriptome analyses of testes from Duroc and Meishan boars. Sci Rep 2016; 6:20758. [PMID: 26865000 PMCID: PMC4749976 DOI: 10.1038/srep20758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Meishan boars are known for their early sexual maturity. However, they exhibit a significantly smaller testicular size and a reduced proportion of Sertoli cells and daily sperm production compared with Duroc boars. The testes of Duroc and Meishan boars at 20, 75 and 270 days of age were used for histological and transcriptome analyses. Haematoxylin-eosin staining was conducted to observe histological structure of the testes in Duroc and Meishan boars at different ages. Although spermatogenesis occurred prior to 75 days in Meishan boars, the number of spermatogonia and Sertoli cells in Meishan boars were less than in Duroc boars at adulthood. The diameters of the seminiferous tubules of the testes differed significantly during the initiation of development of the seminiferous tubules between the two breeds. We obtained differentially expressed functional genes and analysed seven pathways involved in male sexual maturity and spermatogenesis using RNA-seq. We also detected four main alternative splicing events and many single nucleotide polymorphisms from testes. Eight functionally important genes were validated by qPCR, and Neurotrophin 3 was subjected to quantification and cellular localization analysis. Our study provides the first transcriptome evidence for the differences in sexual function development between Meishan and Duroc boars.
Collapse
|
38
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome. Sci Rep 2015; 5:18019. [PMID: 26658305 PMCID: PMC4676012 DOI: 10.1038/srep18019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/10/2015] [Indexed: 01/24/2023] Open
Abstract
High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.
Collapse
|
40
|
Ropka-Molik K, Żukowski K, Eckert R, Piórkowska K, Oczkowicz M, Gurgul A, Szmatoła T. Whole transcriptome analysis of the porcine muscle tissue of breeds differing in muscularity and meat quality traits. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Wang Z, Li Q, Chamba Y, Zhang B, Shang P, Zhang H, Wu C. Identification of Genes Related to Growth and Lipid Deposition from Transcriptome Profiles of Pig Muscle Tissue. PLoS One 2015; 10:e0141138. [PMID: 26505482 PMCID: PMC4624711 DOI: 10.1371/journal.pone.0141138] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023] Open
Abstract
Transcriptome profiles established using high-throughput sequencing can be effectively used for screening genome-wide differentially expressed genes (DEGs). RNA sequences (from RNA-seq) and microRNA sequences (from miRNA-seq) from the tissues of longissimus dorsi muscle of two indigenous Chinese pig breeds (Diannan Small-ear pig [DSP] and Tibetan pig [TP]) and two introduced pig breeds (Landrace [LL] and Yorkshire [YY]) were examined using HiSeq 2000 to identify and compare the differential expression of functional genes related to muscle growth and lipid deposition. We obtained 27.18 G clean data through the RNA-seq and detected that 18,208 genes were positively expressed and 14,633 of them were co-expressed in the muscle tissues of the four samples. In all, 315 DEGs were found between the Chinese pig group and the introduced pig group, 240 of which were enriched with functional annotations from the David database and significantly enriched in 27 Gene Ontology (GO) terms that were mainly associated with muscle fiber contraction, cadmium ion binding, response to organic substance and contractile fiber part. Based on functional annotation, we identified 85 DEGs related to growth traits that were mainly involved in muscle tissue development, muscle system process, regulation of cell development, and growth factor binding, and 27 DEGs related to lipid deposition that were mainly involved in lipid metabolic process and fatty acid biosynthetic process. With miRNA-seq, we obtained 23.78 M reads and 320 positively expressed miRNAs from muscle tissues, including 271 known pig miRNAs and 49 novel miRNAs. In those 271 known miRNAs, 20 were higher and 10 lower expressed in DSP-TP than in LL-YY. The target genes of the 30 miRNAs were mainly participated in MAPK, GnRH, insulin and Calcium signaling pathway and others involved cell development, growth and proliferation, etc. Combining the DEGs and the differentially expressed (DE) miRNAs, we drafted a network of 46 genes and 18 miRNAs for regulating muscle growth and a network of 15 genes and 16 miRNAs for regulating lipid deposition. We identified that CAV2, MYOZ2, FRZB, miR-29b, miR-122, miR-145-5p and miR-let-7c, etc, were key genes or miRNAs regulating muscle growth, and FASN, SCD, ADORA1, miR-4332, miR-182, miR-92b-3p, miR-let-7a and miR-let-7e, etc, were key genes or miRNAs regulating lipid deposition. The quantitative expressions of eight DEGs and seven DE miRNAs measured with real-time PCR certified that the results of differential expression genes or miRNAs were reliable. Thus, 18,208 genes and 320 miRNAs were positively expressed in porcine longissimus dorsi muscle. We obtained 85 genes and 18 miRNAs related to muscle growth and 27 genes and 16 miRNAs related to lipid deposition, which provided new insights into molecular mechanism of the economical traits in pig.
Collapse
Affiliation(s)
- Zhixiu Wang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, People’s Republic of China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Bo Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Peng Shang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Hao Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| | - Changxin Wu
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Ockendon NF, O'Connell LA, Bush SJ, Monzón-Sandoval J, Barnes H, Székely T, Hofmann HA, Dorus S, Urrutia AO. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes. Mol Ecol Resour 2015; 16:446-58. [PMID: 26358618 PMCID: PMC4982090 DOI: 10.1111/1755-0998.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 08/01/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
Next‐generation sequencing methods, such as RNA‐seq, have permitted the exploration of gene expression in a range of organisms which have been studied in ecological contexts but lack a sequenced genome. However, the efficacy and accuracy of RNA‐seq annotation methods using reference genomes from related species have yet to be robustly characterized. Here we conduct a comprehensive power analysis employing RNA‐seq data from Drosophila melanogaster in conjunction with 11 additional genomes from related Drosophila species to compare annotation methods and quantify the impact of evolutionary divergence between transcriptome and the reference genome. Our analyses demonstrate that, regardless of the level of sequence divergence, direct genome mapping (DGM), where transcript short reads are aligned directly to the reference genome, significantly outperforms the widely used de novo and guided assembly‐based methods in both the quantity and accuracy of gene detection. Our analysis also reveals that DGM recovers a more representative profile of Gene Ontology functional categories, which are often used to interpret emergent patterns in genomewide expression analyses. Lastly, analysis of available primate RNA‐seq data demonstrates the applicability of our observations across diverse taxa. Our quantification of annotation accuracy and reduced gene detection associated with sequence divergence thus provides empirically derived guidelines for the design of future gene expression studies in species without sequenced genomes.
Collapse
Affiliation(s)
- Nina F Ockendon
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Lauren A O'Connell
- FAS Centre for Systems Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen J Bush
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Jimena Monzón-Sandoval
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Holly Barnes
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| | - Hans A Hofmann
- Center for Computational Biology and Bioinformatics, Department of Integrative Biology, The University of Texas, Austin, TX, 78712, USA
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Milner Centre, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
43
|
Li Z, Chen B, Feng M, Ouyang H, Zheng M, Ye Q, Nie Q, Zhang X. MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1. Sci Rep 2015; 5:10294. [PMID: 25980475 PMCID: PMC4434839 DOI: 10.1038/srep10294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause several different leukemia-like proliferative diseases in the hemopoietic system of chickens. Here, we investigated the transcriptome profiles and miRNA expression profiles of ALV-J-infected and uninfected chicken spleens to identify the genes and miRNAs related to ALV-J invasion. In total, 252 genes and 167 miRNAs were differentially expressed in ALV-J-infected spleens compared to control uninfected spleens. miR-23b expression was up-regulated in ALV-J-infected spleens compared with the control spleens, and transcriptome analysis revealed that the expression of interferon regulatory factor 1 (IRF1) was down-regulated in ALV-J-infected spleens compared to uninfected spleens. A dual-luciferase reporter assay showed that IRF1 was a direct target of miR-23b. miR-23b overexpression significantly (P = 0.0022) decreased IRF1 mRNA levels and repressed IRF1-3′-UTR reporter activity. In vitro experiments revealed that miR-23b overexpression strengthened ALV-J replication, whereas miR-23b loss of function inhibited ALV-J replication. IRF1 overexpression inhibited ALV-J replication, and IRF1 knockdown enhanced ALV-J replication. Moreover, IRF1 overexpression significantly (P = 0.0014) increased IFN-β expression. In conclusion, these results suggested that miR-23b may play an important role in ALV-J replication by targeting IRF1.
Collapse
Affiliation(s)
- Zhenhui Li
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Biao Chen
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Min Feng
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Hongjia Ouyang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qiao Ye
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
44
|
Identification of Reproduction-Related Gene Polymorphisms Using Whole Transcriptome Sequencing in the Large White Pig Population. G3-GENES GENOMES GENETICS 2015; 5:1351-60. [PMID: 25917919 PMCID: PMC4502369 DOI: 10.1534/g3.115.018382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent developments in high-throughput sequencing techniques have enabled large-scale analysis of genetic variations and gene expression in different tissues and species, but gene expression patterns and genetic variations in livestock are not well-characterized. In this study, we have used high-throughput transcriptomic sequencing of the Finnish Large White to identify gene expression patterns and coding polymorphisms within the breed in the testis and oviduct. The main objective of this study was to identify polymorphisms within genes that are highly and specifically expressed in male and/or female reproductive organs. The differential expression (DE) analysis underlined 1234 genes highly expressed in the testis and 1501 in the oviduct. Furthermore, we used a novel in-house R-package hoardeR for the identification of novel genes and their orthologs, which underlined 55 additional DE genes based on orthologs in the human, cow, and sheep. Identification of polymorphisms in the dataset resulted in a total of 29,973 variants, of which 10,704 were known coding variants. Fifty-seven nonsynonymous SNPs were present among genes with high expression in the testis and 67 were present in the oviduct, underlining possible influential genes for reproduction traits. Seven genes (PGR, FRAS1, TCF4, ADAT1, SPAG6, PIWIL2, and DNAH8) with polymorphisms were highlighted as reproduction-related based on their biological function. The expression and SNPs of these genes were confirmed using RT-PCR and Sanger sequencing. The identified nonsynonymous mutations within genes highly expressed in the testis or oviduct provide a list of candidate genes for reproduction traits within the pig population and enable identification of biomarkers for sow and boar fertility.
Collapse
|
45
|
Li A, Zhang J, Zhou Z, Wang L, Liu Y, Liu Y. ALDB: a domestic-animal long noncoding RNA database. PLoS One 2015; 10:e0124003. [PMID: 25853886 PMCID: PMC4390226 DOI: 10.1371/journal.pone.0124003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/25/2015] [Indexed: 11/29/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have attracted significant attention in recent years due to their important roles in many biological processes. Domestic animals constitute a unique resource for understanding the genetic basis of phenotypic variation and are ideal models relevant to diverse areas of biomedical research. With improving sequencing technologies, numerous domestic-animal lncRNAs are now available. Thus, there is an immediate need for a database resource that can assist researchers to store, organize, analyze and visualize domestic-animal lncRNAs. Results The domestic-animal lncRNA database, named ALDB, is the first comprehensive database with a focus on the domestic-animal lncRNAs. It currently archives 12,103 pig intergenic lncRNAs (lincRNAs), 8,923 chicken lincRNAs and 8,250 cow lincRNAs. In addition to the annotations of lincRNAs, it offers related data that is not available yet in existing lncRNA databases (lncRNAdb and NONCODE), such as genome-wide expression profiles and animal quantitative trait loci (QTLs) of domestic animals. Moreover, a collection of interfaces and applications, such as the Basic Local Alignment Search Tool (BLAST), the Generic Genome Browser (GBrowse) and flexible search functionalities, are available to help users effectively explore, analyze and download data related to domestic-animal lncRNAs. Conclusions ALDB enables the exploration and comparative analysis of lncRNAs in domestic animals. A user-friendly web interface, integrated information and tools make it valuable to researchers in their studies. ALDB is freely available from http://res.xaut.edu.cn/aldb/index.jsp.
Collapse
Affiliation(s)
- Aimin Li
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, PR China
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, PR China
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, PR China
- * E-mail:
| | - Zhongyin Zhou
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, PR China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Lei Wang
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, PR China
| | - Yujuan Liu
- Xi'an DongXing Branch, CMST Development Co. Ltd., Xi'an, Shaanxi, PR China
| | - Yajun Liu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, PR China
- Higher Technology College, Xi'an University of Technology, Xi'an, Shaanxi, PR China
| |
Collapse
|
46
|
Chen HY, Shen H, Jia B, Zhang YS, Wang XH, Zeng XC. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique. PLoS One 2015; 10:e0120170. [PMID: 25790350 PMCID: PMC4366253 DOI: 10.1371/journal.pone.0120170] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
The Qira black sheep and the Hetian sheep are two local breeds in the Northwest of China, which are characterized by high-fecundity and low-fecundity breed respectively. The elucidation of mRNA expression profiles in the ovaries among different sheep breeds representing fecundity extremes will helpful for identification and utilization of major prolificacy genes in sheep. In the present study, we performed RNA-seq technology to compare the difference in ovarian mRNA expression profiles between Qira black sheep and Hetian sheep. From the Qira black sheep and the Hetian sheep libraries, we obtained a total of 11,747,582 and 11,879,968 sequencing reads, respectively. After aligning to the reference sequences, the two libraries included 16,763 and 16,814 genes respectively. A total of 1,252 genes were significantly differentially expressed at Hetian sheep compared with Qira black sheep. Eight differentially expressed genes were randomly selected for validation by real-time RT-PCR. This study provides a basic data for future research of the sheep reproduction.
Collapse
Affiliation(s)
- Han Ying Chen
- School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Hong Shen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yong Sheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Xu Hai Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Xian Cun Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- * E-mail:
| |
Collapse
|
47
|
Zhao W, Mu Y, Ma L, Wang C, Tang Z, Yang S, Zhou R, Hu X, Li MH, Li K. Systematic identification and characterization of long intergenic non-coding RNAs in fetal porcine skeletal muscle development. Sci Rep 2015; 5:8957. [PMID: 25753296 DOI: 10.1038/srep08957] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) play important roles in many cellular processes. Here, we present the first systematic identification and characterization of lincRNAs in fetal porcine skeletal muscle. We obtained a total of 55.02 million 90-bp paired-end reads and assembled 54,550 transcripts using cufflinks. We developed a pipeline to identify 570 multi-exon lincRNAs by integrating a set of previous approaches. These putative porcine lincRNAs share many characteristics with mammalian lincRNAs, such as a relatively short length, small number of exons and low level of sequence conservation. We found that the porcine lincRNAs were preferentially located near genes mediating transcriptional regulation rather than those with developmental functions. We further experimentally analyzed the features of a conserved mouse lincRNA gene and found that isoforms 1 and 4 of this lincRNA were enriched in the cell nucleus and were associated with polycomb repressive complex 2 (PRC2). Our results provide a catalog of fetal porcine lincRNAs for further experimental investigation of the functions of these genes in the skeletal muscle developmental process.
Collapse
Affiliation(s)
- Weimin Zhao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Ma
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Wang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shulin Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoju Hu
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
48
|
Gan L, Xie L, Zuo F, Xiang Z, He N. Transcriptomic analysis of Rongchang pig brains and livers. Gene 2015; 560:96-106. [PMID: 25637719 DOI: 10.1016/j.gene.2015.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/31/2014] [Accepted: 01/26/2015] [Indexed: 01/01/2023]
Abstract
Recent developments in high-throughput RNA sequencing (RNA-seq) technology have led to a dramatic impact on our understanding of the structure and expression profiles of the mammalian transcriptome. To gain insights into the usefulness of swine production and biomedical model, the transcriptome profiling of Rongchang pig brains and livers was characterized using RNA-seq technology to uncover functional candidate molecules. In the study, total RNAs from brains and livers of Rongchang pig were sequenced and 8.6Gb sequencing data was obtained. This analysis revealed tissue specificity through the identification of 5575 and 4600 differentially expressed genes (DEGs) in brains and livers, respectively and the functional analysis of DEGs. Furthermore, 83 neuropeptide gene transcripts, 69 neuropeptide receptor gene transcripts, 10 pro-neuropeptide convertase gene transcripts and many other neuropeptide related protein gene transcripts were identified. Totally, the major characteristics of the transcriptional profiles of Rongchang pig brains and livers were present.
Collapse
Affiliation(s)
- Ling Gan
- The Department of Veterinary Medicine, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Liwei Xie
- Center of Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Fuyuan Zuo
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
49
|
Ran M, Chen B, Wu M, Liu X, He C, Yang A, Li Z, Xiang Y, Li Z, Zhang S. Integrated analysis of miRNA and mRNA expression profiles in development of porcine testes. RSC Adv 2015. [DOI: 10.1039/c5ra07488f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profile in the development of porcine testes investigates the intricate physiological process in pig testis development and spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Bin Chen
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Xiaochun Liu
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Changqing He
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Anqi Yang
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Zhi Li
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Yongjun Xiang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Zhaohui Li
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Shanwen Zhang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| |
Collapse
|
50
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|